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THE MAXIMAL IDEAL SPACE OF A BANACH
ALGEBRA OF MULTIPLIERS

KARI YLINEN

1. Introduction.

J. L. Taylor [12] has characterized the maximal ideal space of the
convolution algebra M(G) of bounded regular Borel measures on a
locally compact abelian topological group G as the set of semi-characters
on a compact abelian topological semigroup called the Taylor structure
semigroup of M(G). A different construction of the Taylor structure
semigroup has later been given by Ramirez [7] and Rennison [8], who
exploit the natural C*-algebra structure in the dual of M (@) regarded
as the bidual of Cy((¥), the C*-algebra of continuous functions on @
vanishing at infinity. They note that the strongly closed span @ of the
set of multiplicative linear functionals on M(G) is a sub-C*-algebra of
M(@)', and indentify the Taylor structure semigroup of M (@) with the
maximal ideal space of Q.

For a commutative semi-simple Banach algebra 4, denote by 4 the
set of the Gelfand transforms of the elements of 4 and by 4™ the set of
functions on the spectrum of A that keep 4 invariant by pointwise
multiplication. Each fe 4™ determines a bounded linear operator on 4
and the set A™ of such operators, the multiplier algebra of 4, is a Banach
algebra under the uniform operator norm. If 4 is L(@), the convolution
algebra of Haar integrable functions on G, A™ may be identified with
M(@). In this paper we generalize the structure theory of M (&) sketched
above to the multiplier algebras of certain commutative semi-simple
Banach algebras with the distinctive feature that the strongly closed
span P of the set of multiplicative linear functionals has the structure of
a commutative Banach algebra, too. Following Birtel [4], we embed
Am™ in P’'. We then define an Arens quotient product in the dual of A™
originating from the product in P and show — under some natural
additional assumptions — that the spectrum of A™ spans a commutative
subalgebra @ of (A™)'. The spectrum of @ generalizes the Taylor struc-
ture semigroup S of M(G), as is indicated in section 5. The main
theorem is theorem 4.7, in which it is assumed that P is a C*-algebra with
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identity, though most of the auxiliary results are proved under weaker
hypotheses. Applied to the case of the group algebra L(@), theorem 4.7
shows that the natural embedding of the dual group I" of G into the
spectrum of M((7) may be interpreted as the dual mapping from I” into
the set of semicharacters on S of a continuous homomorphism from S
onto the Bohr compactification of G.

ConvEenTioN. All Banach algebras considered in this paper are com-
plex. For any commutative Banach algebra 4, A(A4) denotes the spec-
trum of A, that is, the set of non-zero multiplicative linear functionals
on 4. If D<= A’, [D] denotes the subspace of 4’ generated by D, and
[D]- its norm closure.

2. Arens products and quotient products.

2.1. R. Arens [1], [2] has extended the product of an arbitrary Banach
algebra A to its bidual 4" by the following rule. If m: AxA4 - A4
denotes the product in 4, a jointly continuous bilinear map m*:
A’x A - A’ may be defined by setting m*(x’,x)y=2x'm(z,y) for z' € 4',
z,y € A. Tterating this procedure one obtains

m**; A" x A' > A', m**@a",x)y = ' m*',y),

and finally
m***: All x AII — All’ m***(yfl’xll)xl — yllm**(xll,xl) .

For any Banach algebra product m we denote by m! the product for
which mi(z,y) =m(y,x). 4 is called Arens regular, if m*** =m*** When
no confusion can arise, any Banach algebra product will be denoted in
the usual way by juxtaposition.

THEOREM 2.1. Let A be a Banach algebra and E a subspace of A'.
Denote by E° the annihilator of E in A". Consider the following five state-
ments:

(1) E° is a right ideal of A" in the m™***-product,

(2) m**(A" x E)<E,

(3) m¥(ExA)<E,

(4) m**(E° x B) = {0},

(5) E° is a left ideal of A" in the m***-product.

We have the implications (1) <= (2) = (3) = (4) = (5), and if A 13
Arens regular, all statements are equivalent.

Proo¥. (1) implies (2): Suppose m™**(z",x) ¢ E for z€ E, x"' e A".
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It is a consequence of the Hahn-Banach theorem that we can find
y" € E° such that

m‘***(y",x”)z' —_ ylrm[**(xl!’xl) 4: 0 .

