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HARMONIC ANALYSIS AND REAL GROUP ALGEBRAS

KARL EGIL AUBERT

1. Introduction.

The main objects of study in abstract harmonic analysis are the group
algebras L:Y(G) and M(G) consisting respectively of all complex Haar-
integrable functions on the locally compact abelian group G and all
bounded regular Borel measures on @. Much less attention has been
paid to the real counterparts of these algebras: the real subalgebras
L}(G) and My(G) consisting of the real-valued functions in L (@) and
the real-valued measures in M (@) respectively. These two real group
algebras acquire the additional structure of an ordered algebra over R
— via the concepts of a positive function and a positive measure. The
building blocks of these ordered algebras will accordingly be the convex
ideals since these are exactly the kernels of order-preserving homo-
morphisms. This gives rise to the following general question: What can
be said about the convex ideals of Lp}(G) and M(@) in comparison with
well-known results from the ideal theory of L.Y(G) and M(G)?

The object of the present paper is essentially to give an answer to the
above mentioned question in the case of the algebra L (@). We showed
in [1] that there is only one convex ideal among the maximal ideals of
Lg'(@); namely, the kernel of the Haar-measure (consisting of all func-
tions with zero integral). (Another proof of this along more general lines
was given later by G. Maltese in [6].) We also showed in [1] that an
intersection of regular maximal ideals in Li(G) is convex if and only if
it is contained in the kernel of the Haar measure. But since we cannot
rely on the validity of spectral synthesis in Lg! this does not necessarily
take care of all the closed ideals in Lg(@). The main purpose of the
present paper is to prove in full generality that a proper closed ideal
in Lg}(@) is convex if and only if it is contained in the kernel of the Haar-
measure. This shows that the “ordered’” versions of spectral analysis
(Wiener-Tauberian theorem) and spectral synthesis in Lg!(G) are of a
rather trivial nature because of the scarcity of convex ideals in this
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algebra. In the proof of the main theorem (Theorem 2) it turns out
that a crucial role is played by the positivity of certain convolution
products. We also offer an entirely different and elementary approach
to this question in the case of compactly generated abelian groups.
By means of Theorem 2 the determination of the w*-closed convex trans-
lation invariant subspaces of Lg™ is quite easy. We also treat the com-
mutativity of a certain diagram which naturally arises in this connec-
tion. Finally we give some remarks which seem to indicate that there
are no easy counterparts to theorems 1 and 2 in the case of Mg(G).

The author wants to thank A. Beurling and A. Selberg for their useful
suggestions in connection with the problem of the positivity of con-
volution products.

2. Convex maximal ideals in Lg!(G).

We shall first give the relevant definitions. By Lg'(G) — or simply
Lg! — we denote the ordered group algebra of all real-valued integrable
functions on a locally compact abelian group @ under the ordering f>g¢
whenever f(x)=g(x) almost everywhere on G. By L' we denote the
usual group algebra of all complex-valued integrable functions on G.
We recall that in ideal % in a commutative ring R is called regular when-
ever R/ has an identity, in the following we shall always assume that
9 is a proper ideal; hence Lg! will not be considered as an ideal in Lg®.
The ideal A<Lg! is said to be convex if f,ge U and f=h=g implies
he . When dealing with maximal ideals one should carefully distin-
guish between the following two statements.

A. % is a maximal ideal having the property P.

B. U is maximal among those ideals having the property P.

It is clear that A = B. By using Zorn’s lemma it is trivial that 4 <= B
in case P stands for “regular”. It is a consequence of Theorem 2 that
A <> B even if P stands for “closed and convex’.

The solution to the problem of finding all maximal ideals in Lg!

which are regular and convex is given by the following

THEOREM 1. The only regular and convex maximal tdeal in Lgl is the
mazimal ideal consisting of all functions tn L' with zero integral. Other-
wise expressed: If u is an order preserving homomorphism of Lg! onto a
partially ordered field F then F is isomorphic to the field of real numbers
and p is the Haar measure of G.

