IDEALS IN A C*-ALGEBRA

GERT KJÆRGÅRD PEDERSEN and NILS HOLGER PETERSEN

Introduction.

The aim of this work is to continue the investigations of non-closed ideals in C*-algebras begun in [6]. In particular we shall, for a C*-algebra A, study the minimal dense ideal K_A, introduced in [9], and the "inductive limit" topology of K_A given in [10]. Specializing in section 3 to C*-algebras with continuous trace we explore the non-commutative Gelfand transformation $\hat{x}: K_A \to K(\hat{A})$ given by $\hat{x}(\pi) = \text{tr}_{\pi(x)}$.

In [9, Theorem 1.5] the first author incorrectly stated that if A has continuous trace, then K_A consists of the elements $\pi \in A$ such that the dimension of $\pi(x)$ is finite and bounded for $\pi \in \hat{A}$, and $\pi(x) = 0$ for π outside some compact set in \hat{A}. Since K_A is minimal dense it is true that K_A is contained in the latter set, but we show by a counterexample that the inclusion may be proper, using homogeneous algebras whose corresponding fibre bundles have sufficiently many twists. Theorem 1.5 of [9] is cited in [12], but fortunately only the valid half of the theorem is needed for the conclusions.

It is a pleasure to thank H. Rischel, who provided and explained to us the building blocks of the above mentioned example.

We use the standard notation and terminology from [4]. Throughout the paper A will denote a C*-algebra.

1. Order ideals.

In [6] E. G. Effros set up a bijective correspondence between closed order ideals of A^+ and closed left ideals of A. The extension of this correspondence to non-closed order ideals was considered in [9], and the distinction between invariant and strongly invariant order ideals was clarified in [12]. The following theorem gives the complete extension of the Effros correspondence.

Theorem 1.1. Let J be an order ideal of A^+ and define
\[I = I(J) = \{ x \in A \mid x^* x \in J \} . \]

The map \(J \to I(J) \) is a bijection between order ideals of \(A^+ \) and left ideals of \(A \) satisfying:

1) If \(x \in I \) and \(\{ u_n \} \) is a bounded sequence in \(A \) such that \(\lim u_n x = A \), then \(\lim u_n x \in I \).

2) For any finite set \(\{ x_n \} \subseteq I \) there exists \(x \in I \) such that \(\sum x_n^* x_n = x^* x \).

Furthermore:

- \(J \) is invariant \(\iff \) \(I(J) \) is a two-sided ideal.
- \(J \) is strongly invariant \(\iff \) \(I(J) \) is self-adjoint \(\iff \) \(I(J) \) is positively generated.

Proof. Let \(\{ u_n \} \) be a sequence in the unit ball of \(A \) and assume \(x \in I(J) \), \(\lim u_n x = y \in A \). Then

\[y^* y = \lim x^* u_n^* u_n x \leq x^* x \in J , \]

hence \(y \in I(J) \), so \(I(J) \) satisfies 1). That \(I(J) \) satisfies 2) as well is immediate from the definition.

Suppose now that \(I \) is a left ideal of \(A \) satisfying 1) and 2), and define

\[J = \{ x^* x \in A^+ \mid x \in I \} . \]

Then \(J \) is a cone in \(A^+ \) since \(I \) is a linear space and satisfies 2). If \(0 \leq y \leq x^* x \in J \), we put \(u_n = y^t (n^{-1} + x^* x)^{-1} x^* \). We have \(\| u_n \| \leq 1 \), and since \((n^{-1} + x^* x)^{-1} x^* x \) is an approximative unit for the hereditary (=order-related [9], =facial [2]) \(C^* \)-subalgebra generated by \(x^* x \), we have \(\lim u_n x = y^t \in A \), hence \(y^t \in I \) and \(y \in J \) by condition 1). This shows that \(J \) is an order ideal, hence the correspondence, which is clearly injective, is a surjection on left ideals satisfying 1) and 2).