Thus E° cannot be a right ideal for m#***,

(2) implies (1): If 2" € E°, y"' € A" and «’ € E, we have, assuming (2),

m{***(xll,yll)xl —_ xllm'**(yll,xl) — 0 R

as E°=E°.

(2) implies (3): If 2" € E and & € A" is the canonical image of x € 4,
we have for ye 4

m*(@',x)y = 'm(z,y) = x'm(y,x) = am*(x',y) = m**(z,2")y .

Hence m*(x',x) =m'**(z,2') € E.

(8) implies (4): If "’ € E°, ' € E and x € A, we have by (3),

m**(z" 2" )x = ''m*¥@x',x) = 0,

as E°=E°.

(4) implies (5): Take z'' € A", y'' € E° and 2’ € E. If (4) holds,

m***(xu,yn)xl = xum**(yu’xr) — x"(O) =0.

Thus m***(z"’,y"’) € E°. Finally, if A is Arens regular, (5) implies (1),
since a left ideal for m*** =mf***! ig a right ideal for m#***,

2.2. We assume in this subsection that A is a commutative Banach
algebra and £ a subspace of 4’ such that the condition (2) of theorem
2.1 holds, that is, m**(4"’ x E) < E. Then m*(& x A) < E by theorem 2.1
and the continuity of m*. Thus we may define m**: E'x E -~ A’ by
setting

m**(F.2')x = Fm*(2',2) = "' m*(z',z) = m**",2")z,
where F € B’ and z'’ is its extension to A’ such that |[z"|=|F||. Then
m** is jointly continuous and m**(E’ x )< E, so that we may define
m***: F'xE' - E' by m***F Gz’ = Fm**G,z').
By theorem 2.1., the ideal E° is a closed two-sided ideal in (4,m***),
Let p: A" - A" [E° be the natural homomorphism. It is a well-known

consequence of the Hahn-Banach theorem that ¢: A"'/E° -~ E’ defined
by gop(z'')=2a" | E is a linear onto isometry.

THEOREM 2.2. If A" is given the product m***, then @ transfers to m***
the natural product in A" [E°.
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Proor. If 2, y" € A" and F=a"|E, G=y"|E, we have for ' € E,

m**(pop(a"),pop(y”))a’ = Fm**G,z) = o' m™(y",)
= ma*ra,y)a
and the theorem follows.
We call m*** the Arens quotient product in E’, and denote usually
m**x(F Q)= F,Q.

2.3. If A is a commutative Banach algebra and D<A4(4),
m**(@", 35y Aoeg) = P A% (o) o

for ;€ C, a; € D, as is easily verified. Denote £ =[D]-. By continuity,
m**(A" x )< K, and the Arens quotient product in E’ is given by

F G371 A0) = Ziq A F (o) Gloxy)
(cf. [4, p. 816]).

THEOREM 2.3. Let A be a commutative Banach algebra and E =[D]-,
where D<= A(A). If E is a commutative Banach algebra having D as a
multiplicative subsemigroup, then A(E)u{0} with the weak* topology is a
compact abelian topological semigroup under the Arens quotient product.
If E has an identity e € D, A(E) is a compact subsemigroup of A(E)u{0}.

Proor. If F,G e AB), Ainuj eC, O‘i’ﬁj eD

for ¢=1,...,n, j=1,...,p, then we have

FyG(Zio i) ,";1,“1!91) = FyG(37, 2,";1/11#10‘:@)

= X1 S 1A pF (o) Gloify)

= i1 ;;lliF (o) Glo) s F(B;) G(B;)

= F, G(Z?=1}*1:0‘i)F* G(z;’;l:ujﬂj) .
By continuity, F, & extends to a multiplicative linear functional on E.
If £ has an identity ee D, F, G is non-zero, as F,G(e)=F(e)G(e)=1.
It is well known that A(E)u{0} is compact in the weak* topology
[9, p. 113], and A(E) is compact if E has an identity. Since the Arens
quotient product of E’' can be defined by pointwise multiplication of
the restrictions to D of the elements of £’ and the elements of D suffice
to define the relative weak* topology on A(E)u{0} [9, pp. 112-113]
the multiplication in 4(E)u{0} is jointly continuous.

