THE MAXIMAL IDEAL SPACE OF A BANACH ALGEBRA OF MULTIPLIERS

KARI YLINEN

1. Introduction.

J. L. Taylor [12] has characterized the maximal ideal space of the convolution algebra $\mathcal{M}(G)$ of bounded regular Borel measures on a locally compact abelian topological group G as the set of semi-characters on a compact abelian topological semigroup called the Taylor structure semigroup of $\mathcal{M}(G)$. A different construction of the Taylor structure semigroup has later been given by Ramirez [7] and Rennison [8], who exploit the natural C^*-algebra structure in the dual of $\mathcal{M}(G)$ regarded as the bidual of $C_0(G)$, the C^*-algebra of continuous functions on G vanishing at infinity. They note that the strongly closed span Q of the set of multiplicative linear functionals on $\mathcal{M}(G)$ is a sub-C^*-algebra of $\mathcal{M}(G)'$, and indentify the Taylor structure semigroup of $\mathcal{M}(G)$ with the maximal ideal space of Q.

For a commutative semi-simple Banach algebra A, denote by \hat{A} the set of the Gelfand transforms of the elements of A and by A^m the set of functions on the spectrum of A that keep \hat{A} invariant by pointwise multiplication. Each $f \in A^m$ determines a bounded linear operator on A and the set A^m of such operators, the multiplier algebra of A, is a Banach algebra under the uniform operator norm. If A is $L^1(G)$, the convolution algebra of Haar integrable functions on G, A^m may be identified with $\mathcal{M}(G)$. In this paper we generalize the structure theory of $\mathcal{M}(G)$ sketched above to the multiplier algebras of certain commutative semi-simple Banach algebras with the distinctive feature that the strongly closed span P of the set of multiplicative linear functionals has the structure of a commutative Banach algebra, too. Following Birtel [4], we embed A^m in P'. We then define an Arens quotient product in the dual of A^m originating from the product in P and show — under some natural additional assumptions — that the spectrum of A^m spans a commutative subalgebra Q of $(A^m)'$. The spectrum of Q generalizes the Taylor structure semigroup S of $\mathcal{M}(G)$, as is indicated in section 5. The main theorem is theorem 4.7, in which it is assumed that P is a C^*-algebra with

Received October 29, 1969.
identity, though most of the auxiliary results are proved under weaker hypotheses. Applied to the case of the group algebra $L^1(G)$, theorem 4.7 shows that the natural embedding of the dual group Γ of G into the spectrum of $M(G)$ may be interpreted as the dual mapping from Γ into the set of semicharacters on S of a continuous homomorphism from S onto the Bohr compactification of G.

Convention. All Banach algebras considered in this paper are complex. For any commutative Banach algebra A, $\mathcal{A}(A)$ denotes the spectrum of A, that is, the set of non-zero multiplicative linear functionals on A. If $D \subseteq A'$, $[D]$ denotes the subspace of A' generated by D, and $[D]^\perp$ its norm closure.

2. Arens products and quotient products.

2.1. R. Arens [1], [2] has extended the product of an arbitrary Banach algebra A to its bidual A'' by the following rule. If $m : A \times A \to A$ denotes the product in A, a jointly continuous bilinear map $m^* : A' \times A \to A'$ may be defined by setting $m^*(x', x)y = x'm(x, y)$ for $x' \in A'$, $x, y \in A$. Iterating this procedure one obtains

$$m^{**} : A'' \times A' \to A', \quad m^{**}(x'', x')y = x''m^*(x', y),$$

and finally

$$m^{***} : A'' \times A'' \to A'', \quad m^{***}(y'', x'')x' = y''m^{**}(x'', x').$$

For any Banach algebra product m we denote by m^t the product for which $m^t(x, y) = m(y, x)$. A is called Arens regular, if $m^{t***} = m^{***}$. When no confusion can arise, any Banach algebra product will be denoted in the usual way by juxtaposition.

Theorem 2.1. Let A be a Banach algebra and E a subspace of A'. Denote by E° the annihilator of E in A''. Consider the following five statements:

1. E° is a right ideal of A'' in the m^{***}-product,
2. $m^{**}(A'' \times E) \subseteq \overline{E}$,
3. $m^*(E \times A) \subseteq \overline{E}$,
4. $m^{**}(E^\circ \times \overline{E}) = \{0\}$,
5. E° is a left ideal of A'' in the m^{***}-product.

We have the implications (1) \iff (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5), and if A is Arens regular, all statements are equivalent.

Proof. (1) implies (2): Suppose $m^{t**}(x'', x) \notin \overline{E}$ for $x \in E$, $x'' \in A''$.
It is a consequence of the Hahn–Banach theorem that we can find $y'' \in E^\circ$ such that

$$m^{***}(y'', x'') x' = y'' m^{**}(x'', x') = 0.$$

Thus E° cannot be a right ideal for m^{***}.

(2) implies (1): If $x'' \in E^\circ$, $y'' \in A''$ and $x' \in E$, we have, assuming (2),

$$m^{***}(x'', y'') x' = x'' m^{**}(y'', x') = 0,$$

as $E^\circ = E^\circ$.

(2) implies (3): If $x' \in E$ and $\hat{x} \in A''$ is the canonical image of $x \in A$, we have for $y \in A$

$$m^*(x', x) y = x' m(x, y) = x' m^t(y, x) = \hat{x} m^*(x', y) = m^{**}(\hat{x}, x') y.$$

Hence $m^*(x', x) = m^{**}(\hat{x}, x') \in E$.