That \(J \) is invariant iff \(I(J) \) is a two-sided ideal follows from the expression

\[(xy)^* (xy) = y^* (x^* x) y . \]

The equivalence between \(J \) strongly invariant and \(I(J) \) self-adjoint is seen by comparing

\[x \in I(J) \iff x^* x \in J , \]

\[x^* \in I(J) \iff xx^* \in J . \]

Clearly \(I(J) \) is self-adjoint if it is positively generated. Conversely, if \(I(J) \) is self-adjoint and \(x = x^* \in I(J) \), we have
\[x = x_+ - x_- \quad \text{with} \quad x_+^2 + x_-^2 = x^2 \in J, \]
hence \(x_+, x_- \in I(J) \) and \(I(J) \) is positively generated.

Remark. If \(A \) is imbedded in a von Neumann algebra \(B \), then condition 1) is equivalent with

\[\text{if } x \in I, \ u \in B, \ ux \in A \quad \Rightarrow \quad ux \in I. \]

An order ideal \(J \) of \(A^+ \) has roots if \(x \in J \) implies \(x^\alpha \in J \) for \(\alpha = \frac{1}{2} \) and hence for all \(\alpha \in \mathbb{R} \). An invariant order ideal with roots is strongly invariant. Since the property of having roots is equivalently expressed by \(J = I(J)^+ \), we have the following

Corollary 1.2. An order ideal \(J \) is invariant and has roots iff \(I(J) = \text{lin} J \).

An ideal generated by an invariant order ideal with roots is called **algebraic.** To give an idea of what an algebraic ideal can be like, consider the \(C^* \)-algebra \(C_0(\mathbb{R}) \) and the ideal consisting of those elements \(x \) such that \(px \in C_0(\mathbb{R}) \) for any polynomial \(p \). As the next results show, the class of algebraic ideals has properties very similar to those of the class of closed ideals.

Proposition 1.3. The class of algebraic ideals is a distributive lattice under sum and intersection.

Proof. By [12, Theorem 1.6] the class of strongly invariant order ideals is a distributive lattice under sum and intersection. To show that the invariant order ideals with roots form a sublattice assume that \(J_1 \) and \(J_2 \) have roots. Clearly, then \(J_1 \cap J_2 \) has roots. If \(x = y_1 + y_2 \), \(y_i \in J_i \), define

\[u_{in} = (n^{-1} + x^\dagger)^{-1} y_i^\dagger. \]

Then

\[(n^{-1} + x^\dagger)^{-1} x (n^{-1} + x^\dagger)^{-1} = (u_{1n} y_1^\dagger)(u_{1n} y_1^\dagger)^* + (u_{2n} y_2^\dagger)(u_{2n} y_2^\dagger)^*. \]

We have \(\|u_{in}\| \leq 1 \), and since \((n^{-1} + x^\dagger)^{-1} x^\dagger \) is an approximative unit for the hereditary \(C^* \)-subalgebra generated by \(x \) we have \(u_{in} y_i^\dagger \) convergent to \(z_i \in A \). By condition 1) in theorem 1.1, \(z_i \in I(J_i) \) hence

\[x^\dagger = z_1 z_1^* + z_2 z_2^* \in J_1 + J_2 \]

and we have shown that \(J_1 + J_2 \) has roots. The proposition now follows from the expressions.
\[\text{lin} J_1 + \text{lin} J_2 = \text{lin} (J_1 + J_2), \]
\[I(J_1) \cap I(J_2) = I(J_1 \cap J_2). \]

Proposition 1.4. If \(I_1 \) and \(I_2 \) are algebraic ideals, then
\[I_1 I_2 = I_1 \cap I_2. \]

Proof. Put \(J_i = I_i^+ \). Then, since \(J_i \) has roots,
\[I_1 I_2 \subseteq I_1 \cap I_2 = \text{lin} (J_1 \cap J_2) \subseteq \text{lin} (J_1 J_2) \subseteq \text{lin} J_1 \text{lin} J_2 = I_1 I_2. \]

Corollary 1.5. If \(I \) is algebraic, then \(I = I^n \).

Corollary 1.6. If \(I_1 \) is an algebraic ideal of an algebraic ideal \(I_2 \) of \(A \), then \(I_1 \) is an algebraic ideal of \(A \).

Proof. The only non-trivial thing to check is that \(I_1 \) is an ideal of \(A \). This follows from corollary 1.5 (cf. the implication 1.5.8 \(\Rightarrow \) 1.8.5 in [4]).