ExampLE. The following example shows the role of the requirement
that the identity of E belong to D. Take 4=C? with componentwise
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operations and norm ||(z4,2,)||=sup{|z],|25|}. Then A’'=C2 with the
norm ||(z4,2,)||=|2,| +|2,], and A’ is generated by A4(4)={(1,0),(0,1)}.
If A’ is considered as a Banach algebra under componentwise operations,
A’ has the identity (1,1), but

A(4') = {(1,0,(0,)} < 4" = 4

is not closed under (Arens) multiplication.

2.4. The next result is essentially indicated in [7, pp. 1395-1396],
but we give it an integration free proof. A semicharacter on a topological
semigroup is a non-zero continuous homomorphism into the multiplica-
tive semigroup of complex numbers z with |z|<1.

THEOREM 2.4. Let A be a commutative semi-simple Banach algebra.
Suppose that P=[A(A)]~ is a commutative C*-algebra having A(4) as a
multiplicative subsemigroup with identity. Then the semicharacters of
A(P) are precisely the Gelfand transforms of the elements of A(A).

Proor. Since
Fy G371 A0g) = Fm**(G, 37 o) = F(Z7 1 2,G (o) o)

for F,Ge P, ;€ C and «;€ A(A4), it follows by continuity that the
adjoint of the operator F F,G maps P into itself. Hence the Arens
quotient product in P’ is separately o(P’,P)-continuous [11, p. 128].
As P is semi-simple, H=[4(P)]~ is a separating subspace of P’. Hence
H is ¢(P’,P)-dense in P’ [11, p. 125].

Let f: A(P) — C be a semicharacter. As f+0 is continuous, it is the
Gelfand transform of some non-zero ' € P. It follows from theorem 2.3
that H is a subalgebra of P’, and since f is multiplicative on A(P), it is
clear that the continuous linear functional defined by #’ on P’ is multi-
plicative on H. Since the o(P’,P)-continuous functions F - F(x')G(x’)
and F —» F,G(2") for fixed G € H coincide on H, we have F,G(z')=
F(z')G(z') for all F € P'. Keeping next F € P’ fixed and letting G vary,
we conclude that the functional defined by z’ is multiplicative on the
whole of P, and as 4 is homomorphically embedded in P’, z’' € 4(4).
As

F,6(x) = F(®)G(x) and [F(x)| S o]l |1F] < 1

for F,G € A(P), o € A(A), it is, conversely, clear that the Gelfand trans-
form of any « € A(A) is a semicharacter of A(P).
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3. Preliminaries on multipliers.

3.1. In this section 4 is a commutative semi-simple Banach algebra
and P=[4(4)]-. We denote by A™ the set of functions f: A(4) -~ C
such that f2 € 4 for all z € A. Rach fe A™ defines a unique bounded
linear operator 7;: A - A such that (Tjx)"=f2. The set Am™=
{T,|fe A™} with the operations induced by pointwise addition and
multiplication in 4™ is a commutative semi-simple Banach algebra
under the uniform operator norm. It is called the algebra of multipliers
of 4. For the basic theory of multiplier algebras we refer to [3]. Since
the elements of A(A) are linearly independent, each fe A™ extends
uniquely to a linear functional on [4(4)]. If 4 has a weak bounded
approximate identity [4, p. 817] this extension is continuous and de-
termines therefore a unique element f of P’. Since A is semi-simple,
the mapping x> &, where & denotes the continuous linear functional
on P defined by =z, is injective. It is clearly norm decreasing. If it is a
homeomorphism, 4 is said to be topologically embeddable in P'.

TaEOREM 3.1. If A has a weak bounded approximate identity and us
topologically embeddable in P’, the mapping T, —f is a topological iso-
morphism from A™ into P’.

Proor. As noted in [4, p. 817], the mapping 7', - f is a continuous
homomorphism, and obviously injective. Let C'>0 be such that ||z|>
C|lz|| for all z € A. Then we have

IFll 2 SuPea s IFsll Z suPy< Il Z C supyg, 1Tl = ClTy] ,

and the assertion follows.