(3) implies (4): If $x'' \in E^\circ$, $x' \in E^\circ$ and $x \in A$, we have by (3),

$$m^{**}(x'', x') x = x'' m^*(x', x) = 0,$$

as $E^\circ = E^\circ$.

(4) implies (5): Take $x'' \in A''$, $y'' \in E^\circ$ and $x' \in E$. If (4) holds,

$$m^{***}(x'', y'') x' = x'' m^{**}(y'', x') = x''(0) = 0.$$

Thus $m^{***}(x'', y'') \in E^\circ$. Finally, if A is Arens regular, (5) implies (1), since a left ideal for $m^{***} = m^{***}$ is a right ideal for m^{***}.

2.2. We assume in this subsection that A is a commutative Banach algebra and E a subspace of A' such that the condition (2) of theorem 2.1 holds, that is, $m^{**}(A'' \times E) \subset E$. Then $m^*(\overline{E} \times A) \subset E$ by theorem 2.1 and the continuity of m^*. Thus we may define $m^{**}: E' \times \overline{E} \to A'$ by setting

$$m^{**}(F, x') x = F m^*(x', x) = x'' m^*(x', x) = m^{**}(x'', x') x,$$

where $F \in E'$ and x'' is its extension to A' such that $\|x''\| = \|F\|$. Then m^{**} is jointly continuous and $m^{**}(E' \times \overline{E}) \subset E$, so that we may define

$$m^{***}: E' \times E' \to E' \quad \text{by} \quad m^{***}(F, G) x' = F m^{**}(G, x').$$

By theorem 2.1., the ideal E° is a closed two-sided ideal in (A'', m^{***}). Let $p: A'' \to A''/E^\circ$ be the natural homomorphism. It is a well-known consequence of the Hahn–Banach theorem that $\varphi: A''/E^\circ \to E'$ defined by $\varphi \circ p(x'') = x''|E$ is a linear onto isometry.

Theorem 2.2. If A'' is given the product m^{***}, then φ transfers to m^{***} the natural product in A''/E°.
THE MAXIMAL IDEAL SPACE OF A BANACH ALGEBRA OF MULTIPLIERS 169

Proof. If \(x'', y'' \in A'' \) and \(F = x''|E, G = y''|E \), we have for \(x' \in E \),

\[
m***(\varphi \circ p(x''), \varphi \circ p(y''))x' = Fm**(G, x') = x''m**(y'', x') = m***(x'', y'')x',
\]
and the theorem follows.

We call \(m*** \) the Arens quotient product in \(E' \), and denote usually \(m***(F, G) = F_* G \).

2.3. If \(A \) is a commutative Banach algebra and \(D \subset \Delta(A) \),

\[
m**(x'', \sum_{i=1}^n \lambda_i \alpha_i) = \sum_{i=1}^n \lambda_i x''(\alpha_i \alpha_i)
\]
for \(\lambda_i \in \mathbb{C}, \alpha_i \in D \), as is easily verified. Denote \(E = [D]^- \). By continuity, \(m**(A'' \times E) \subset E \), and the Arens quotient product in \(E' \) is given by

\[
F_* G(\sum_{i=1}^n \lambda_i \alpha_i) = \sum_{i=1}^n \lambda_i F(\alpha_i) G(\alpha_i)
\]
(cf. [4, p. 816]).

Theorem 2.3. Let \(A \) be a commutative Banach algebra and \(E = [D]^- \),
where \(D \subset \Delta(A) \). If \(E \) is a commutative Banach algebra having \(D \) as a multiplicative subsemigroup, then \(\Delta(E) \cup \{0\} \) with the weak* topology is a compact abelian topological semigroup under the Arens quotient product. If \(E \) has an identity \(e \in D \), \(\Delta(E) \) is a compact subsemigroup of \(\Delta(E) \cup \{0\} \).

Proof. If \(F, G \in \Delta(E), \lambda_i, \mu_j \in \mathbb{C}, \alpha_i, \beta_j \in D \)
for \(i = 1, \ldots, n, j = 1, \ldots, p \), then we have

\[
F_* G(\sum_{i=1}^n \lambda_i \alpha_i)(\sum_{j=1}^p \mu_j \beta_j) = F_* G(\sum_{i=1}^n \sum_{j=1}^p \lambda_i \mu_j \alpha_i \beta_j) = \sum_{i=1}^n \sum_{j=1}^p \lambda_i \mu_j F(\alpha_i) G(\beta_j)
\]

By continuity, \(F_* G \) extends to a multiplicative linear functional on \(E \).
If \(E \) has an identity \(e \in D \), \(F_* G \) is non-zero, as \(F_* G(e) = F(e) G(e) = 1 \).
It is well known that \(\Delta(E) \cup \{0\} \) is compact in the weak* topology
[9, p. 113], and \(\Delta(E) \) is compact if \(E \) has an identity. Since the Arens quotient product of \(E' \) can be defined by pointwise multiplication of the restrictions to \(D \) of the elements of \(E' \) and the elements of \(D \) suffice to define the relative weak* topology on \(\Delta(E) \cup \{0\} \) [9, pp. 112–113] the multiplication in \(\Delta(E) \cup \{0\} \) is jointly continuous.

