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IDEALS IN A C*-ALGEBRA

GERT KJZEZRGARD PEDERSEN and NILS HOLGER PETERSEN

Introduction.

The aim of this work is to continue the investigations of non-closed
ideals in C*-algebras begun in [6]. In particular we shall, for a C*-algebra
A, study the minimal dense ideal K ,, introduced in [9], and the “induc-
tive limit” topology of K , given in [10]. Specializing in section 3 to
C*-algebras with continuous trace we explore the non-commutative
Gelfand transformation “: K , — K(A4) given by #(n)=trz(z).

In [9, Theorem 1.5] the first author incorrectly stated that if 4 has
continuous trace, then K , consists of the elements x € 4 such that the
dimension of =(x) is finite and bounded for z € 4, and 7(x) =0 for x out-
side some compact set in 4. Since K, is minimal dense it is true that
K , is contained in the latter set, but we show by a counterexample that
the inclusion may be proper, using homogeneous algebras whose corre-
sponding fibre bundles have sufficiently many twists. Theorem 1.5 of
[9] is cited in [12], but fortunately only the valid half of the theorem is
needed for the conclusions.

It is a pleasure to thank H.Rischel, who provided and explained to
us the building blocks of the above mentioned example.

We use the standard notation and terminology from [4]. Throughout
the paper A will denote a C*-algebra.

1. Order ideals.

In [6] E. G. Effros set up a bijective correspondence between closed
order ideals of A+ and closed left ideals of 4. The extension of this
correspondence to non-closed order ideals was considered in [9], and the
distinction between invariant and strongly invariant order ideals was
clarified in [12]. The following theorem gives the complete extension of
the Effros correspondence.

THEOREM 1.1. Let J be an order ideal of A+ and define
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I=IJ)={red|z*zeJ}.

The map J — I(J) is a bijection between order ideals of A+ and left ideals of
A satisfying:

1) If x € I and {u,} i3 @ bounded sequence in A such that limu,x € A, then
limu,z e l.
2) For any finite set {x,}<I there exists x € I such that 3z, *x, =x*zx.

Furthermore:

J 18 tnvariant <> I(J) is a two-sided ideal.
J 18 strongly invariant <> I(J) is self-adjoint <> I{J) is positively
generated.

Proor. Let {u,} be a sequence in the unit ball of 4 and assume
zel(J), limu,x=y € A. Then

y*y = lima*u, *u,x < 2*xed,

hence y € I(J), so I(J) satisfies 1). That I(J) satisfies 2) as well is im-
mediate from the definition.
Suppose now that I is a left ideal of 4 satisfying 1) and 2), and define

J = {g*xec At |xzel}.

Then J is a cone in A4+ since I is a linear space and satisfies 2). If 0<
ySax*zed, we put u,=yt(n1+a*z)-lz*. We have |u,||<1, and since
(nl4z*2)"la*x is an approximative unit for the hereditary (=order-
related [9], =facial [2]) C*-subalgebra generated by a*z, we have
limu,z=y*e 4, hence ytel and yeJ by condition 1). This shows
that J is an order ideal, hence the correspondence, which is clearly in-
jective, is a surjection on left ideals satisfying 1) and 2).

That J is invariant iff I(J) is a two-sided ideal follows from the ex-
pression

(zy)* (xy) = y*(z*2)y .

The equivalence between J strongly invariant and I(J) self-adjoint is
seen by comparing
zel(J) < a*zed,

g*el(J) < zax*ed.

Clearly I(J) is self-adjoint if it is positively generated. Conversely, if
I(J) 18 self-adjoint and x=x* € I(J), we have
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r=2,—2_ with z.2+x?=22¢eJ,

hence z,,2z_ € I(J) and I(J) is positively generated.

ReEMaRK. If A is imbedded in a von Neumann algebra B, then condi-
tion 1) is equivalent with

1) zel, veB, uxecA = wuxel.

An order ideal J of A+ has roots if z € J implies 2* € J for « =% and
hence for all « € R. An invariant order ideal with roots is strongly in-
variant. Since the property of having roots is equivalently expressed
by J=1I(J)*, we have the following

COROLLARY 1.2. An order ideal J is invariant and has roots iff I(J)=
linJ.