3.2. A commutative Banach algebra A4 is called regular, if for any
closed set FcA(A) and « & F there is x € A such that 2|F=0 and

x(x)=1. Let j (co) denote the set of elements of 4 with Gelfand trans-
forms of compact support. A function f: A(A4) — C belongs locally to )
at o€ A(A), if there is a neighborhood U of « and x €A such that
flU=2|U. Augmented with theorem 3.1. above, the theorem in [4,
p. 819], may be rephrased as follows:

THEOREM 3.2. Suppose that A is regular, topologically embeddable in
P', and has an approxzimate identity {u,}<j,(cc). Then f:A(4)—~C
belongs to A™ if and only if it can be extended to a continuous linear func-
tional f on P and belongs locally to A at each point of A(A). The corre-
spondence T, — f is a topological isomorphism from A™ into P'.
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4. The spectrum of the multiplier algebra.

4.1. Our main concern here is roughly to define a semigroup struc-
ture in 4(A4™) if one is given in A(4). In view of theorem 3.2 it is rea-
sonable to have first a closer look at the algebra of functions belonging
locally to A. — In this section we assume throughout that

a) A i3 a commutative semi-simple Banach algebra, and

b) P=[4(4)]- is a commutative Banach algebra wnder a product m

such that

c) m(4(A4) x A(A))<=4(4).

For a function f: 4(4) > C and «,8 € 4(4) we define f*(B)=f(«B).
A subset F of C44 ig translation invariant, if f*e F for all fe F,
ae A(A4).

THEOREM 4.1. The mapping & m(x,&) on P is weak*-continuous for
all x € A(4) if and only if A is translation invariant.

Proor. When 4 is regarded (algebraically) as a subspace of P’, the
adjoint m*(-,«) of the norm continuous linear operator & m(x,&) maps
A into P’. Since m*(Z,x)f=2%p) for all g€ A(A), it follows therefore
by linearity and continuity that m*(-,«) maps 4 into A4 if and only if
2*e 4 for all z € A. But the condition m*(4,x)< A4 is equivalent to the
o(P,A)-continuity of the operator & m(x,£) [11, p.128], and the
theorem is proved.

We assume henceforth that

d) 4 is translation invariant.

Norarion. We denote by B the subspace of P’ consisting of those
functionals whose restrictions to 4(4) belong locally to 4 at each point
of A(A4). Let B, denote the set of restrictions &'|A4(A), where & € B.

THEOREM 4.2. B, is translation invariant.

Proor. Let fe By and « € 4(4). Since the multiplication in P is
norm continuous, it is clear that f* is the restriction to 4(4) of a con-
tinuous linear form on P. We show that f* belongs locally to 4 at
p € A(4). There is a neighborhood U of «f and z € A such that f|U=
2|U. As the multiplication in A(4) is separately continuous for the
Gelfand topology by theorem 4.1, there is a neighborhood V of 8 such
that «V < U. Then we have for any y e V,

F@) = flay) = 2(ay) = 8%(y),

and the conclusion follows by the translation invariance of 4.
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THEOREM 4.3. If P is Arens regular, so that (P'',m***) is commutative,
the annihilator B° of B is a closed ideal of P and B'=B'=P"|B° is a
commulative Banach algebra under the Arens quotient product m*** which,
moreover, is separately o(B’, B)-continuous.

Proor. By theorem 4.2, m*(B,«) < B for each « € 4(4), and by linea-
rity and continuity, m*(B x P)<B. It follows from theorem 2.1 that B°
is an ideal and the Arens quotient product, obviously commutative, is
defined. Since

(F @& = Fm**G, &) for F,Ge B, £eB,
m**(G,¢') = m**(&",&)e B
(theorem 2.1), where G'=¢"'|P, the adjoint of the operator F F,G

maps B into itself, whence the separate o(B’, B)-continuity of m***
[11, p. 128].

4.2. As in theorem 4.3, we generally identify B’ and B’ as Banach
spaces (note, however, that the weak* topologies on B’ and B’ are
distinct unless B is closed). As B is a commutative Banach algebra in
the Arens quotient product of P’, A(B) is then identified with the set
of continuous multiplicative linear functionals on B.

THEOREM 4.4. If P is Arens regular, then A(B)U{0} is a multiplicative
subsemigroup of B'. If the function e(ax)=1 belongs to B,, then A(B) is a
subsemigroup of A(B)u{0}.

Proor. Let F,G e A(B)u{0}. We show that m***(F,G)=F,Q is
multiplicative on B. For f,g € B and «, € 4(4) we have

m*(fg,0)B = fgm(xp) = fm(ap) gm(ap) = m*(f,«) B m*(g,x)B .