2. On the minimal dense ideal.

Let \(K_A \) be the intersection of all dense, hereditary two-sided ideals of \(A \). Then \(K_A \) is a dense algebraic ideal of \(A \). (Cf. [9], [10], [11], [12].)

Proposition 2.1. If \(B \) and \(C \) are \(C^* \)-subalgebras of \(A \) contained in \(K_A \), then the hereditary \(C^* \)-subalgebra generated by \(B \) and \(C \) is also contained in \(K_A \).

Proof. It suffices to prove that the closed order ideal \(J \) generated by \(B^+ \) and \(C^+ \) is contained in \(K_A^+ \). Since the order ideal generated by \(B^+ \) and \(C^+ \) is dense in \(J \) by [6, Theorem 2.5], there exists for any \(x \in J \) a sequence \(\{x_n\} \subset A \) converging to \(x \) such that
\[x_n \leq \alpha_n y_n + \beta_n z_n, \]
\[\alpha_n, \beta_n \in \mathbb{R}^+, \quad y_n \in B^+, \quad z_n \in C^+, \quad ||y_n|| = ||z_n|| = 1. \]

Define \(y = \sum 2^{-n} y_n, \ z = \sum 2^{-n} z_n \). Then \(y \in B^+, \ z \in C^+ \), hence \(y + z \in K_A^+ \) and \(x \) is contained in the closed order ideal generated by \(y + z \). By [11, Proposition 4] this order ideal is contained in \(K_A^+ \).

Proposition 2.2. Let \(A \) and \(B \) be \(C^* \)-algebras and let \(\Phi: K_A \rightarrow B \) be a morphism. Then \(\Phi \) extends canonically to a morphism \(\tilde{\Phi}: A \rightarrow B \), and if \(C = \tilde{\Phi}(A) \), then \(\Phi(K_A) = K_C \).
PROOF. Since Φ is norm continuous on every C^*-subalgebra of K_A by [4, Proposition 1.3.7], we have $\|\Phi\| \leq 1$ on K_A. Hence Φ extends to a morphism $\bar{\Phi}$ of A. The last statement follows from [11, Corollary 6].

Corollary 2.3. If K_A and K_B are isomorphic as involutive algebras, then A and B are isomorphic C^*-algebras.

In [10, Theorem 2.1] a vector-space topology τ was defined on K_A, such that in the commutative case τ was the usual inductive limit topology on functions with compact supports. It was proved in [12, Theorem 2.4] that τ is the weakest locally convex topology on K_A for which all invariant convex functionals on K_A^+ are continuous.

Lemma 2.4. Let $\Phi : K_A \to K_B$ be a linear positive and surjective map such that

1) $\forall x \in K_A \exists y \in K_B$:
 $\Phi(x^*x) = y^*y, \quad \Phi(xx^*) = yy^*$,

2) $\forall a \in K_A^+ \forall y \in K_B \exists x \in K_A$:
 $y^*y \leq \Phi(a) \Rightarrow x^*x \leq a, \quad \Phi(xx^*) = yy^*$.

Then Φ is open and continuous in the respective τ-topologies.

Proof. For any invariant convex functional ϱ on K_B^+ the composite map $\varrho \circ \Phi$ is an invariant convex functional on K_A^+ by 1), hence Φ is continuous. If ϱ is any invariant convex functional on K_A^+, define

$$\sigma(b) = \inf \{ \varrho(a) \mid \Phi(a) = b \}.$$

Then clearly σ is a convex functional on K_B^+. If $y, z \in K_B$ and $y^*y \leq z^*z$, then for any $\varepsilon > 0$ there exists $a \in K_A^+$ such that

$$\sigma(z^*z) + \varepsilon > \varrho(a), \quad \Phi(a) = z^*z.$$

There exists $x \in K_A$ satisfying 2), hence

$$\sigma(z^*z) + \varepsilon > \varrho(x^*x) = \varrho(xx^*) \geq \sigma(yy^*).$$

Since ε is arbitrary this proves that σ is invariant.

