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REMARKS ON DIOPHANTINE APPROXIMATION
IN FUNCTION FIELDS

ARIJIT GANGULY and ANISH GHOSH∗

Abstract
We study some problems in metric Diophantine approximation over local fields of positive char-
acteristic.

1. Introduction

This short paper is motivated by a recent work of Kristensen, Pedersen and
Weiss [14]. In it, the authors consider certain interesting Diophantine problems
arising from K. R. Yu’s generalisation [25] to higher dimensions, of Mahler’s
classification [18] of complex numbers according to their Diophantine prop-
erties. In this paper, which can be thought of as a sequel to our earlier work [8]
and the paper [9] of the second named author, we consider function field ana-
logues of their results. We recall Mahler’s classification briefly for the reader,
see [2] for details.

For k ∈ N and α ∈ R consider the Diophantine exponent

ωk(x) = sup{ω ∈ R : |P(x)| ≤ H(P )−ω for infinitely many

irreducible P ∈ Z[X], deg(P ) ≤ k}.
Here H(P ) denotes the naïve height of the polynomial P which is defined
in §2. Let

ω(x) = lim
k→∞

ωk(x)

k
.

Then, according to Mahler, there are four classes of real numbers:

• x is an A-number if ω(x) = 0;

• x is an S-number if 0 < ω(x) < ∞;

• x is a T -number if ω(x) = ∞, but ωk(x) < ∞ for all k;

• x is a U -number if ω(x) = ∞ and ωk(x) = ∞ for all k large enough.
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Mahler proved that almost all real numbers are S-numbers and conjectured [17]
that in fact, ωk(x) = k for almost every x ∈ R. This conjecture was proven by
Sprindhžuk [23], [24]. It is equivalent to showing that almost every point on the
curve (x, x2, . . . , xn) is not very well approximable, i.e. for almost every x ∈ R
and for every ε > 0 there are at most finitely many q = (q1, q2, . . . , qn) ∈ Zn

such that

|q1x + q2x
2 + · · · + qnx

n + p| ≤ ‖q‖−n(1+ε) for some p ∈ Z,
where ‖q‖ denotes the supremum norm of q. Sprindhžuk’s proof of Mahler’s
conjecture initiated the subject of “metric Diophantine approximation with
dependent quantities” which has seen dramatic progress since then and re-
ceived an important boost with the proof of the Baker-Sprindhžuk conjectures
by D. Kleinbock and G. A. Margulis [12] using methods from homogeneous
dynamics.

The setting of this present paper involves Diophantine approximation over
local fields of positive characteristic, i.e. Laurent series over a finite base field.
The notation and pertinent definitions are introduced in the next section. Dio-
phantine approximation in this setting has been extensively studied beginning
with Mahler [19], [20]. Mahler’s classification was undertaken in positive
characteristic by Bundschuh [3]. We refer the reader also to [7] and to [22] for
recent developments in analogues of Mahler’s and Koksma’s classification in
positive characteristic. As regards Mahler’s conjectures and their analogues,
Sprindhžuk formulated and settled the function field analogue of Mahler’s
conjectures. The function field analogue of the Baker-Sprindhžuk conjectures
were settled by the second named author in [9].

In [25], K. R. Yu developed a higher dimensional analogue of Mahler’s
classification. As far as we are aware, this higher dimensional classification
has not been investigated in the setting of function fields although it seems
a natural and interesting problem. In [14], Kristensen, Pedersen and Weiss
use Yu’s classification as a starting point to study various problems arising
in metric Diophantine approximation with dependent quantities. For instance,
they introduce notions of k-very well approximable and k-Dirichlet improvable
vectors and show that they are contained in a set of zero Lebesgue measure. In
fact their results, as well as ours, are more general; details are in subsequent
sections. In this paper, we develop function field analogues of some of their
results.

We now briefly introduce the setting of Diophantine approximation in func-
tion fields. The subsequent sections are devoted, respectively, to the notion of
k-Dirichlet improvable vectors and k-very well approximable vectors. Dirich-
let improvable vectors and very well approximable vectors have been studied
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in the function field setting in a previous paper of the authors [8] and in a
paper [9] of the second named author respectively. Following the ideas in [14],
we explain how one can use these previously established results to study the
refined notion of k-Dirichlet improvable and k-very well approximable vec-
tors. We also use the occasion to record a result which characterises Dirichlet
improvable Laurent series, which shows a striking contrast with the case of
real numbers.

Finally, we should mention that [14] also has a nice section devoted to badly
approximable vectors which is based on the beautiful work of Beresnevich [1]
on badly approximable vectors on manifolds. Since there are as yet no function
field analogues of these results, we have nothing to say about it.