For proofs of this theorem we refer to [1] and [6].
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If <M, denotes the maximal ideal in L' which corresponds to the
character « € G we have the following

CoROLLARY. The following statements are equivalent.
(i) M, s the kernel of the Haar measure.

(ii) M, NLg! ¢s convex.

(iil) M, does not contain any strictly positive function.

If Q is connected (i) ©s also equivalent to the following three statements:
(iv) M, NLg! is of real codimension one in Lgl.
(v) F(x) is real for all fe gl
(vi) M, N L' =MyN Lyt = x=p.

Proor. The equivalence of (i) and (ii) is the content of Theorem 1.
The equivalence of (i) and (iii) is obvious from the proof of Theorem 1
in [1]. From the Gelfand-Mazur theorem it follows that Lgl/M, nLg!
is isomorphic to either R or C. This quotient algebra is isomorphic to R
if and only if « is a real-valued character which means that « is the
identity character if G is connected. From this, together with

(2.1) (gﬁaﬂLRl = Em,,nLRI) <> (oc = iﬂ) ,

we easily deduce the latter part of the corollary. The equivalence (2.1)
expresses that a maximal ideal in Lg! can be extended to a maximal
ideal in L¢! in at most two ways and that the extension is unique if
and only if the given maximal ideal in Lg! corresponds to a real-valued
character (which means that o« = —«). For more general information
about the relationship between real and complex Banach algebras we
can refer the reader to [4] and [5].

3. Convex closed ideals in Lg!(G).

We shall now prove that any closed convex ideal in Lg! is contained in
M = {f | fe Lt & [ f@)do=0}.

The essential step in the proof is the following lemma which may have
some independent interest (see also the remarks at the end of this sec-
tion).

Lemma 1. Let f € Lg! with [f(x)dz+0. Then there exists a g € Ly' such
that fxg> 0.
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Proor. Since [f(x)dz+0 we have f(x)+0 for all x in a certain com-
pact neighborhood K of the identity element in @. Let $ be a non-zero
positive definite function on @ with support contained in K. The func-
tion p defined by

p@) = [ Do) (@) do
@

will (by Bochner’s theorem) be a non-zero positive function in Lg!. By
an extension of a well-known theorem of Wiener (see Godement [2,
Théoréme A]) we can further determine a function F € Lc! such that

(3.1) P() = fla)?
for all x e K. We now put Fxp=g-+th and get
(3.2) [f+(g+ik)]" =FPp.

Inserting (3.1) in (3.2) we obtain fFPp=5 on K and since H(x)=0 for
o« ¢ K this shows that f# =5 holds for all x € G. By Fourier inversion
we thus have

(3.3) fx(g+ih) = fxg+i(fxh) = p.
Since f, g, k and p all belong to Lg! this gives the desired result

f*xg=p>0.
We are now ready to prove

THEOREM 2. Any proper closed convex ideal in Lg{Q) is confained in
the kernel of the Haar measure.

Proor. The proof is a repetition of the last part of the proof of Theo-
rem 1 in [1]: Assume that 9 is a proper closed convex ideal which is
not contained in the kernel of the Haar measure. The ideal % must
then contain a function f such that [f(x)dz=0. By Lemma 1, % must
therefore also contain a non-zero positive function p. Being translation
invariant, % will further contain a positive function » which is >¢>0
on a neighborhood of the zero-element o of G. Now, nh also belongs to
A for any positive integer n and we can choose for any sufficiently small
neighborhood U of o a function Ay such that

O<hy<nh onU

for a suitable n and such that the 2,’s constitute an approximate iden-
tity for Lgl, that is,
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limg (hy xf) = f for any fe Lg!.
Since 9 is supposed to be convex we have hy; € A and since U is closed
f=limg(hy*f)eUA forall fe L'

contradicting that ¥ is proper.
For later reference we give the following

CoroLLARY 1. A closed ideal W is convex if and only if A does not con-
tain a strictly positive function.

If we formulate Theorem 2 in terms of homomorphisms we get the
following

COROLLARY 2. Any order-preserving ring-homomorphism of Lg! onfo a
partially ordered ring T is a factor in the canonical order-preserving homo-
morphism of Lg! onto R.