Example. The following example shows the role of the requirement
that the identity of \(E \) belong to \(D \). Take \(A = C^2 \) with componentwise
operations and norm \(\| (z_1, z_2) \| = \sup \{ |z_1|, |z_2| \} \). Then \(A' = \mathbb{C}^2 \) with the norm \(\| (z_1, z_2) \| = |z_1| + |z_2| \), and \(A' \) is generated by \(\Delta(A) = \{(1, 0), (0, 1)\} \). If \(A' \) is considered as a Banach algebra under componentwise operations, \(A' \) has the identity \((1, 1)\), but

\[
\Delta(A') = \{(1, 0), (0, 1)\} \subset A'' = A
\]

is not closed under (Arens) multiplication.

2.4. The next result is essentially indicated in [7, pp. 1395–1396], but we give it an integration free proof. A semicharacter on a topological semigroup is a non-zero continuous homomorphism into the multiplicative semigroup of complex numbers \(z \) with \(|z| \leq 1 \).

Theorem 2.4. Let \(A \) be a commutative semi-simple Banach algebra. Suppose that \(P = [\Delta(A)]^- \) is a commutative \(C^* \)-algebra having \(\Delta(A) \) as a multiplicative subsemigroup with identity. Then the semicharacters of \(\Delta(P) \) are precisely the Gelfand transforms of the elements of \(\Delta(A) \).

Proof. Since

\[
F_* G(\sum_{i=1}^n \lambda_i x_i) = Fm**(G, \sum_{i=1}^n \lambda_i x_i) = F(\sum_{i=1}^n \lambda_i G(x_i)x_i)
\]

for \(F, G \in P', \lambda_i \in \mathbb{C} \) and \(x_i \in \Delta(A) \), it follows by continuity that the adjoint of the operator \(F \mapsto F_* G \) maps \(P \) into itself. Hence the Arens quotient product in \(P' \) is separately \(\sigma(P', P) \)-continuous [11, p. 128]. As \(P \) is semi-simple, \(H = [\Delta(P)]^- \) is a separating subspace of \(P' \). Hence \(H \) is \(\sigma(P', P) \)-dense in \(P' \) [11, p. 125].

Let \(f: \Delta(P) \to \mathbb{C} \) be a semicharacter. If \(f \neq 0 \) is continuous, it is the Gelfand transform of some non-zero \(x' \in P \). It follows from theorem 2.3 that \(H \) is a subalgebra of \(P' \), and since \(f \) is multiplicative on \(\Delta(P) \), it is clear that the continuous linear functional defined by \(x' \) on \(P' \) is multiplicative on \(H \). Since the \(\sigma(P', P) \)-continuous functions \(F \mapsto F(x')G(x') \) and \(F \mapsto F_* G(x') \) for fixed \(G \in H \) coincide on \(H \), we have \(F_* G(x') = F(x')G(x') \) for all \(F \in P' \). Keeping next \(F \in P' \) fixed and letting \(G \) vary, we conclude that the functional defined by \(x' \) is multiplicative on the whole of \(P' \), and as \(A \) is homomorphically embedded in \(P' \), \(x' \in \Delta(A) \). As

\[
F_* G(\alpha) = F(\alpha)G(\alpha) \quad \text{and} \quad |F(\alpha)| \leq \|\alpha\| \|F\| \leq 1
\]

for \(F, G \in \Delta(P), \alpha \in \Delta(A) \), it is, conversely, clear that the Gelfand transform of any \(\alpha \in \Delta(A) \) is a semicharacter of \(\Delta(P) \).
3. Preliminaries on multipliers.

3.1. In this section A is a commutative semi-simple Banach algebra and $P=[\Delta(A)]^{-}$. We denote by A^{m} the set of functions $f: \Delta(A) \to \mathbb{C}$ such that $f\mathcal{A} \in \mathcal{A}$ for all $x \in A$. Each $f \in A^{m}$ defines a unique bounded linear operator $T_{f}: A \to A$ such that $(T_{f}x) = f\mathcal{A}$. The set $A^{m} = \{T_{f} | f \in A^{m}\}$ with the operations induced by pointwise addition and multiplication in A^{m} is a commutative semi-simple Banach algebra under the uniform operator norm. It is called the algebra of multipliers of A. For the basic theory of multiplier algebras we refer to [3]. Since the elements of $\Delta(A)$ are linearly independent, each $f \in A^{m}$ extends uniquely to a linear functional on $[\Delta(A)]$. If A has a weak bounded approximate identity [4, p. 817] this extension is continuous and determines therefore a unique element f of P'. Since A is semi-simple, the mapping $x \mapsto \hat{x}$, where \hat{x} denotes the continuous linear functional on P defined by x, is injective. It is clearly norm decreasing. If it is a homeomorphism, A is said to be topologically embeddable in P'.

Theorem 3.1. If A has a weak bounded approximate identity and is topologically embeddable in P', the mapping $T_{f} \to f$ is a topological isomorphism from A^{m} into P'.

Proof. As noted in [4, p. 817], the mapping $T_{f} \to f$ is a continuous homomorphism, and obviously injective. Let $C > 0$ be such that $||\hat{x}|| > C ||x||$ for all $x \in A$. Then we have

$$||f|| \geq \sup_{x \in A, ||x|| \leq 1} ||f_{*}\hat{x}|| \geq \sup_{||x|| \leq 1} ||f_{*}\hat{x}|| \geq C \sup_{||x|| \leq 1} ||T_{f}x|| = C ||T_{f}||,$$

and the assertion follows.