Thus
m*(fg,0) = m*(f,a)m*(g,x) ,

where m*(f,«) and m*(g,«) belong to B by theorem 4.2. Therefore,

m**(G’,fg)(x = Gm*(fgﬁo‘) = %*(f,o‘) G'm‘*(g’“)
= m**(GsI)‘xm**(G’g)‘x

for all x € 4(A), so that
m**(@,fg) = m**(G,f) m**(G,g),
where m**(G,f) and m**(G,g) belong to B by theorems 4.2 and 2.1.
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Hence we have
FoG(fg) = Fm**(G,fg) = Fm**@,[) Fm**@,g) = F, G(f) F,G(g) .
Finally, if F and @ are non-zero and e € B,, where ¢(x)=1, then
m**(G,e)x = Gm*(e,n) = G(e) = 1
for all x € 4(4). It follows that
F.G(e) = Fm**((G,e) = F(e) = 1.

4.3. In important applications, for example when 4 is the group
algebra of a locally compact abelian group, P has the structure of a
C*-algebra. The next result is concerned with this situation.

THEOREM 4.5. If, in addition to the assumptions a)-d), an involution
& &* 43 defined on P such that P becomes a C*-algebra, then B’ is a
commutative C*-algebra with identity w. If & € B, then & e B where
£'(&)=E'(E¥), and the involution F v F* in B'=B' is given by

F*(&) = F(£).

The involution in B’ is o(B’, B)-continuous. The subspace @=[A4(B)] is a
sub-C*-algebra of B'. If P has an identity, its canonical image in B’ is
u and u € Q.

Proor. It is shown by Civin and Yood [5, p. 869] that P’ is Arens
regular and is in fact isometrically isomorphic to the von Neumann
algebra &/ enveloping P, i.e. the von Neumann algebra generated by
the image of P in the universal representation (cf. [6, p. 236]). In partic-
ular, P is a commutative C*-algebra with identity having B° as a
closed ideal (theorem 4.3). Hence B° is also self-adjoint, and P"'[B°= B’
is a commutative C*-algebra with identity [6, proposition 1.8.2., p. 17].
It is shown by Ramirez [7, p. 1392] that the involution & (&")*
induced by &/ on P’ can be defined by

(E")*¢ = &"(f'), where £'(8) = &'(£%).

Another way of seeing this is to note that the above involution is weak*
continuous and coincides with the original involution of P on the weak*
dense subspace P of P'', whereas the weak* topology of P’’ corresponds
to the weak operator topology of & [6, p. 237], for which the involution
in & is continuous. To the quotient algebra the involution is trans-
ferred as follows: If F € B’, F*=(§")*| B, where &' € P" is any exten-
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sion of F. If we now had £ ¢ B for some & & B, we could find £ € B°
such that &’(£')%0. Then &’|B=0, and &(f')=(¢"| B)*¢ =0, which is
a contradiction. It follows that the involution can be defined as stated
in the theorem. It is then immediate that the involution is o(B’,B)-
continuous. It follows from theorem 4.4 that @ is a subalgebra of B'.
Now let F € A(B) and &, € B. Then

Eno) = Eqa®) = E@M (%) = E(w)7 (@)
for x € A(4), so that 57:5’17'. Since

Frg'n) = F(Ey) = FET) = FEVFG) = FHE)F*)

F* e A(B), and by the continuity of the involution @ is a self-adjoint
subalgebra of B’. Finally, if P has an identity e, a straightforward
verification shows that its canonical image ¢ in P”’ is an identity for P"’.
Clearly, the natural homomorphism maps ¢ onto the uniquely determined
identity w of P"/[B°=DB’, and since each x € 4(4) may be regarded as
an element of A(B), u € Q.

4.4. For £€ P=[4(A)]~ and fe B we define
DEf = f(&) .

Then @ is a norm decreasing injection from P into @=[4(B)]-, since
@x € A(B) for all x € A(4). The range of @ is a subalgebra of B’ and @
is a homomorphism onto its range, as is readily seen by the definition
of the Arens quotient product, noting that the Arens product in P”
extends the product of P.