CoroLLARY 3. Spectral analysis holds for closed convex ideals in Lg!
while spectral synthesis does not hold.

Corollary 3 is valid since the converse of Theorem 2 is obviously true:
Any ideal contained in MR is convex.

ReMARK. The result of Lemma 1 may be considered as a contribu-
tion to the following general type of problem which has been treated in
several special instances: If 4, B and C are three classes of functions
in L, what can then be said about the “size” of the set (4 *B)nC?
(Here A xB denotes the set of all convolution products f+g where fe 4
and g € B.) If we put 4 =[M," (the complement of M," in Lg!), B=Lgl,
and

C = (L)t = {f| fe Lg* and f>0}

Lemma 1 says that (A*B)nC+g.

4. The positivity of certain convolution products on compactly generated
abelian groups.

The scarcity of closed convex ideals in Lg! was shown to be mainly
due to the existence of certain positive convolution products on @.
Though the proof of Lemma 1 was not difficult, it used a couple of fairly
deep-lying results of harmonic analysis. We shall in this section show
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that in certain cases we can establish the existence of the pertinent posi-
tive convolution products in a quite elementary way. In fact if we re-
strict the given function f in Lemma 1 to have compact support we can
obtain an everywhere strictly positive integrable function by convoluting
f with a function which is “‘almost constant” — in a sense which will be
made precise below. This, however, raises the question as to which
groups G possess such almost constant integrable functions as well as
which closed convex ideals possess functions with compact support and
non-vanishing integral.

DerinitioN. When ¢ is a strictly positive real number we shall say
that a nowhere vanishing function f on G is almost constant of type (¢, K) if

f(=y)

l—-e < —= < l+¢
J(as)
whenever (z;—x,) € K, where K is a compact subset of G¢. We shall
say that G possesses integrable almost constant functions if for any given &
and K there exists a (positive) integrable almost constant function of
type (¢,K) on G.

LEmMMA 2. Any compactly gemerated abelian group G possesses inte-
grable almost constant functions.

Proor. By the structure theorem for compactly generated abelian
groups (see [3, p. 90]) any such group may be written as G=R*»x Z™ x F
where R denotes the reals, Z the integers, ¥ a compact group, and m
and n are non-negative integers. This essentially reduces the question
to proving the lemma for the three groups R, Z and F, which indeed is
quite easy. For a compact F' we can just take any strictly positive con-
stant function. If K is a compact subset of B and ¢> 0, the function f
defined on R by
(4.1) f@) = e0lla

is an integrable almost constant function of type (e, K) if the positive
real numbers a and ¢ are chosen such that K <[—a,a] and e’<1+e.
In fact if |2z,—2,|<a then also ||z,|—|z,||<a and

1 x
1_g<_.<e-"<‘f(_1)<

l+e T flwg) T

The restriction of the function (4.1) to Z will give an integrable almost
constant function on Z which is of type (¢, K) if a is again chosen such

e < 1l+e.
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that K <[—a,a]. Such a choice is obviously possible since K is finite,
being a compact subset of a discrete group.

Roughly speaking we therefore only have to show how two integrable
almost constant functions on the groups @ and H, respectively, can be
used to define an integrable almost constant function on G x H. Assume
therefore that g and # are two integrable almost constant functions on
G and H and are of type (¢, K,) and (e,, K,) respectively. Without loss
of generality we can assume that g,6,<1. Then define f as a function
on G x H by putting

fx,y) = g(z) k(y) .

It is clear that f is an integrable, everywhere positive function on G x H
such that

S (@1, 94)
S (@2, 92)

whenever (x,—,,%,—¥,) € K; x K,. In order to produce an integrable
almost constant function f on G x H of type (¢,K) it is therefore enough
to choose &, &, K, and K, such that K <K, x K, and (1+¢&)(1+¢,)<
1+e¢. This completes the proof of Lemma 2.