3.2. A commutative Banach algebra A is called regular, if for any closed set $F \subset \Delta(A)$ and $\alpha \notin F$ there is $x \in A$ such that $\hat{x} | F \equiv 0$ and $x(\alpha) = 1$. Let $j_{A}(\infty)$ denote the set of elements of A with Gelfand transforms of compact support. A function $f: \Delta(A) \to \mathbb{C}$ belongs locally to \hat{A} at $\alpha \in \Delta(A)$, if there is a neighborhood U of α and $x \in A$ such that $f | U = \hat{x} | U$. Augmented with theorem 3.1. above, the theorem in [4, p. 819], may be rephrased as follows:

Theorem 3.2. Suppose that A is regular, topologically embeddable in P', and has an approximate identity $\{u_{\alpha}\} \subset j_{A}(\infty)$. Then $f: \Delta(A) \to \mathbb{C}$ belongs to A^{m} if and only if it can be extended to a continuous linear functional f on P and belongs locally to A at each point of $\Delta(A)$. The correspondence $T_{f} \to f$ is a topological isomorphism from A^{m} into P'.
4. The spectrum of the multiplier algebra.

4.1. Our main concern here is roughly to define a semigroup structure in \(\Lambda(\mathcal{A}^m) \) if one is given in \(\Lambda(\mathcal{A}) \). In view of theorem 3.2 it is reasonable to have first a closer look at the algebra of functions belonging locally to \(\hat{\mathcal{A}} \). — In this section we assume throughout that

a) \(\mathcal{A} \) is a commutative semi-simple Banach algebra, and

b) \(P = [\Lambda(\mathcal{A})]^* \) is a commutative Banach algebra under a product \(m \) such that

c) \(m(\Lambda(\mathcal{A}) \times \Lambda(\mathcal{A})) \subseteq \Lambda(\mathcal{A}) \).

For a function \(f: \Lambda(\mathcal{A}) \to \mathbb{C} \) and \(\alpha, \beta \in \Lambda(\mathcal{A}) \) we define \(f^\alpha(\beta) = f(\alpha \beta) \). A subset \(\mathcal{F} \) of \(\mathbb{C}^{\Lambda(\mathcal{A})} \) is translation invariant, if \(f^\alpha \in \mathcal{F} \) for all \(f \in \mathcal{F} \), \(\alpha \in \Lambda(\mathcal{A}) \).

Theorem 4.1. The mapping \(\xi \mapsto m(\alpha, \xi) \) on \(P \) is weak*-continuous for all \(\alpha \in \Lambda(\mathcal{A}) \) if and only if \(\hat{\mathcal{A}} \) is translation invariant.

Proof. When \(\mathcal{A} \) is regarded (algebraically) as a subspace of \(P' \), the adjoint \(m^*(\cdot, \alpha) \) of the norm continuous linear operator \(\xi \mapsto m(\alpha, \xi) \) maps \(\mathcal{A} \) into \(P' \). Since \(m^*(\hat{x}, \alpha) \beta = \hat{\xi}^\alpha(\beta) \) for all \(\beta \in \Lambda(\mathcal{A}) \), it follows therefore by linearity and continuity that \(m^*(\cdot, \alpha) \) maps \(\mathcal{A} \) into \(\mathcal{A} \) if and only if \(\hat{\xi}^\alpha \in \hat{\mathcal{A}} \) for all \(x \in \mathcal{A} \). But the condition \(m^*(\mathcal{A}, \alpha) \subseteq \mathcal{A} \) is equivalent to the \(\sigma(P, \mathcal{A}) \)-continuity of the operator \(\xi \mapsto m(\alpha, \xi) \) [11, p. 128], and the theorem is proved.

We assume henceforth that

d) \(\hat{\mathcal{A}} \) is translation invariant.

Notation. We denote by \(\mathcal{B} \) the subspace of \(P' \) consisting of those functionals whose restrictions to \(\Lambda(\mathcal{A}) \) belong locally to \(\hat{\mathcal{A}} \) at each point of \(\Lambda(\mathcal{A}) \). Let \(\mathcal{B}_0 \) denote the set of restrictions \(\xi' | \Lambda(\mathcal{A}) \), where \(\xi' \in \mathcal{B} \).

Theorem 4.2. \(\mathcal{B}_0 \) is translation invariant.

Proof. Let \(f \in \mathcal{B}_0 \) and \(\alpha \in \Lambda(\mathcal{A}) \). Since the multiplication in \(P \) is norm continuous, it is clear that \(f^\alpha \) is the restriction to \(\Lambda(\mathcal{A}) \) of a continuous linear form on \(P \). We show that \(f^\alpha \) belongs locally to \(\hat{\mathcal{A}} \) at \(\beta \in \Lambda(\mathcal{A}) \). There is a neighborhood \(U \) of \(\alpha \beta \) and \(x \in \mathcal{A} \) such that \(f|U = \hat{x}|U \). As the multiplication in \(\Lambda(\mathcal{A}) \) is separately continuous for the Gelfand topology by theorem 4.1, there is a neighborhood \(V \) of \(\beta \) such that \(\alpha V \subseteq U \). Then we have for any \(\gamma \in V \),

\[
f^\alpha(\gamma) = f(\alpha \gamma) = \hat{x}(\alpha \gamma) = \hat{x}^\alpha(\gamma),
\]

and the conclusion follows by the translation invariance of \(\hat{\mathcal{A}} \).
THE MAXIMAL IDEAL SPACE OF A BANACH ALGEBRA OF MULTIPLIERS 173

Theorem 4.3. If P is Arens regular, so that (P'', m^{**}) is commutative, the annihilator B° of B is a closed ideal of P'' and $B' = B' = P''|B^\circ$ is a commutative Banach algebra under the Arens quotient product m^{**} which, moreover, is separately $\sigma(B', B)$-continuous.