1.1. The set-up

Let p be a prime and q := pr , where r ∈ N, and consider the function field
Fq(T ). We define a function | · |: Fq(T ) → R≥0 as follows:

|0| := 0 and

∣∣∣∣PQ
∣∣∣∣ := edeg P−deg Q for all non-zero P, Q ∈ Fq[T ].

Clearly | · | is a non-trivial, non-archimedian and discrete absolute value in
Fq(T ). This absolute value gives rise to a metric on Fq(T ).

The completion field of Fq(T ) is Fq((T
−1)), i.e. the field of Laurent series

over Fq . The absolute value of Fq((T
−1)), which we again denote by | · |, is

given as follows. Let a ∈ Fq((T
−1)). For a = 0, define |a| = 0. If a 	= 0, then

we can write

a =
∑
k≤k0

akT
k, where k0 ∈ Z, ak ∈ Fq and ak0 	= 0.

We define k0 as the degree of a, which will be denoted by deg a, and |a| :=
edeg a . This clearly extends the absolute value | · | of Fq(T ) to Fq((T

−1)) and
moreover, the extension remains non-archimedian and discrete. Let � and F

denote Fq[T ] and Fq((T
−1)) respectively from now on. It is obvious that � is

discrete in F . For any d ∈ N, Fd is throughout assumed to be equipped with
the supremum norm which is defined as follows

‖x‖ := max
1≤i≤n

|xi | for all x = (x1, x2, . . . , xd) ∈ Fd,

and with the topology induced by this norm. Clearly �n is discrete in Fn.
Since the topology on Fn considered here is the usual product topology on
Fn, it follows that Fn is locally compact as F is locally compact. Let λ be the
Haar measure on Fd which takes the value 1 on the closed unit ball ‖x‖ = 1.
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Diophantine approximation in the positive characteristic setting consists of
approximating elements in F by ‘rational’ elements, i.e. those from Fq(T ).
As we have mentioned before, this subject has been extensively studied, be-
ginning with Mahler who developed Minkowski’s geometry of numbers in
function fields and continuing with Sprindžuk who, in addition to proving the
analogue of Mahler’s conjectures, also proved some transference principles in
the function field setting. The subject has also received considerable attention
in recent times; we refer the reader to [21], [15], [16] and other works.

2. k-Dirichlet improvability

Throughout we let N = (
k+d

d

) − 1 be the number of non-constant monomials
in �[X1, . . . , Xd ] of total degree ≤ k, where k ∈ N. For P ∈ �[X1, . . . , Xd ],
let H(P ) and H̃(P ) be the maximum absolute value among all the coefficients
of P and the maximum absolute value of the coefficients of the non-constant
terms of P respectively.

We first prove the following analogue of the Dirichlet’s theorem in this set
up.

Theorem 2.1. For given x = (x1, . . . , xd) ∈ Fd , there exists c(x) such
that for all m ∈ N, one has P ∈ �[X1, . . . , Xd ] of total degree ≤ k and
H(P ) ≤ em satisfying

|P(x)| <
c(x)

emN
.

We can choose c(x) = 1 if the condition H(P ) ≤ em is replaced by H̃(P ) ≤ em.

The above theorem indeed almost follows from Theorem 2.1 of [8]. In fact,
it is just a restatement of [8, Theorem 2.1] if we consider H̃(P ). To prove
the theorem for H(P ), we shall actually prove the the following which yields
Theorem 2.1 at once.

Theorem 2.2. Assume n ∈ N, y := (y1, y2, . . . , yn) ∈ Fn and k :=
max{0, deg y1, . . . , deg yn}. For any m ∈ N there exist (q1, . . . , qn, p) ∈
�n+1 \ {0} such that

|y1q1 + y2q2 + · · · + ynqn − p| <
enk

enm
and |p|, max

1≤j≤n
|qj | ≤ em. (2.1)

Proof. If k = 0 then the conclusion follows immediately from [8, The-
orem 2.1]. Suppose now k > 0. Consider m > k. By [8, Theorem 2.1], we
have (q1, . . . , qn) ∈ �n \ {0} and p ∈ � such that

|y1q1 + y2q2 + · · · + ynqn − p| <
1

en(m−k)
and max

1≤j≤n
|qj | ≤ em−k.
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It is easy to see that |p| ≤ em as deg(y1q1 +y2q2 +· · ·+ynqn) ≤ (m−k)+k =
m. So (2.1) holds in this case. When m = k, take q1 = 1, q2 = · · · = qn = 0
and p to be the polynomial part of q1y1 = y1 which has degree ≤ k = m.
Thus (2.1) is obvious. We are now left with the case m < k. Choose q1 = q2 =
· · · = qn = 0 and p = 1 so that (2.1) holds again.

Corollary 2.3. For given x = (x1, . . . , xd) ∈ Fd , there exists c(x) such
that

|P(x)| <
c(x)

H(P )N

holds for infinitely many P ∈ �[X1, . . . , Xd ] of total degree ≤ k.