Since an almost constant function is nowhere equal to zero it is clear
that a group must in any case be g-compact in order to possess integrable
almost constant functions. We do not know, however, whether the
existence of integrable almost constant function characterizes the class
of compactly generated groups—or may be the class of o-compact
groups. In any case we have the following

(1—¢g)(1—gp) <

< (I+&)(1+¢,)

LemMA 1B. Let G be any locally compact abelian group which possesses
integrable almost constant functions. If f is a function in LgY(Q) with
compact support and non-vanishing integral, then there exists a function
g € LY (@) such that fxg>O0.

Proor. In contradistinction to the more general result of Lemma 1

we are here able to give an entirely elementary proof. Let K denote the
support of f. We can suppose without loss of generality that

ff(x) dx = ff(x) dz =1 and f|f(x)| dz = .
G K K
Let g be an integrable almost constant function of type (¢, K). Then

fr9@) = [ gla—9) f0) dy = 9@ - [ (o) ~9@~1)) J®) dy
K K
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which gives
@ 2 9@ ~ [ lo@)-g@-)I1f®)] dy
K

or

frat@) 2 gta) - [ ate)|1-222] 1101 ay
K

g

v

g(x) — g(x)eax .

By choosing g of type (¢,K) with e<1/x we therefore get the desired
inequality f+g> 0.

Lemma 1B is more restrictive than Lemma 1 in two ways: We have
imposed conditions both on @ and on f. The condition on f would be
inessential if it turned out that any closed ideal which is not contained
in the kernel of the Haar measure contains a function with compact
support and non-vanishing integral. (It can be shown that this is not
true in the case @=R.) Then the above Lemma 1B gives a new proof
for Theorem 2 in the case of groups which possess integrable almost
constant functions. Whether a closed ideal 9} contains a function with
compact support and non-vanishing integral is again a question con-
cerning the “size” of (4*B)nC. If we can prove that

(A*B)nC + O
with
A =U%A-MR, B=Lg, C=Liju-M"

this would prove that 9 contains a function of the desired type.

5. Convex translation invariant subspaces of Lg™.

We denote by Lg™ the real dual of Lg! consisting of all bounded
measurable real-valued functions on G. Thus Lg™ is nothing else than
the family of all the real-valued functions in the usual complex L*®-space
which we shall here denote by Lc®. It is a well-known fact that there is
a one-to-one correspondence between the closed ideals in Lc! and the
w*-closed translation invariant subspaces of Lc® (see [7, p. 184]). The
same correspondence persists between the real spaces Lgl and Lg™.
By means of this correspondence we shall easily describe the convex
w*-closed translation invariant subspaces of Lr™.

If %A is a closed ideal in L' we put

A'C = {g| ge L™ and gxf=0 for all feU}.
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Similarly if U is a closed ideal in Lg! we put
AR = {gl g€ Lg® and gxf=0 for all fe A}.

The correspondence between closed ideals in Lg! and w*-closed transla-
tion invariant subspaces of Lg™ is then given by the mapping % — A*R.

Lemma 2. U contains a strictly positive function if and only if AR does
not contain a strictly positive function.

Proor. If 9 contains a strictly positive function it is clear that 'R
can not contain such a function since U*AY*R={0}. Conversely if A
does not contain a strictly positive function we know from Corollary 1
of Theorem 2 that A <IR,* and thus 1 € AR proving that AR contains
a strictly positive function.

ProposITION 1. AR is convex if and only if A is not convex. (A+0.)

Proor. If U is convex then A<M, and 1 € AR showing that AR is
not convex. Conversely if % is not convex then U contains a strictly
positive function and hence by Lemma 2, A** does not contain a strictly
positive function. This means that two functions in Y*® cannot be com-
parable without being identical and hence U*® is convex.

CoROLLARY. A w*-closed translation invariant subspace of L™ is con-
vex if and only if it annihilates a strictly positive function.

Let f£c and S denote the families of closed ideals in L.t and Lg!
respectively and let &¢ and #x denote the families of w*-closed trans-
lation invariant subspaces of Lc™® and Lg™ respectively. We define the
mappings

g: Ic>Fr and y: - R
by
) = AnLg! and p(A'C) = A'Cn Lg™.