Proof. By theorem 4.2, $m^*(B, \alpha) \subset B$ for each $\alpha \in \Delta(A)$, and by linearity and continuity, $m^*(B \times P) \subset \bar{B}$. It follows from theorem 2.1 that B° is an ideal and the Arens quotient product, obviously commutative, is defined. Since

$$(F \star G) \xi' = Fm^{**}(G, \xi') \quad \text{for } F, G \in \bar{B}', \xi' \in \bar{B},$$

$$m^{**}(G, \xi') = m^{**}(\xi'', \xi') \in \bar{B}$$

(theorem 2.1), where $G = \xi''|P$, the adjoint of the operator $F \mapsto F \star G$ maps \bar{B} into itself, whence the separate $\sigma(B', B)$-continuity of m^{**} [11, p. 128].

4.2. As in theorem 4.3, we generally identify B' and \bar{B}' as Banach spaces (note, however, that the weak* topologies on B' and \bar{B}' are distinct unless B is closed). As \bar{B} is a commutative Banach algebra in the Arens quotient product of P', $\Delta(\bar{B})$ is then identified with the set of continuous multiplicative linear functionals on B.

Theorem 4.4. If P is Arens regular, then $\Delta(\bar{B}) \cup \{0\}$ is a multiplicative subsemigroup of B'. If the function $e(\alpha) \equiv 1$ belongs to B_0, then $\Delta(\bar{B})$ is a subsemigroup of $\Delta(\bar{B}) \cup \{0\}$.

Proof. Let $F, G \in \Delta(\bar{B}) \cup \{0\}$. We show that $m^{**}(F, G) = F \star G$ is multiplicative on B. For $f, g \in B$ and $\alpha, \beta \in \Delta(A)$ we have

$$m^*(fg, \alpha)\beta = fgm(\alpha\beta) = fm(\alpha\beta)gm(\alpha\beta) = m^*(f, \alpha)\beta m^*(g, \alpha)\beta.$$

Thus

$$m^*(fg, \alpha) = m^*(f, \alpha)m^*(g, \alpha),$$

where $m^*(f, \alpha)$ and $m^*(g, \alpha)$ belong to B by theorem 4.2. Therefore,

$$m^{**}(G, fg) \alpha = Gm^*(fg, \alpha) = Gm^*(f, \alpha)Gm^*(g, \alpha)$$

$$= m^{**}(G, f) \alpha m^{**}(G, g) \alpha$$

for all $\alpha \in \Delta(A)$, so that

$$m^{**}(G, fg) = m^{**}(G, f) m^{**}(G, g),$$

where $m^{**}(G, f)$ and $m^{**}(G, g)$ belong to \bar{B} by theorems 4.2 and 2.1.
Hence we have
\[F_\ast G(fg) = Fm^{**}(G,fg) = Fm^{**}(G,f)Fm^{**}(G,g) = F_\ast G(f)F_\ast G(g). \]

Finally, if \(F \) and \(G \) are non-zero and \(e \in B_0 \), where \(e(\alpha) = 1 \), then
\[m^{**}(G,e)\alpha = Gm^*(e,\alpha) = G(e) = 1 \]
for all \(\alpha \in \Lambda(A) \). It follows that
\[F_\ast G(e) = Fm^{**}(G,e) = F(e) = 1. \]

4.3. In important applications, for example when \(A \) is the group algebra of a locally compact abelian group, \(P \) has the structure of a \(C^* \)-algebra. The next result is concerned with this situation.

Theorem 4.5. If, in addition to the assumptions a)—d), an involution \(\xi \mapsto \xi^* \) is defined on \(P \) such that \(P \) becomes a \(C^* \)-algebra, then \(B' \) is a commutative \(C^* \)-algebra with identity \(u \). If \(\xi' \in \overline{B} \), then \(\xi^\prime \in \overline{B} \) where \(\xi'(\xi) = \overline{\xi'(\xi^*)} \), and the involution \(F \mapsto F^* \) in \(B' = \overline{B} \) is given by
\[F^*(\xi') = \overline{F(\xi')} \]
The involution in \(B' \) is \(\sigma(B',\overline{B}) \)-continuous. The subspace \(Q = [\Lambda(\overline{B})] \) is a sub-\(C^* \)-algebra of \(B' \). If \(P \) has an identity, its canonical image in \(B' \) is \(u \) and \(u \in Q \).