A similar statement holds for H̃(P ) and it is easily checked that c(x) can
be taken to be 1 in that case.

The notion of singular vectors was introduced by Khintchine [10], [4] and
the more general notion of Dirichlet improvable numbers and vectors was intro-
duced by Davenport and Schmidt [6], [5]. Kristensen, Pedersen and Weiss [14]
introduced natural extensions of these notions, calling them (k, ε)-Dirichlet
improvable vectors and k-singular vectors. We now introduce the function field
analogues.

Let 0 < ε ≤ 1/e. A point x ∈ Fd is said to be (k, ε)-Dirichlet improvable
if there exists m0 ∈ N such that for every m ≥ m0, the following system of
inequalities admits a non-zero solution P ∈ �[X1, . . . , Xd ] with total degree
≤ k ⎧⎨

⎩|P(x)| <
ε

emN
,

H̃(P ) < εem.

When k = 1, this coincides with the usual Dirichlet improvable vectors in
Fd , studied in [8]. Furthermore, one has the following observation in the case
d = 1.

Theorem 2.4. For any α ∈ F , α is Dirichlet ε-improvable for some 0 <

ε ≤ 1/e if and only if it is a rational function.

Proof. Let α ∈ F . Assume that the Dirichlet’s theorem can be ε-improved
for α, where 0 < ε ≤ 1/e. So there exists N0 ∈ N such that for any n ≥ N0,
one has pn, qn ∈ � with ⎧⎨

⎩|qnα − pn| <
ε

en
,

1 ≤ |qn| < εen.
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As a consequence, we have

∀ n ∈ N with n ≥ N0,

⎧⎨
⎩|qnα − pn| <

1

en+1
,

1 ≤ |qn| < en−1,

(2.2)

as ε ≤ 1/e. Without any loss in generality, we assume always that the pairs
pn, qn are relatively prime and qn is monic. Now observe that, for each such
n,

qnpn+1 − qn+1pn = qn+1(qnα − pn) − qn(qn+1α − pn+1).

Taking the absolute value of the above and using the ultrametric property,

|qnpn+1 − qn+1pn| ≤ max
{|qn+1||qnα − pn|, |qn||qn+1α − pn+1|

}
. (2.3)

In view of (2.2), it is obvious that, ∀ n ∈ N with n ≥ N0,

|qn+1||qnα − pn| <
en

en+1
= 1

e
< 1

and
|qn||qn+1α − pn+1| <

en−1

en+2
= 1

e3
< 1.

This shows that the right-hand side of (2.3) is < 1 and hence

qnpn+1 − qn+1pn = 0 i.e.
pn

qn

= pn+1

qn+1
for all n ≥ N0.

Since all qn are monic and the pairs pairs pn, qn are relatively prime, it follows
that pn = pN0 and qn = qN0 for all n ≥ N0. Therefore, from (2.2), one obtains

|qN0α − pN0 | <
1

en+1
for all n ≥ N0,

and this makes α = pN0/qN0 ∈ Fq(T ). Thus if at all any improvement of
Dirichlet’s theorem is possible for α then it has to be a rational function. On
the other hand, any rational function is trivially Dirichlet ε-improvable for any
ε ∈ (0, 1/e].

We note that in the case of real numbers, the situation is quite different,
namely there do exist irrational real numbers which are Dirichlet improvable.
In fact, it was shown by Davenport and Schmidt [6] that an irrational number
is Dirichlet improvable if and only if it is badly approximable. But for function
fields with positive characteristic, the sets consisting of badly approximable
and Dirichlet Laurent series respectively are disjoint.
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The set of all (k, ε)-Dirichlet improvable vectors will be denoted by
DI(k, ε). We call a vector x ∈ Fd k-singular if it is (k, ε)-Dirichlet improvable
for every 0 < ε ≤ 1/e. As an obvious corollary of [8, Theorem 3.7], we have
λ(DI(1, ε)) = 0 for ε � 1.

In this section, we aim to establish that for any k ∈ N, one has ε0 =
ε0(d, k) > 0 such that λ(DI(k, ε)) = 0 whenever ε < ε0. In fact, we will be
proving a much more general result. For proceeding towards that, we need a
few definitions.

Let μ be a Radon measure on Fd and U ⊆ Fd be open with μ(U) > 0.
The measure μ is said to be Federer on U if there exists D > 0 such that for
every ball B with center in supp(μ) such that 3B ⊆ U , one has

μ(3B)

μ(B)
≤ D.

Consider a continuous function f : U → F . For any B ⊆ U , we set

‖f ‖μ,B := sup
x∈B∩supp(μ)

|f (x)|.

Definition 2.5. For C, α > 0, the function f is said to be (C, α)-good on
U with respect to μ if for every ball B ⊆ U with center in supp(μ), one has

μ({x ∈ B : |f (x)| < ε}) ≤ C

(
ε

‖f ‖μ,B

)α

μ(B).