An ideal generated by an invariant order ideal with roots is called
algebraic. To give an idea of what an algebraic ideal can be like, consider
the C*-algebra Cy(R) and the ideal consisting of those elements z such
that px € Cy(R) for any polynomial p. As the next results show, the class
of algebraic ideals has properties very similar to those of the class of
closed ideals.

ProrosrrioN 1.3. The class of algebraic ideals is a distributive lattice
under sum and intersection.

Proor. By [12, Theorem 1.6] the class of strongly invariant order
ideals is a distributive lattice under sum and intersection. To show
that the invariant order ideals with roots form a sublattice assume that
J, and J, have roots. Clearly, then J,nJ, has roots. If z=y,+¥,,
y; € J;, define

Upn = (Lt at) Iy
Then
(4 at) Ttz (n 4 ad)t = (ur Y ) (Urnyrt)* + (Uan ¥at) (Uan yat)* -

We have |ju;,|| <1, and since (n~!+az%)-1zt is an approximative unit for
the hereditary C*-subalgebra generated by = we have u,,y,! convergent
to z; € A. By condition 1) in theorem 1.1, 2, € I(J;) hence

and we have shown that J, +J, has roots. The proposition now follows
from the expressions
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linJ; +linJy = lin(J, +J,),
I(Jy) nI(Jy) = I(J1nJy) .

ProrosritioN 1.4. If I, and I, are algebraic ideals, then
1112 = ‘Il n Iz .

Proor. Put J;=1I,+. Then, since J; has roots,

CoroLrarY 1.5. If I is algebraic, then I=1Im.

CoRrOLLARY 1.6. If I, is an algebraic ideal of an algebraic ideal I, of A,
then I, is an algebraic ideal of A.

Proor. The only non-trivial thing to check is that I, is an ideal of 4.
This follows from corollary 1.5 (cf. the implication 1.5.8 = 1.8.5 in [4]).

2. On the minimal dense ideal.

Let K , be the intersection of all dense, hereditary two-sided ideals of 4,
Then K , is a dense algebraic ideal of 4. (Cf. [9], [10], [11], [12].)

ProrosrTION 2.1. If B and C are C*-subalgebras of A contained in K ,,
then the hereditary C*-subalgebra generated by B and C is also contained
in K,.

Proor. It suffices to prove that the closed order ideal J generated
by B+ and C+ is contained in K ,+. Since the order ideal generated by
B+ and C+ is dense in J by [6, Theorem 2.5], there exists for any z € J
a sequence {z,} <A converging to « such that

Xns Bn€R¥,  yp€ B+, Z2n € CH, llynll= ”zn” =1.
Define y=32"y,, 2=32"2,. Then ye B+, ze C+, hence y+z¢e K ,+

and z is contained in the closed order ideal generated by y+z. By [11,
Proposition 4] this order ideal is contained in K ,*+.

ProrosITION 2.2. Let A and B be C*-algebras and let ®: K ,—~ B be a
morphism. Then @ extends canonically to a morphism @: A -~ B, and if
C = D(A), then D(K )=K.
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Proor. Since @ is norm continuous on every C*-subalgebra of K, by
[4, Proposition 1.3.7], we have ||#||<1 on K,. Hence & extends to a
morphism @ of 4. The last statement follows from [11, Corollary 6].

CoroLraryY 2.3. If K, and Ky are isomorphic as tnvolutive algebras,
then A and B are isomorphic C*-algebras.

In [10, Theorem 2.1] a vector-space topology t was defined on K ,,
such that in the commutative case T was the usual inductive limit topo-
logy on functions with compact supports. It was proved in [12, Theorem
2.4] that 7 is the weakest locally convex topology on K, for which all
invariant convex functionals on K 4+ are continuous.

Lemma 2.4. Let @: K, > Ky be a linear positive and surjective map
such that

1) Vee K, dye Kg:
D(x*z)=y*y, D(xz*)=yy*,

2) Vae K *Yye Kpdxe K :
y*y < O(a) = a*z < a, D(ra*) =yy*.