Finally we have by definition of σ that

$$\Phi \{ a \in K_A^+ \mid \varrho(a) < 1 \} = \{ b \in K_B^+ \mid \sigma(b) < 1 \}.$$

This proves that Φ is open.
Theorem 2.5. Let $\Phi: A \to B$ be a surjective morphism. Then the restriction of Φ to K_A is an open and continuous map onto K_B in the respective τ-topologies.

Proof. That Φ satisfies 1) is obvious, and 2) follows from [2, Lemme 4.1].

3. For C^*-algebras with continuous trace.

Throughout this section we shall assume that A is a C^*-algebra with continuous trace. In contrast to CCR-algebras and algebras of type I, it need not be true that C^*-subalgebras of A have continuous trace. However the following result holds.

Proposition 3.1. If B is a hereditary C^*-subalgebra of A, then B has continuous trace.

Proof. By [10, Theorem 1.6] any irreducible representation of B is the restriction of some irreducible representation (π,H) of A to the subspace $\pi(B)H$, and this restriction map induces a homeomorphism between \hat{B} and $\hat{A} \setminus \text{hull}B$. It follows that an element $x \in B$ has bounded and continuous trace on \hat{B} iff x as an element of A has bounded and continuous trace on \hat{A}.

Proposition 3.2. If I is a closed two-sided ideal of A, then I and A/I have continuous trace.

Proof. The first statement is a corollary of proposition 3.1. To prove the second let $\Phi: A \to A/I$ be the natural morphism. By [4, Proposition 3.2.1] any irreducible representation of A/I arises from an irreducible representation (π,H) of A for which $\pi(I)=0$, and since this induces a homeomorphism between $(A/I)^\wedge$ and hull I, we see that if $x \in A$ has bounded and continuous trace on \hat{A}, then $\Phi(x)$ has bounded and continuous trace on $(A/I)^\wedge$.

We define the map $^\wedge: K_A \to K(\hat{A})$ by

$$^\wedge(\pi) = \text{tr}\pi(x), \quad x \in K_A, \pi \in \hat{A}.$$

Since K_A is minimal dense, this is well defined and by [3, Lemme 23] it is a positive, linear and surjective map. When A is commutative, $^\wedge$ is the Gelfand transformation, and even though $^\wedge$ is not multiplicative in the non-commutative case, it seems to be the best substitute we can
get. By the Dauns–Hofmann theorem [5, p. 379] there exists for any \(x \in A \) and \(f \in C^0(\hat{A}) \) an element in \(A \) denoted \(f \cdot x \) such that \(f(\pi)x - f \cdot x \in \ker \pi \) for all \(\pi \in \hat{A} \). It is immediate that we have

\[
(f \cdot x)^\wedge = f \hat{x}, \quad f \in C^0(\hat{A}), \quad x \in K_A.
\]

With the correspondence in mind between invariant \(C^* \)-integrals on \(A \) and Radon measures on \(\hat{A} \), proved in [3, Théorème 1], it is only natural that we have

Theorem 3.3. The map \(^\wedge : K_A \to K(\hat{A}) \) is open and continuous in the respective \(\tau \)-topologies.

Proof. That \(^\wedge \) satisfies condition 1) of lemma 2.4 is trivial. To prove that \(^\wedge \) satisfies condition 2) as well, assume \(a \in K_A^+, \ f \in K(\hat{A})^+, \ f \leq \hat{a} \). Define \(x_n = (n^{-1} + \hat{a})^{-1} f \cdot a \). Then \(\{x_n\} \) converges to an element \(x \leq a \) such that \(\hat{x} = f \). Hence lemma 2.4 applies and the theorem follows.

Clearly \(^\wedge \) is not injective although \(x \geq 0 \) and \(\hat{x} = 0 \) imply \(x = 0 \). Thus \(^\wedge \) divides \(K_A^+ \) in equivalence classes, where \(x, y \in K_A^+ \) are equivalent when \(\hat{x} = \hat{y} \). By the Riesz decomposition for \(C^* \)-algebras [12, Proposition 1.1] we may define another equivalence relation on \(A^+ \) by putting \(x \sim y \) if there exists a finite set \(\{z_n\} \subset A \) such that

\[
x \in \Sigma z_n^* z_n, \quad y = \Sigma z_n z_n^*.
\]

In terms of these definitions the following theorem can now be stated:

Theorem 3.4. For \(x, y \in K_A^+ \) the following conditions are equivalent:

1. \(\hat{x} = \hat{y} \),
2. \(x \sim y \).