Proof. It is shown by Civin and Yood [5, p. 869] that \(P''' \) is Arens regular and is in fact isometrically isomorphic to the von Neumann algebra \(\mathcal{A} \) enveloping \(P \), i.e. the von Neumann algebra generated by the image of \(P \) in the universal representation (cf. [6, p. 236]). In particular, \(P''' \) is a commutative \(C^* \)-algebra with identity having \(B^\circ \) as a closed ideal (theorem 4.3). Hence \(B' \) is also self-adjoint, and \(P''/B^0 = B' \) is a commutative \(C^* \)-algebra with identity [6, proposition 1.8.2., p. 17]. It is shown by Ramirez [7, p. 1392] that the involution \(\xi'' \mapsto (\xi'')^* \) induced by \(\mathcal{A} \) on \(P''' \) can be defined by
\[(\xi'')(\xi') = \overline{\xi''(\xi')}, \quad \text{where} \quad \xi'(\xi) = \overline{\xi'(\xi^*)}. \]
Another way of seeing this is to note that the above involution is weak* continuous and coincides with the original involution of \(P \) on the weak* dense subspace \(P \) of \(P''' \), whereas the weak* topology of \(P''' \) corresponds to the weak operator topology of \(\mathcal{A} \) [6, p. 237], for which the involution in \(\mathcal{A} \) is continuous. To the quotient algebra the involution is transferred as follows: If \(F \in B' \), \(F^* = (\xi'')^*|B \), where \(\xi'' \in P''' \) is any exten-
sion of F. If we now had $\xi' \notin \bar{B}$ for some $\xi' \notin \bar{B}$, we could find $\xi'' \in B^0$ such that $\xi''(\bar{\xi'}) \neq 0$. Then $\xi''|\bar{B} = 0$, and $\xi''(\bar{\xi'}) = (\xi''|\bar{B})*\xi' = 0$, which is a contradiction. It follows that the involution can be defined as stated in the theorem. It is then immediate that the involution is $\sigma(B', \bar{B})$-continuous. It follows from theorem 4.4 that Q is a subalgebra of B'. Now let $F \in \Lambda(\bar{B})$ and $\xi', \eta' \in \bar{B}$. Then

$$\bar{\xi'} \bar{\eta'}(\alpha) = \bar{\xi'}(\bar{\eta'}(\alpha)) = \bar{\xi'}(\bar{\alpha}) \bar{\eta'}(\bar{\alpha}) = \bar{\xi'}(\alpha) \bar{\eta'}(\alpha)$$

for $\alpha \in \Lambda(A)$, so that $\bar{\xi'} \bar{\eta'} = \bar{\xi'} \bar{\eta'}$. Since

$$F^*(\bar{\xi'} \bar{\eta'}) = \bar{F}(\bar{\xi'} \bar{\eta'}) = \bar{F}(\bar{\xi'}) \bar{F}(\bar{\eta'}) = F^*(\bar{\xi'}) F^*(\bar{\eta'}) ,$$

$F^* \in \Lambda(\bar{B})$, and by the continuity of the involution Q is a self-adjoint subalgebra of B'. Finally, if P has an identity e, a straightforward verification shows that its canonical image \dot{e} in P'' is an identity for P''. Clearly, the natural homomorphism maps \dot{e} onto the uniquely determined identity u of $P''/B^0 = B'$, and since each $\alpha \in \Lambda(A)$ may be regarded as an element of $\Lambda(\bar{B})$, $u \in Q$.

4.4. For $\xi \in P = [\Lambda(A)]^-$ and $f \in B$ we define

$$\Phi(\xi)f = f(\xi) .$$

Then Φ is a norm decreasing injection from P into $Q = [\Lambda(\bar{B})]^-$, since $\Phi_\alpha \in \Lambda(\bar{B})$ for all $\alpha \in \Lambda(A)$. The range of Φ is a subalgebra of B' and Φ is a homomorphism onto its range, as is readily seen by the definition of the Arens quotient product, noting that the Arens product in P'' extends the product of P.

Theorem 4.6. The adjoint $\Phi^*: Q' \to P'$ of Φ is a homomorphism for the Arens quotient products of Q' and P'.

Proof. Let $F, G \in Q'$ and $\alpha \in \Lambda(A)$. Then $\Phi_\alpha \in \Lambda(\bar{B})$ and

$$\Phi^*(F_*G)\alpha = (F_*G)\Phi_\alpha = F(\Phi_\alpha)G(\Phi_\alpha)$$

$$= \Phi^*(F)\alpha \Phi^*(G)\alpha = (\Phi^*F_* \Phi^*G)\alpha .$$

Thus $\Phi^*(F_*G) = \Phi^*F_* \Phi^*G$.

4.5. If the assumptions of theorem 3.2 are fulfilled, then $B_0 = A^m$ and $B = \bar{B}$, which simplifies some notations. We conclude this section with a theorem in which we collect the most important results of the above theory in a specialized situation.
Theorem 4.7. Let A be a commutative, regular, semi-simple Banach algebra with an approximate identity $\{u_\alpha\} \subset j_A(\infty)$. Suppose that $P = [\Delta(A)]^*$ is a commutative C^*-algebra having $\Delta(A)$ as a multiplicative subsemigroup with identity, such that \hat{A} is translation invariant. Suppose, furthermore, that A is topologically embeddable in P. Then $Q = [\Delta(A^m)]$ is a commutative C^*-algebra with identity having $\Delta(A^m)$ as a multiplicative subsemigroup. With their respective Gelfand topologies and Arens quotient products, $\Delta(P)$ and $\Delta(Q)$ are compact abelian topological semigroups, and $\Delta(A)$ (resp. $\Delta(A^m)$) may be identified, via the Gelfand transform, with the set of the semicharacters on $\Delta(P)$ (resp. on $\Delta(Q)$). There is a continuous homomorphism Ψ from $\Delta(Q)$ onto $\Delta(P)$ such that the mapping $\Psi' : \Delta(A) \rightarrow \Delta(A^m)$ defined by
\[
(\Psi'(\alpha))^\wedge = \hat{\alpha} \circ \Psi
\]
is a topological isomorphism onto an open subsemigroup of $\Delta(A^m)$.