Then @ is open and continuous in the respective t-topologies.

Proor. For any invariant convex functional o on K5+ the composite
map go® is an invariant convex functional on K *+ by 1), hence @ is
continuous. If g is any invariant convex functional on K ,+, define

o(b) = inf {o(a) | P(a)=0} .

Then clearly ¢ is a convex functional on Kgz+. If y,2e Ky and y*y =<
z*z, then for any &> 0 there exists a € K ,* such that

a(z*2)+¢e > p(a), DP(a) = z*z.
There exists x € K , satisfying 2), hence
o(*2) +6 > o(w*a) = o(ez*) 2 olyy*) .

Since ¢ is arbitrary this proves that o is invariant.
Finally we have by definition of o that

Plac K *|ola)<1} = {be Kzt |o(b)<1}.

This proves that @ is open.
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THEOREM 2.5. Let @: A -~ B be a surjective morphism. Then the re-
striction of @ to K , i3 an open and continuous map onto K g in the respec-
tive t-topologies.

Proor. That @ satisfies 1) is obvious, and 2) follows from [2, Lemme
4.1].

3. For C*-algebras with continuous trace.

Throughout this section we shall assume that 4 is a C*-algebra with
continuous trace. In contrast to CCR-algebras and algebras of type I,
it need not be true that C*-subalgebras of 4 have continuous trace.
However the following result holds.

Prorosrrion 3.1. If B is a hereditary C*-subalgebra of A, then B has
continuous trace.

Proor. By [10, Theorem 1.6] any irreducible representation of B is
the restriction of some irreducible representation (7, H) of A to the sub-
space n(B)H, and this restriction map induces a homeomorphism be-
tween B and A\ hullB. It follows that an element x € B has bounded
and continuous trace on B iff z as an element of 4 has bounded and con-
tinuous trace on A.

ProrosiTioN 3.2. If I is a closed two-sided ideal of A, then I and A[I
have continuous trace.

Proor. The first statement is a corollary of proposition 3.1. To prove
the second let @: 4 — A/I be the natural morphism. By [4, Proposition
3.2.1] any irreducible representation of A/I arises from an irreducible
representation (r,H) of A for which =(I)=0, and since this induces a
homeomorphism between (4/I)” and hull I, we see that if €4 has
bounded and continuous trace on 4, then ®(x) has bounded and continu-
ous trace on (4/I)".

We define the map ~: K, - K(4) by
2(n) = trm(x), xecK,, = ed.

Since K, is minimal dense, this is well defined and by [3, Lemme 23]
it is a positive, linear and surjective map. When A4 is commutative,
” is the Gelfand transformation, and even though “ is not multiplicative
in the non-commutative case, it seems to be the best substitute we can
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get. By the Dauns-Hofmann theorem [5, p. 379] there exists for any
z€ 4 and fe (?(A4) an element in 4 denoted f-x such that f(z)z—f-z €
kerx for all z € A. It is immediate that we have

(f-x)” =f2, fecCd), zekK,.

With the correspondence in mind between invariant C*-integrals on
A and Radon measures on 4, proved in [3, Théoréme 1], it is only natural
that we have

TaroREM 3.3. The map ~: K, — K(A) is open and continuous in the
respective t-topologies.

Proor. That “ satisfies condition 1) of lemma 2.4 is trivial. To prove
that ~ satisfies condition 2) as well, assume a e K+, fe K(4)*, f<a.
Define x, = (n-*+a@)~'f-a. Then {z,} converges to an element x <a such
that 2=f. Hence lemma 2.4 applies and the theorem follows.

Clearly ~ is not injective although >0 and 2=0 imply #=0. Thus ~
divides K 4+ in equivalence classes, where z,y € K ,+ are equivalent when
2=1%. By the Riesz decomposition for C*-algebras [12, Proposition 1.1]
we may define another equivalence relation on A+ by putting z~y if
there exists a finite set {z,} <4 such that

ZEZ2* 2, Y = 22,2,*.

In terms of these definitions the following theorem can now be stated:

THEOREM 3.4. For z,y € K ,+ the following conditions are equivalent:

(1) @=g,
(2) T~Y.