We say a map f = (f1, f2, . . . , fn) from U to Fn, where n ∈ N, is (C, α)-
good on U with respect to μ, or simply (f, μ) is (C, α)-good on U , if every
F -linear combination of 1, f1, . . . , fn is (C, α)-good on U with respect to μ.

Definition 2.6. Let f = (f1, f2, . . . , fn) be a map from U to Fn, where
n ∈ N. We say that f is non-planar with respect to μ or (f, μ) is non-planar
if for any ball B ⊆ U with center in supp(μ), the restrictions of the functions
1, f1, . . . , fn on B ∩ supp(μ) are linearly independent.

The notion of non-planar maps was introduced in [13] and generalizes the
notion of non-degenerate maps introduced in [12].

For m ∈ N and a ball B = B(x; r) ⊆ Fd , where x ∈ Fd and r > 0, we
shall use the notation 3mB to denote the ball B(x; 3mr).

Definition 2.7. We call μ k-friendly on U if it is Federer on U and the
function

f : U → FN given by (x1, x2, . . . , xd) �→ (x1, x2, . . . , xd−1x
k−1
d , xk

d ),

(2.4)
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i.e. f maps (x1, x2, . . . , xd) to N -distinct monomials in d-variables of total
degree ≤ k, is (C, α)-good for some C, α > 0 and non-planar with respect to
μ.

Our definition of k-friendly measures is slightly weaker than that in [14]
leading to potentially stronger results. We refer the reader to §10.5 of [13]
where these definitions are compared. The notion of friendly measures was
originally introduced in [11].

Example 2.8. It is not difficult to see that the prefixed Haar measure λ on
Fd is Federer on any given open U ⊆ Fd with D = e2 and non-planar. By [13,
Lemma 2.4], f is (C, 1/dk)-good, where C depends on d and k only. Thus λ

is k-friendly on any open U ⊆ Fd .

With these definitions, we now discuss the main theorem of this section.

Theorem 2.9. Suppose μ is a k-friendly measure on U ⊆ Fd . Then there
exist ε0 = ε0(d, μ) such that μ(DI(k, ε)) = 0 whenever ε < ε0. Thus in
particular, the set of all k-singular vectors is μ-null.

Proof. The key observation is that if x ∈ U is (k, ε)-Dirichlet improvable,
then f(x), where f is defined in (2.4), is a Dirichlet ε-improvable vector in FN

in the sense of [8]. To see this, let us write the N monomials in the variables
X1, . . . , Xd having total degree ≤ k as

M1(X1, . . . , Xd), . . . , MN(X1, . . . , Xd)

so that a polynomial P ∈ �[X1, . . . , Xd ] will look like

a0 + a1M1(X1, . . . , Xd) + · · · + aNMN(X1, . . . , Xd),

where a0, . . . , aN ∈ �. Clearly f(x) = (M(x), . . . , MN(x)) ∀ x ∈ Fd . From
this, one can see that, if x ∈ U is (k, ε)-Dirichlet improvable, where ε ∈
(0, 1/e], then for all m � 1, there exist a0, . . . , aN ∈ � such that⎧⎨
⎩|a0 + (a1, . . . , aN) · f(x)| = |a0 + a1M1(x) + · · · + aNMN(x)| <

ε

emN
,

‖(a1, . . . , aN)‖ < εem.

This establishes the claim. We therefore apply [8, Theorem 3.7] with f given
by (2.4). From the definition of k-friendly measure, the hypothesis of [8, The-
orem 3.7] is already satisfied, whence considering

T := {(mN, m, m, . . . , m) : m ∈ N},
Theorem 2.9 follows.
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3. k-very well approximable points

A point x ∈ Fd will be called k-very well approximable (k-VWA) if for some
ε > 0, one has

|P(x)| <
1

H(P )N+ε
for infinitely many P ∈ �[X1, . . . , Xd ].

We aim to prove that this property is exceptional in the sense that the set of all
such points in Fd is λ-null. In fact, we prove this for any k-friendly measure.

Theorem 3.1. For any k-friendly measure μ on a given U ⊆ Fd , The set
of all k-VWA points in U is null with respect to μ.

The main observation to prove this theorem is the following. For given
x ∈ U , denote y = f(x), where f is given by (2.4). Now for any polynomial
P having total degree ≤ k, we have P(x) = q · y + p where q, p ∈ �, so that
H(P ) ≥ ‖q‖. Hence, if x ∈ Fd is a k-VWA point then f(x) is a VWA vector in
the sense of [9, Definition 1.1]. Thus the above theorem follows immediately
from [9, Theorem 1.6] when μ = λ. For the general case, namely to consider
more general measures than Haar measure, one has to adopt the modifications
considered in [13].
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