Proof. By virtue of theorem 3.2, A^m may be identified with B (cf. subsection 4.1), which is closed, as A^m is a Banach algebra. By theorem 4.5, Q is a commutative C^*-algebra having $\Delta(A^m)$ as a multiplicative subsemigroup with identity by theorem 4.4 (the Arens regularity of P was noted in the proof of theorem 4.5). Theorem 2.3 then shows that $\Delta(P)$ and $\Delta(Q)$ are compact abelian topological semigroups and by theorem 2.4, $(\Delta(A))^\wedge$ (resp. $(\Delta(A^m))^\wedge$) is precisely the set of semicharacters on $\Delta(P)$ (resp. on $\Delta(Q)$). Consider the mapping Φ introduced in section 4.4. As Φ is a homomorphism and maps the identity of P onto that of Q, $F \circ \Phi$ is a non-zero multiplicative linear functional on P for any $F \in \Delta(Q)$. Thus the adjoint Φ^* of Φ maps $\Delta(Q)$ into $\Delta(P)$. We define $\Psi = \Phi^*|\Delta(Q)$. By theorem 4.6 Ψ is a homomorphism. It is continuous for the weak* topologies of $\Delta(Q)$ and $\Delta(P)$ since Φ^* is so [11, p. 128]. Since Φ is injective, $\Psi(\Delta(Q)) = \Delta(P)$, as may be seen by an argument used in [6, p. 17], in the proof of proposition 1.8.1. If $\alpha \in \Delta(A)$, then $\hat{\alpha} \circ \Psi$ is a continuous function on $\Delta(Q)$, and therefore the Gelfand transform of an element $\Psi'(\alpha)$ of Q. We show that $\Psi'|\Delta(A) = \Phi|\Delta(A)$, whence in particular $\Psi'(\Delta(A)) \subset \Delta(A^m)$ (this inclusion also follows from the fact that $\hat{\alpha} \circ \Phi$ is a semicharacter on $\Delta(Q)$). If $F \in \Delta(Q)$, then
\[
F(\Psi'(\alpha)) = (\hat{\alpha} \circ \Psi)F = \hat{\alpha}(\Psi F) = (\Psi F)\alpha = F(\Phi \alpha),
\]
and the semi-simplicity of Q implies that Ψ'' coincides with Φ on $\Delta(A)$. But it follows from the proof of theorem 1 in [3, p. 204], that $\Phi|\Delta(A)$ is a homeomorphism onto an open subset of $\Delta(A^m)$.
5. Application to harmonic analysis.

5.1. Let Γ be a locally compact abelian topological group with a fixed Haar measure, denoted by dx, and dual group Γ. If $A = L^1(\Gamma)$, $\Lambda(\Gamma)$ may be identified with Γ and $P = [\Lambda(\Gamma)]^{-1}$ with AP, the C^*-algebra of the almost periodic functions on Γ. The Gelfand transform on Γ is then the Fourier transform:

$$f(\gamma) = \int_\Gamma f(x)(x,\gamma) \, dx \text{ for } f \in L^1(\Gamma), \gamma \in \Gamma.$$

It is a consequence of Eberlein's theorem [10, p. 32] that $L^1(\Gamma)$ is topologically, even isometrically, embeddable in AP'. Also the other assumptions of theorem 4.7 are well-known basic results of harmonic analysis. Since the multiplier algebra of $L^1(\Gamma)$ is isometrically isomorphic to the convolution measure algebra $M(\Gamma)$ [10, p. 74], theorem 4.7 yields a connection between Γ and $\Lambda(M\Gamma)$. In this case $\Lambda(P) = \Lambda(AP)$ is the Bohr compactification of Γ.

5.2. Ramírez [7] and Rennison [8] have studied $\Lambda(M\Gamma)$ by considering the Arens product in $M\Gamma' = C_0(\Gamma)''$, which makes $M\Gamma'$ isomorphic to the enveloping von Neumann algebra of $C_0(\Gamma)$. In the next theorem we show that the C^*-algebra structure thereby introduced in $M\Gamma'$ is the same as that which is obtained by interpreting $M\Gamma$ as the multiplier algebra of $L^1(\Gamma)$ and using the techniques of section 4. For $\mu \in M\Gamma$, denote by $\hat{\mu}$ its Fourier–Stieltjes transform, i.e.

$$\hat{\mu}(\gamma) = \int_\Gamma (x,\gamma) \, d\mu(x) \text{ for } \gamma \in \Gamma,$$

and by $\hat{\mu}$ the continuous linear functional defined by $\hat{\mu}$ on AP. Then the mapping $\mu \mapsto \hat{\mu}$ is a linear isometry into AP' [10, p. 32]. We denote by B the image of $M\Gamma$ in AP'.

Theorem 5.1. When $M\Gamma' = C_0(\Gamma)''$ is regarded as the enveloping von Neumann algebra of $C_0(\Gamma)$ and B' is given the C^*-algebra structure introduced in theorem 4.5, then the adjoint of the operator $\mu \mapsto \hat{\mu}$ is a C^*-algebra isomorphism from B' onto $M\Gamma'$.