ProoF. (2) = (1) is obvious. Since z+y € K ,* there exist by defini-
tion two finite sets {a,,} and {b,} in A+ such that

w+y é Za’m’ [a’m] é bm’

Put b=3b,, and let I be the closed two-sided ideal of 4 generated by b.
Then I has continuous trace by proposition 3.2, and 2,y € K;+. Since
each set R

F, = el | )20

is compact by [4, Proposition 3.3.7] and since U.?;,=f, the proof of
(1) = (2) is reduced to the case where 4 is ¢-compact.
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For any m,c A there exists by [4, Proposition 4.5.3] an element
e € A+ such that n(e) is a one-dimensional projection in a neighbour-
hood O of n,. From the way e is constructed in [4, Lemme 4.4.2] we
see that one may assume e € K ;+. Let J denote the strongly invariant
order ideal in A+ generated by e and let I denote the closed two-sided
ideal of A generated by e. Then J consists of the elements a € A+ such
that there exist b € A+ and =0 with

a~b bZae,
while I can be described as the elements a € A such that for any z € 4
n(e) =0 = m(a) = 0.

We claim that for any a € K4+ and any positive function f € C%(4) with
support in @ we have
(*) fraed.

Since the elements in A+ satisfying (*) constitute an order ideal it is
enough to prove the formula for a € K+, hence we may assume [a]<b
for some b e A+. Since =1 on the support of f, this gives

[f-a] = 2-b.

Now &-b eI hence f-a € K;+ by definition, and since J is dense in I+,
we have K;+<J and the claim is established.

Since A4 is locally compact and o-compact, it is paracompact and
normal, hence the covering by sets of the form @ has a locally finite
refinement {%,} and there exists a partition of unity {f;} subordinate to
the covering {#,} (see [8]). For each ¢ we select e; € K ,* such that z(e;)
is a one-dimensional projection for = € %;.

Now consider the pair z,y € K ,+. By (*) there exist for each ¢ elements
a,,b; € A+ and constants «,;,f; such that

firx ~a; frry~b,
a; S ae;, by S Piey.

Since £=4, we have &;=0;, but as dimzn(e;)=1 for any = e %, this
implies a;=b,, hence f; -z ~f;-y. Since the covering is locally finite and 2
has compact support, only finitely many elements f;-x and f;-y are non-
zero, hence

z=2frz~3fry=y.

It is interesting to compare the above theorem with the result of
Dixmier which one can read out of [3, Lemme 21], namely that if x,y € 4+
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have bounded and continuous trace on A, then £=14 iff there exists a
sequence {z;} <A such that x=32*z;, y=32,2,*. Clearly, it is the mini-
mality condition on K , which allows us to pass from a convergent se-
quence to a finite number of elements when z,y € K ,+.

We shall finally give an example of a C*-algebra with continuous
trace and homogeneous of degree two. By [7, Theorem 3.2] such an
algebra is isomorphic with the family of continuous cross-sections of a
suitable fibre bundle which we shall first describe. Let P* denote the
complex n-dimensional projective space, i.e. the set of one-dimensional
subspaces & < C**+l, The total space of the bundle is the set

E = {(a,b,¢,d,n) e Cx Cx Cr1x Cr+l x P | cem, d*€ n},

where d* means complex conjugation at each coordinate. The base space
is P* and the projection p: E — P* is projection on the last coordinate.
Clearly, then for any z € P* the fibre p~!(x) is homeomorphic with C4,
hence with M,, and if ¥; is the open subset of points of P* whose jth
homogeneous coordinates are non-zero, then p~1(¥;) is homeomorphic
with M, x¥;. It follows that the system Z,=(E,P",M,,p) is a fibre
bundle, where the bundle group is the subgroup of automorphisms of M,
induced by inner transformations by the unitaries of the form

w = exp1® 0
e 0 exp—10)’°

We shall write the elements of F in the form

_ac
e=\as) ™

and we can then restore the matrix operations in the fibre over each =
by the definitions