THEOREM 4.6. The adjoint @*: Q' — P’ of @ is a homomorphism for
the Arens quotient products of Q' and P'.

Proor. Let F,G @ and « € A(4). Then @« € A(B) and
X F, Qo = (F Q)P = F(Px) (D)
— O*(F)a®*(@)x = (P*F, 0*Q)x .
Thus O*(F, @)= O* F, O*G.

4.5. If the assumptions of theorem 3.2 are fulfilled, then By=A4™ and
B=B, which simplifies some notations. We conclude this section with
a theorem in which we collect the most important results of the above
theory in a specialized situation.
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THEOREM 4.7. Let A be a commutative, regular, semi-simple Banach
algebra with an approximate identity {u,}<j, (o). Suppose that P=
[4(A)]- is a commutative C*-algebra having A(A4) as a multiplicative sub-
semigroup with identity, such that A is translation invariant. Suppose,
Sfurthermore, that A is topologically embeddable in P'. Then Q=[4(A™)]
18 a commutative C*-algebra with identity having A(A™) as a multiplica-
tive subsemigroup. With their respective Gelfand topologies and Arens
quotient products, A(P) and A(Q) are compact abelian topological semi-
groups, and A(A) (resp. A(A™)) may be identified, via the Gelfand trans-
Jorm, with the set of the semicharacters on A(P) (resp. on A(Q)). There is a
continuous homomorphism ¥ from A(Q) onto A(P) such that the mapping
Y A(A) - A(A™) defined by

(P'(«))" = Go ¥

18 a topological isomorphism onto an open subsemigroup of A(A™).

Proor. By virtue of theorem 3.2, A™ may be identified with B (cf.
subsection 4.1), which is closed, as A™ is a Banach algebra. By theorem
4.5, @ is a commutative C*-algebra having 4(A™) as a multiplicative
subsemigroup with identity by theorem 4.4 (the Arens regularity of P
was noted in the proof of theorem 4.5). Theorem 2.3 then shows that
A(P) and A4(Q) are compact abelian topological semigroups and by
theorem 2.4, (4(A4))” (resp. (4(A™))") is precisely the set of semicharacters
on A(P) (resp. on 4(Q)). Consider the mapping @ introduced in section
4.4. As @ is a homomorphism and maps the identity of P onto that of @,
Fod is a non-zero multiplicative linear functional on P for any
F € A(Q). Thus the adjoint ®* of @ maps A(Q) into A(P). We define
VY =9*|4(Q). By theorem 4.6 ¥ is a homomorphism. It is continuous
for the weak* topologies of 4(Q) and A(P) since @* is so [11, p. 128].
Since @ is injective, ¥(4(@))=4(P), as may be seen by an argument
used in [6, p. 17], in the proof of proposition 1.8.1. If « € 4(4), then
& o ¥ is a continuous function on A4(Q), and therefore the Gelfand trans-
form of an element ¥'(x) of . We show that ¥’ |4(4)=®|4(4), whence
in particular ¥’'(4(4))<A4(A™) (this inclusion also follows from the fact
that & o @ is a semicharacter on 4(Q)). If F € A(Q), then

F(¥P's) = (Ao P)F = 4(PF) = (¥F)x = F(ds),

and the semi-simplicity of @ implies that ¥’ coincides with @ on A(A4).
But it follows from the proof of theorem 1 in [3, p. 204], that @|4(4)
is a homeomorphism onto an open subset of 4(4™).
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5. Application to harmonic analysis.

5.1. Let G be a locally compact abelian topological group with a
fixed Haar measure, denoted by dz, and dual group I'. If A=LY(Q),
A(A) may be identified with I" and P=[A4(4)]~ with AP, the C*-algebra
of the almost periodic functions on G. The Gelfand transform on @ is
then the Fourier transform:

10) = [f@@wy)de for feI¥@), yel.
@

It is a consequence of Eberlein’s theorem [10, p. 32] that L'(@) is topo-
logically, even isometrically, embeddable in AP’. Also the other assump-
tions of theorem 4.7 are well-known basic results of harmonic analysis.
Since the multiplier algebra of L!(@) is isometrically isomorphic to the
convolution measure algebra M (@) [10, p. 74], theorem 4.7 yields a con-
nection between I" and A(M(@)). In this case A(P)=A(AP) is the Bohr
compactification of G.