Proof. Let φ be the adjoint of the inverse isometry $\hat{\mu} \mapsto \mu$, and denote $E = \varphi(C_0)$, where $C_0 = C_0(\Gamma)$ is canonically regarded as a subalgebra of $M\Gamma'$, whose C^*-algebra structure is defined analogously with that of P'' in the proof of theorem 4.5. Clearly, φ is an isometric vector
space isomorphism onto B'. For $f \in C_0$ denote $\hat{f} = \varphi(f)$. We first show that $\varphi|C_0$ is an algebra isomorphism onto E. Denote the pointwise product in AP by m. Then we have for $\alpha, \beta \in \Gamma$ and $\mu \in M = M(G)$,

$$m^* (\mu, \alpha) \beta = \mu(\alpha \beta) = \int \limits_{\hat{G}} (x, \alpha) (x, \beta) \, d\mu(x).$$

By the uniqueness of the Fourier-Stieltjes transform [10, p. 29],

$$m^* (\mu, \alpha) = \hat{\alpha} \mu,$$

where $\hat{\alpha} \mu$ is the measure $f \mapsto \mu(\hat{\alpha}f)$. Therefore, if $g \in C_0$,

$$m^{**}(\hat{g}, \hat{\mu}) \alpha = \hat{g} m^* (\hat{\mu}, \alpha) = \check{\alpha} \mu(g) = \int \limits_{\hat{G}} (x, \alpha) g(x) \, d\mu(x),$$

and by the same uniqueness theorem $m^{**}(\hat{g}, \hat{\mu}) = g \hat{\mu}$, where $g \mu$ is the measure $f \mapsto \mu(gf)$. It follows that

$$(\hat{f} \ast \hat{g}) \hat{\mu} = \hat{f} m^{**}(\hat{g}, \hat{\mu}) = \hat{f} (\hat{g} \mu) = (g \mu)f = \mu(fg),$$

i.e.

$$\varphi(fg) = \varphi f \ast \varphi g.$$

As B is closed, the involution in B' is weak* continuous (theorem 4.5), and multiplication separately weak* continuous (theorem 4.3). The corresponding statements are valid for M' (see the proof of theorem 4.5). Since φ is continuous with respect to the weak* topologies of M' and B' [11, p. 128], the mappings

$$S \mapsto \varphi(fS) \quad \text{and} \quad S \mapsto \varphi(f) \ast \varphi(S)$$

on M' for fixed $f \in C_0$ are so, too. As they coincide by (1) on the weak* dense subspace C_0 of M',

$$\varphi(fS) = \varphi f \ast \varphi S \quad \text{for all} \quad S \in M(G)'.$$

Fixing S and replacing f by a variable $T \in M'$, it is seen by the same argument that φ is an algebra homomorphism. To show that φ transfers the involution $S \mapsto S^*$ in $M(G)'$ to the involution $F \mapsto F^*$ defined in theorem 4.5, we first note that $C = C(G)$, the Banach space of bounded continuous functions on G may be regarded as a subspace of the dual of $M(G)$, and since C_0 is $\sigma(C, M)$-dense in C [11, p. 125], there is, in particular, for each $\gamma \in \Gamma$ a net $\{f_\gamma\}$ of elements of C_0 converging to γ with respect to $\sigma(C, M)$. Using the Jordan decomposition of a measure into a linear combination of positive measures and the decomposition of the integrand into its real and imaginary parts for each of the positive
measures separately, we infer that the net \(\{f_\delta\} \) converges to \(\tilde{\gamma} \) for \(\sigma(C, M) \). Therefore,

\[
\hat{\mu}(\gamma) = \int_G (x, \gamma) \, d\hat{\mu}(x) = \lim_{\delta} \int_G f_\delta(x) \, d\hat{\mu}(x) = \lim_{\delta} \int_G f_\delta(x) \, d\mu(x) = \int_G (x, \gamma) \, d\mu(x) = \hat{\mu}(\tilde{\gamma}),
\]

and we have for \(\sum \lambda_i \gamma_i \in AP, i = 1, 2, \ldots, n \),

\[
\hat{\mu}(\sum \lambda_i \gamma_i) = \hat{\mu}(\sum \lambda_i \tilde{\gamma}_i) = \sum \lambda_i \hat{\mu}(\tilde{\gamma}_i) = \sum \lambda_i \hat{\mu}(\gamma_i) = \hat{\mu}(\sum \lambda_i \gamma_i).
\]

By continuity, \(\hat{\mu} = \hat{\mu} \), so that

\[
(\varphi S^*)\hat{\mu} = S^* \mu = \overline{S(\mu)} = \varphi S(\hat{\mu}) = \varphi S(\hat{\mu}) = \varphi S^* \hat{\mu},
\]

that is

\[
\varphi S^* = (\varphi S^*).
\]

We have proved that \(\varphi \) is a \(C^* \)-algebra isomorphism, and so is its inverse as stated in the theorem.

Corollary. If \(A = L^1(G) \) in theorem 4.7, then \(\Lambda(Q) \) is (topologically isomorphic to) the Taylor structure semigroup of \(M(G) \).

Proof. The corollary follows from the above theorem and theorem 6.5 in [8].

References

UNIVERSITY OF HELSINKI, FINLAND