Proof. (2) \(\Rightarrow \) (1) is obvious. Since \(x + y \in K_A^+ \) there exist by definition two finite sets \(\{a_m\} \) and \(\{b_m\} \) in \(A^+ \) such that

\[
x + y \leq \Sigma a_m, \quad [a_m] \leq b_m.
\]

Put \(b = \Sigma b_m \) and let \(I \) be the closed two-sided ideal of \(A \) generated by \(b \). Then \(I \) has continuous trace by proposition 3.2, and \(x, y \in K_I^+ \). Since each set

\[
\mathcal{T}_n = \{ \pi \in \hat{I} \mid \|\pi(b)\| \geq n^{-1} \}
\]

is compact by [4, Proposition 3.3.7] and since \(\bigcup \mathcal{T}_n = \hat{I} \), the proof of (1) \(\Rightarrow \) (2) is reduced to the case where \(\hat{A} \) is \(\sigma \)-compact.
For any $\pi_0 \in \hat{\mathbb{A}}$ there exists by [4, Proposition 4.5.3] an element $e \in A^+$ such that $\pi(e)$ is a one-dimensional projection in a neighbourhood \mathcal{O} of π_0. From the way e is constructed in [4, Lemme 4.4.2] we see that one may assume $e \in K_{A^+}$. Let J denote the strongly invariant order ideal in A^+ generated by e and let I denote the closed two-sided ideal of A generated by e. Then J consists of the elements $a \in A^+$ such that there exist $b \in A^+$ and $\alpha \geq 0$ with

$$ a \sim b, \quad b \leq \alpha e , $$

while I can be described as the elements $a \in A$ such that for any $\pi \in \hat{\mathbb{A}}$

$$ \pi(e) = 0 \Rightarrow \pi(a) = 0 . $$

We claim that for any $a \in K_{A^+}$ and any positive function $f \in C^b(\hat{\mathbb{A}})$ with support in \mathcal{O} we have

$$(*) \quad f \cdot a \in J .$$

Since the elements in A^+ satisfying $(*)$ constitute an order ideal it is enough to prove the formula for $a \in K_{\alpha^+}$, hence we may assume $[a] \leq b$ for some $b \in A^+$. Since $\hat{\mathcal{O}} = 1$ on the support of f, this gives

$$ [f \cdot a] \leq \hat{\mathcal{O}} \cdot b . $$

Now $\hat{\mathcal{O}} \cdot b \in I$ hence $f \cdot a \in K_{I^+}$ by definition, and since J is dense in I^+, we have $K_{I^+} \subseteq J$ and the claim is established.

Since $\hat{\mathbb{A}}$ is locally compact and σ-compact, it is paracompact and normal, hence the covering by sets of the form \mathcal{O} has a locally finite refinement $\{ \mathcal{U}_i \}$ and there exists a partition of unity $\{ f_i \}$ subordinate to the covering $\{ \mathcal{U}_i \}$ (see [8]). For each i we select $e_i \in K_{A^+}$ such that $\pi(e_i)$ is a one-dimensional projection for $\pi \in \mathcal{U}_i$.

Now consider the pair $x, y \in K_{A^+}$. By $(*)$ there exist for each i elements $a_i, b_i \in A^+$ and constants α_i, β_i such that

$$ f_i \cdot x \sim a_i, \quad f_i \cdot y \sim b_i , $$

$$ a_i \leq \alpha_i e_i, \quad b_i \leq \beta_i e_i . $$

Since $\hat{\mathcal{O}} = \mathcal{O}$, we have $\hat{\mathcal{O}}_i = \mathcal{O}_i$, but as $\dim \pi(e_i) = 1$ for any $\pi \in \mathcal{U}_i$, this implies $a_i = b_i$, hence $f_i \cdot x \sim f_i \cdot y$. Since the covering is locally finite and $\hat{\mathcal{O}}$ has compact support, only finitely many elements $f_i \cdot x$ and $f_i \cdot y$ are non-zero, hence

$$ x = \sum f_i \cdot x \sim \sum f_i \cdot y = y . $$

It is interesting to compare the above theorem with the result of Dixmier which one can read out of [3, Lemme 21], namely that if $x, y \in A^+$
have bounded and continuous trace on \hat{A}, then $x = y$ iff there exists a sequence $\{z_t\} \subset A$ such that $x = \sum z_t^* z_t$, $y = \sum z_t z_t^*$. Clearly, it is the minimality condition on K_A which allows us to pass from a convergent sequence to a finite number of elements when $x, y \in K_A^+$.