e’ = aa’'+c-d’  ac’ +cb’ m e* = a* d* "
~ \da'+bd’ d-¢'+bb') To\e* b)) T

If we choose a unit vector v in x, then e is represented by the matrix

e € M,, where
_fa ¢\, _f[a cv
°=ld@s) T \aoxp) ™

Since any other representative of e is of the form ug*eug, the norm of e
depends only on e and is denoted |l¢||.
Now let 4, be the set of continuous cross-sections of #,, that is, the
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set of continuous maps : P* - E such that p(z(n))== for all = e P~
With the definitions

zy(n) = 2(7)y(#), 2*(7) = z(x)*, ||| = sup|lz(=)|,

4, becomes a C*-algebra. By [7, Theorem 3.2] A, is homogeneous of
degree two and 4, =P».
We define elements z,,y, € 4,* by

xn(n) = ((]i g)’ 7T, Yplw) = (g (]))’ 7T,

and claim the following

Lemma 3.5. If z,€4,, 1=1,2,...,k, and Iz;z*=z,, Xz;¥z,=Yy,,
then k>n.

Proor. Clearly we have

() = (f,’ cif)"’),n,

where each c; is continuous and Y |¢;|2=1. If S$?»+! ig identified with the
set
{a“""(“o:ah- . -’a'n) € C‘n+1 l ZIajlz'_" 1}

and Y:S*+l - Pn iy given by ¥(a)=Ca, then each composite map
c,oV: S+l . Cntl gatisfies ¢,(¥(a)) € ¥(a). It follows that there exist
continuous functions @;: §?*+! - C such that c,(¥(a))=2P;(a)a. Since
Y |P;(a)|?=1, this defines a map @:S2+ — S2k-1 However ¥(a)=
Y(—a) and hence @D(a)=—PD(—a). By the Borsuk-Ulam theorem
[13, Corollary 5.8.8.] this implies 2k—122n+ 1.

Now define 4,=3,24,, (see [4, 1.9.14]). Then 4, is homogeneous of
degree two and A,=UP». Since 4, is an ideal in the full direct sum of
the 4,, and since ¢=3, is a projection in this sum, we infer from
[4, Corollaire 1.8.4] that the set 4A=A4,+Cq is a C*-algebra. It is im-
mediately verified that 4=UPru{n,}, where n,(4)=A4/4,=C and 4
is a one-point compactification of 4,. Clearly A has continuous trace.

ProprosITION 3.6. There exists a C*-algebra A with continuous trace for
which K 4 18 properly contained in the set of elements x € A such that

sup dimn(z) < 0 and 2eK(A).
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Proor. Take 4 as above and consider the set J consisting of elements
y € A+ such that there exist a finite set {z;,} <4 and « € R+ satisfying

Y =32*2, Iz S aq.

By definition J is the strongly invariant order ideal generated by g¢.
Since ¢ as a projection belongs to K ,, we have J< K ,+. However, q is
not contained in any closed two-sided ideal of A, since =(g)+0 for each
ne . Hence J is dense in A+ and so J =K ,+.

Now consider y=3Yn"1y,. Then dimn(y)<1 for any m e 4, and 9 is
clearly continuous, hence § € K(A) since 4 is compact. However, by
lemma 3.5. there cannot exist any finite set {z;}<A4 such that y=
Y2z,*2;, Y2,2,*<xq. Hence y ¢ K, and the proposition follows.

Apart from disproving [9, Theorem 1.5] (cf. the introduction) the above
proposition also provides a negative answer to the problem raised in
[4, 4.7.24].

If 4, denotes the C*-algebra obtained by adjoining an identity to 4,,
then trivially Kz, =4,. This gives an example of a C*-algebra which is
CCR and has a Hausdorff spectrum, but for which theorem 3.4 is false.

Furthermore if A’ denotes the enveloping von Neumann algebra of 4
and I is the smallest ideal of A"’ containing K ,, introduced in [1, Sec-
tion 3], our example answers to the negative the question whether one
always has In4A=K ,. To see this we observe that the projections z,,y,
€ A4, are equivalent in A4," since they are abelian and have central
support 1. Hence there exists v, € 4, such that z,=v,v,*, y,=v,*v,.
Define v=3n-tv, € A”. Then v*v=y and vv*<q, hence ye InA\ K ,.
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