5.2. Ramirez [7] and Rennison [8] have studied 4(M(@)) by consider-
ing the Arens product in M(Q)"=Cy(&)"”, which makes M(G)’ isomorphic
to the enveloping von Neumann algebra of Cy(@). In the next theorem
we show that the C*-algebra structure thereby introduced in M(G)’ is
the same as that which is obtained by interpreting M(Q) as the multi-
plier algebra of L'(@) and using the techniques of section 4. For x € M(G),
denote by f its Fourier-Stieltjes transform, i.e.

i) = [ @y)du@) for yer,
G

and by @ the continuous linear functional defined by f4on AP. Then
the mapping u - j is a linear isometry into AP’ [10, p. 32]. We denote
by B the image of M(G) in AP,

THEOREM 5.1, When M(G) =Cy\(R)" is regarded as the enveloping von
Neumann algebra of Co(@) and B’ is given the C*-algebra structure intro-
duced in theorem 4.5, then the adjoint of the operator u v ji is a C*-algebra
isomorphism from B' onto M(G)'.

ProOF. Let ¢ be the adjoint of the inverse isometry ji+ u, and de-
note E=g(C,), where Cy=C,(G) is canonically regarded as a subalge-
bra of M(G)’, whose C*-algebra structure is defined analogously with
that of P’ in the proof of theorem 4.5. Clearly, ¢ is an isometric vector
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space isomorphism onto B’. For fe C, denote f=g¢(f). We first show
that ¢|C, is an algebra isomorphism onto E. Denote the pointwise prod-
uct in AP by m. Then we have for «,f € I" and y € M =M(G),

m*(u, ) = i(xf) = [ @) (@.6) dp(a).

G

By the uniqueness of the Fourier-Stieltjes transform [10, p. 29],

N
m*(u,x) = au,

where xu is the measure f+ u(xf). Therefore, if g € C,,
m, B = mH(i,0) = Fug) = [ () @) du@)
Q

and by the same uniqueness theorem m**(g, i) = gjt, where gu is the
measure [+ u(gf). It follows that

. (fo)s = freig, i) = fgm) = @)f = wlfo)
1...

(1) o(fg) = ofwpg -

As B is closed, the involution in B’ is weak* continuous (theorem 4.5),
and multiplication separately weak* continuous (theorem 4.3). The
corresponding statements are valid for M’ (see the proof of theorem 4.5).
Since ¢ is continuous with respect to the weak* topologies of M’ and B’
[11, p. 128], the mappings

See(fS) and Sk e(f)p(S)

on M’ for fixed f e C, are so, too. As they coincide by (1) on the weak*
dense subspace C, of M’,

P(fS) = ¢f @S forall SeM(G) .

Fixing 8§ and replacing f by a variable 7' € M’, it is seen by the same
argument that ¢ is an algebra homomorphism. To show that ¢ trans-
fers the involution S~ S* in M(G)’ to the involution F  F* defined in
theorem 4.5, we first note that C'=C(G), the Banach space of bounded
continuous functions on G may be regarded as a subspace of the dual of
M(@), and since C, is ¢(C,M)-dense in C [11, p. 125], there is, in partic-
ular, for each y € I' a net {f,} of elements of C, converging to y with
respect to o(C,M). Using the Jordan decomposition of a measure into
a linear combination of positive measures and the decomposition of the
integrand into its real and imaginary parts for each of the positive
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meagures separately, we infer that the net {f;} converges to 7 for
a(C,M). Therefore,

i = [ @) dpte) = tim [ £6) dpto)
Q@ Q

=tim [ f@) dutz) = [ @) dute) = 43),
Q Q

and we have for 3 A;y,€ AP, 1=1,2,...,n,
B(Shp) = BEX7:) = SAAF) = SAAP) = MSiy,) .

By continuity, fi: ﬁ, so that

(@S*)jt = S*u = S(F) = pS(fA) = pS(R) = (pS)*ia

that is
PS* = (pS)*.

We have proved that ¢ is a C*-algebra isomorphism, and so is its inverse
as stated in the theorem.

CoroLLARY. If A=LYG) in theorem 4.7, then A(Q) is (fopologically
isomorphic to) the Taylor structure semigroup of M(G).

Proor. The corollary follows from the above theorem and theorem
6.5 in [8].
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