We shall finally give an example of a C^*-algebra with continuous trace and homogeneous of degree two. By [7, Theorem 3.2] such an algebra is isomorphic with the family of continuous cross-sections of a suitable fibre bundle which we shall first describe. Let P^n denote the complex n-dimensional projective space, i.e. the set of one-dimensional subspaces $\pi \subset \mathbb{C}^{n+1}$. The total space of the bundle is the set

$$E = \{(a, b, c, d, \pi) \in \mathbb{C} \times \mathbb{C} \times \mathbb{C}^{n+1} \times \mathbb{C}^{n+1} \times P^n \mid c \in \pi, d^* \in \pi\},$$

where d^* means complex conjugation at each coordinate. The base space is P^n and the projection $p : E \to P^n$ is projection on the last coordinate. Clearly, then for any $\pi \in P^n$ the fibre $p^{-1}(\pi)$ is homeomorphic with C^4, hence with M_2, and if γ_j is the open subset of points of P^n whose jth homogeneous coordinates are non-zero, then $p^{-1}(\gamma_j)$ is homeomorphic with $M_2 \times \gamma_j$. It follows that the system $\mathcal{B}_n = (E, P^n, M_2, p)$ is a fibre bundle, where the bundle group is the subgroup of automorphisms of M_2 induced by inner transformations by the unitaries of the form

$$u_\theta = \begin{pmatrix} \exp i\theta & 0 \\ 0 & \exp -i\theta \end{pmatrix}. $$

We shall write the elements of E in the form

$$e = \begin{pmatrix} a & c \\ d & b \end{pmatrix}, \pi$$

and we can then restore the matrix operations in the fibre over each π by the definitions

$$ee' = \begin{pmatrix} aa' + c \cdot d' & ac' + cb' \\ da' + bd' & d \cdot c' + bb' \end{pmatrix}, \pi; \quad e^* = \begin{pmatrix} a^* & d^* \\ c^* & b^* \end{pmatrix}, \pi.$$

If we choose a unit vector v in π, then e is represented by the matrix $e \in M_2$, where

$$e = \begin{pmatrix} a & c \\ d & b \end{pmatrix}; \quad e = \begin{pmatrix} a & cv \\ dv^* & b \end{pmatrix}, \pi.$$

Since any other representative of e is of the form $u_\theta^* e u_\theta$, the norm of e depends only on e and is denoted $\|e\|$.

Now let A_n be the set of continuous cross-sections of \mathcal{B}_n, that is, the
set of continuous maps $x: \mathbb{P}^n \to E$ such that $p(x(\pi)) = \pi$ for all $\pi \in \mathbb{P}^n$. With the definitions
\[xy(\pi) = x(\pi)y(\pi), \quad x^*(\pi) = x(\pi)^*, \quad \|x\| = \sup \|x(\pi)\|, \]
A_n becomes a C^*-algebra. By [7, Theorem 3.2] A_n is homogeneous of degree two and $\hat{A}_n = \mathbb{P}^n$.

We define elements $x_n, y_n \in A_n^+$ by
\[x_n(\pi) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad y_n(\pi) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \quad \pi, \]
and claim the following

Lemma 3.5. If $z_i \in A_n$, $i = 1, 2, \ldots, k$, and $\sum z_i z_i^* = x_n$, $\sum z_i^* z_i = y_n$, then $k > n$.