The question arises whether the following diagram is commutative or
not:
A )

v o

S 2 S
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If p(AC) = (p(A))*® we shall say that D is commutative for A. It is clear
that ¢ is a surjection since

o(B) =A when A < Lyt
and

B = A+iW = {fi+ifp | ffacU}.

This ideal B is the unique minimal closed ideal in Lc! such that ¢(8)=A.
These ideals A +49 which are in one-to-one correspondence with the
closed ideals in Lg! will be called symmetric ideals in Lcl.

ProposrrioN 2. The diagram D is commutative for W if and only if A
18 a symmetric ideal.

Proor. If B=A+1A with A € A, then
(p(B))*R = {g| g€ Lg® and gxf=0 for all fe A}

and this set is evidently the same as y(8'C). Assume conversely that 8
is not symmetric, i.e., that B properly contains ¢(B)+ip(B). Due to
the fact that 1. is one-to-one there exists a g € L™ such that gxf=0
for all f € p(B)+1ip(B) but not for all fe B. Writing g=g, +1g, we get

(@1+192) f = g1 xf+i(g5+f) = 0 for all fep(B).

Thus g, *f=g,*f=0 for all fe ¢(B). On the other hand both g, and g,
cannot annihilate B since g=g,+1g, would then do the same. This
proves that either g; or g, will annihilate ¢(®8) without annihilating %.
This implies that the diagram D is not commutative for 8.

In order to determine more specifically the maximal ideals for which
D is commutative it is convenient to have the following

LemmA 3. The ideal A, =M NM_, consists of all functions f=f,+if,
such that fi(x)=fo(x)=0. Otherwise expressed:

A = oM, +ipR,) (=@, +ipM_,).

ProoF. If fi(x)=fy(x)=0 then also f(x)=0 and fedM,. Since
fofa€pM,)=pM_,) we also have fi(—a)= fi(—x)=0 and hence
f(—«)=0. Thus fe M, nM_,. Assume conversely that h=h,+ih, e %A,
that is,

(5.1) f hz) (@0) de = J' h(z) (@,) dz = 0 .
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By adding and subtracting the two left hand terms of (5.1) we get

52)  [2@) (@) + @) dz = [4) ((w0) - @) dz = 0.

Since (x,__;c_) +(x,«) and (#,&4)—(x,») are real and purely imaginary
respectively, (5.2) is also valid when substituting &, or k, for h. Adding
up the two expressions on the left hand side of (5.2) with &, instead of
h we get h(x)=0. Similarly f,(x)=0.

ProrosrrioN 3. The diagram D is commutative for a maximal ideal I,
if and only if « is a real-valued character.

Proor. According to Proposition 2 and Lemma 3 D is commutative
for M, if and only if A, =M, or equivalently if and only if M,=M_,.
But &« = —« means that « is real-valued (i.e., « assumes only the values
+1).

Since the identity character is the only continuous real character in
case @ is connected we get the following

CoroLLARY. If G is connected the diagram D is commutative for M, if
and only if M, is the kernel of the Haar measure.

6. Convex ideals in MR(G).

It is well known that the ideal theory of Mc(G) is quite a bit of a
mystery. Even the maximal ideals of M<(@) have not been described
in a satisfactory way. It seems that one has a similar increasing com-
plexity when passing from Lg(G) to Mr(G). What corresponds to the
kernel of the Haar measure in case of Mg(G) is the convex ideal IN
consisting of all real measures x with total mass equal to zero:

M= {u| wG)=[gdu=0}.
But M is not the only convex maximal ideal in Mg(G). In fact, using
the Lebesgue decomposition
B = pgt st g

where u, is discrete, u, is singular and u, is absolutely continuous, the
set {u | pa(@)=0} is a convex maximal ideal in Mgr(G) which in general
is different from 9. We therefore have no immediate counterpart to
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Theorem 1 in the case of My(G). It is also easy on the basis of the
Lebesgue decomposition to exhibit several closed non-maximal ideals
of MR(G) which are convex and not contained in 9.
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