Proof. Clearly we have
\[z_i(\pi) = \begin{pmatrix} 0 & c_i(\pi) \\ 0 & 0 \end{pmatrix}, \quad \pi, \]
where each c_i is continuous and $\sum |c_i|^2 = 1$. If S^{2n+1} is identified with the set
\[\{a = (a_0, a_1, \ldots, a_n) \in \mathbb{C}^{n+1} \mid \sum |a_j|^2 = 1\} \]
and $\Psi: S^{2n+1} \to \mathbb{P}^n$ is given by $\Psi(a) = Ca$, then each composite map $c_i \circ \Psi: S^{2n+1} \to \mathbb{C}^{n+1}$ satisfies $c_i(\Psi(a)) \in \Psi(a)$. It follows that there exist continuous functions $\Phi_i: S^{2n+1} \to \mathbb{C}$ such that $c_i(\Psi(a)) = \Phi_i(a)$. Since $\sum |\Phi_i(a)|^2 = 1$, this defines a map $\Phi: S^{2n+1} \to S^{2k-1}$. However $\Psi(a) = \Psi(-a)$ and hence $\Phi(a) = -\Phi(-a)$. By the Borsuk–Ulam theorem [13, Corollary 5.8.8.] this implies $2k - 1 \geq 2n + 1$.

Now define $A_0 = \bigoplus_0 A_n$ (see [4, 1.9.14]). Then A_0 is homogeneous of degree two and $\hat{A}_0 = \bigcup \mathbb{P}^n$. Since A_0 is an ideal in the full direct sum of the A_n, and since $q = \sum x_n$ is a projection in this sum, we infer from [4, Corollaire 1.8.4] that the set $A = A_0 + Cq$ is a C^*-algebra. It is immediately verified that $\hat{A} = \bigcup \mathbb{P}^n \cup \{\pi_\infty\}$, where $\pi_\infty(A) = A/A_0 = \mathbb{C}$ and \hat{A} is a one-point compactification of A_0. Clearly A has continuous trace.

Proposition 3.6. There exists a C^*-algebra A with continuous trace for which K_A is properly contained in the set of elements $x \in A$ such that
\[\sup \dim \pi(x) < \infty \quad \text{and} \quad \hat{x} \in K(\hat{A}). \]
PROOF. Take A as above and consider the set J consisting of elements $y \in A^+$ such that there exist a finite set $\{z_i\} \subseteq A$ and $\alpha \in \mathbb{R}^+$ satisfying

$$y = \sum z_i^* z_i, \quad \sum z_i z_i^* \leq \alpha q.$$

By definition J is the strongly invariant order ideal generated by q. Since q as a projection belongs to K_A, we have $J \subseteq K_A^+$. However, q is not contained in any closed two-sided ideal of A, since $\pi(q) \neq 0$ for each $\pi \in \hat{A}$. Hence J is dense in A^+ and so $J = K_A^+$.

Now consider $y = \sum n^{-1} y_n$. Then $\dim \pi(y) \leq 1$ for any $\pi \in \hat{A}$, and \hat{g} is clearly continuous, hence $\hat{g} \in K(\hat{A})$ since \hat{A} is compact. However, by lemma 3.5. there cannot exist any finite set $\{z_i\} \subseteq A$ such that $y = \sum z_i^* z_i, \quad \sum z_i z_i^* \leq \alpha q$. Hence $y \notin K_A$ and the proposition follows.

Apart from disproving [9, Theorem 1.5] (cf. the introduction) the above proposition also provides a negative answer to the problem raised in [4, 4.7.24].

If \tilde{A}_0 denotes the C^*-algebra obtained by adjoining an identity to A, then trivially $K_{\tilde{A}_0} = \tilde{A}_0$. This gives an example of a C^*-algebra which is CCR and has a Hausdorff spectrum, but for which theorem 3.4 is false.

Furthermore if A'' denotes the enveloping von Neumann algebra of A and I is the smallest ideal of A'' containing K_A, introduced in [1, Section 3], our example answers to the negative the question whether one always has $I \cap A = K_A$. To see this we observe that the projections $x_n, y_n \in A_n$ are equivalent in A_n'' since they are abelian and have central support 1. Hence there exists $v_n \in A_n''$ such that $x_n = v_n v_n^*$, $y_n = v_n^* v_n$. Define $v = \sum n^{-1} v_n \in A''$. Then $v^* v = y$ and $vv^* \leq q$, hence $y \in I \cap A \setminus K_A$.

REFERENCES

UNIVERSITY OF COPENHAGEN, DENMARK