MATH. SCAND. 27 (1970), 151-165

ON DOUBLE DUALIZATION MONADS

ANDERS KOCK

If ¥ is a symmetric monoidal closed category in the sense of [2, Sec-
tion IIT], and D is any object in it, the functor

~hD: ¥ — ¥ orp

(where  denotes the inner hom-functor of ¥”) is a (strong) left adjoint

for
-hD: ¥obp ¥

and so gives rise to a strong monad (-AD)hD on ¥'. If T=T,u is
any other strong monad on ¥, then giving a T-algebra structure on D
is equivalent to giving a transformation of monads

(0.1) 7: T - (~-hD)AD

(Theorem 3.2 below). So the monad (- D) h D plays a role analogous
to that of the ring of endomorphisms, End(4), of an abelian group:
giving a /A-module structure £ on 4 is the same as giving a ring-homo-
morphism

v: 4 > End(4).

We shall exploit this fact to define when two structures (for two pos-
sibly different monads) on a single object commute. In particular, we
call an algebra commutative if the structure of the algebra commutes
with itself. In the last section we prove that all algebras for a monad
are commutative if and only if the monad is commutative in the sense
of [4].

The notation and setting in the present paper is like in [4] and [5]
which in turn is almost like in [2]. It should be possible to read this
paper on the basis of knowledge of the concepts from [2] alone, although
we shall need a few Lemmas and Definitions from [4] and [5]. Since the
inner hom-functor hom¥"(-,-) (here denoted by A between the argu-
ments) in this paper appears ‘‘iterated”, it is convenient to avoid brackets

by the convention
XAYAZ = (XHhY)ANZ.
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I owe credit to F. W. Lawvere for many interesting discussions. In
particular, he called my attention to the existence of a 7 like (0.1) which
of course is fundamental for the present point of view.

1. Description of the monads.

Let D be an object in ¥”, fixed in what follows. Then we have a contra-
variant functor — A D from ¥, to itself. The category ¥ is a ¥ -category,
and we can thus form the dual ¥ -category ¥ * by the recipe in Section
IT1.2 of [2]; and, according to Section ITI.6 of the same paper, —h D is
the functor part of a ¥ -functor R= RP,

(1.1) R: ¥v* -~ v .

We use the notation RS, (from [2]) for the strength of the functor R,
R2,: AMB—>(BAD)AAAD).

The dual ¥ -functor R* (formed according to Proposition III.2.2, p. 514

of [2]),
(1.2) R¥: ¥ =¥%% > ¥*

is left adjoint to R in the strong sense, meaning that there exist ¥#-
natural isomorphisms

(1.3) 945 AR*\,B - AMNBR,

(h ydenoting the hom-functor for ¥*, and ¥ -naturality meaning that
axiom VN of [2, p. 466], is satisfied). The construction of ¢4 5 is as the
composite arrow in

—1

AR*h B = Bh (AhD) 242, (BRA)hD

(1.4) chl
AMBR = Ah(BAD) <*%°_ (A@B)AD,

where ¢ is the symmetry of ¥”, and p is the fundamental isomorphism
for monoidal closed categories [2, p. 475]. According to Theorem III.7.4,
p- 543, of [2], ¢ and p are ¥ -natural, and so the composite (1.4) is ¥"-
natural, by Theorem 1.10.2, p. 466, of [2].

For our purposes, it is more convenient to restate the adjointness in
terms of the front- and end-adjunctions. If one applies the underlying-
functor ¥V to (1.3), one gets an adjointness between the functors.

-hD

s .
% AR
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the front adjunction y, is then the value of the set mapping ¢, 5.V
on the element
From Proposition II1.7.9, p. 548, of [2], one directly infers

ProposiTION 1.1. The transformation y, s ¥ -natural in A (and also
¥ -natural in D in the extraordinary sense defined in [2, I11.5]).

The end-adjunction ¢ for the adjointness is, by inspecting (1.4), seen
also to be y,, this time considered as a morphism in ¥%;°P? from 4 A D & D
to A. The diagram stating that ¢ is ¥ -natural in 4 is then, by replacing
X 4, Y by Y i X, exactly the diagram stating that y, is ¥ -natural in 4.
So ¢4, too, is ¥ -natural in 4, by the proposition.

By Theorem I.10.7, p. 469, of [2], one gets a hypercategory ¥
(=associative 2-dimensional category) by taking the objects to be ¥ -
categories, morphisms (arrows) to be ¥ -functors, and hypermorphisms
(2-cells) to be ¥ -natural transformations. Since y and ¢ are ¥ -natural,
it follows that they make R* and R adjoint arrows in ¥, . Adjoint ar-
rows in any hypercategory give, by composition, rise to a monad in that
hypercategory. So we have the following proposition (which of course is
also easy to prove by direct methods, without appeal to hypercate-
gories):

ProrosITIiON 1.2. The data
(—AhD)AD: ¥4 - ¥
R AD,BAD
(AAND)ADIA[(BAD)AD)
(ii) Yq: A > (AAND)YAD
(iii) Yanphl: (AMD)YAD)AD)AD — (AAD)AD

define a ¥ -monad on V", that is, (i) defines a ¥ -functor T: ¥~ - ¥, and
(ii) and (iii) define ¥ -natural transformations

(1.5) n: 1-T, u: T.T-T,
80 that the following (usual) equations hold for any A € |%]:

. D
@ Abp B4, (B D) th (4 th D)

(1.6) NaT g = 1ygp = Nap-bias
(1.7) paT-pq = par-ig -

REMARK 1.3. Applying the right adjoint —h D to an object B in ¥gorp,
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and to the end-adjunction y for B, gives, by general theory [3], an alge-
bra for the monad - DA D.

2. The twisting.

It is convenient to “‘express” the symmetry ¢: AQB -~ BQA assumed
for ¥” in terms of A alone. For any objects X,Y,Z in ¥~, we have a com-
posite isomorphism which we denote TW x y 5,

W
Xh(¥Yhz) —ZFE Yh(XAZ)

PXvz Prxz
chl
(XRY)hZ — s (YRX)MZ.

It is clearly “involutory”: TW x v . TWy x z=1. Furthermore, using
Theorem II1.7.4, p. 543, in [2], we see that TW is ¥ -natural in each
variable. So it is also natural in the ordinary sense in all three variables.

Applying the “underlying” functor V to TW x y 5 gives a set mapping

TwX’Y,Z: %‘(X,thz) - %(Y,sz)

(in the sequel subscripts will often be omitted) which again is natural in
all three variables.

The definition of y P can be rephrased in terms of the T'w-operation.

We have
D

1
TwAAD — AKD) = 4 4 (AAD)AD.

Also, the transformation 4, which is fundamental to [5] and to this
paper can be defined in terms of T'w. Let T',st be a ¥ -functor from ¥~
to itself (see [2, p. 444]). Then define for any pair 4,B of objects of ¥~
a morphism

Ayp: (ADNB)YT -~ AMBT
by

y4E st
21  igp=Twld = (AAB)AB — (AAB)T A BT).

This is just a restatement of the definition of 4 from [5]. In particular,
A4 p is ¥ -natural in both variables.

There is a description of the 7w-operation in terms of morphisms al-
ready present in ¥;. Let ¢: X — Y AZ be a morphism. Then Tw(t) is
the composite morphism
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u 1de
Xh(YRX) Xh(XQY)~>

14 (1) XA(TAZBT) lhev

(2.2) Y

XAhZ,

where u and ev are the front- and end-adjunctions for the adjointness
of the type
-Q4 4 Ah-

(called » and ¢, respectively, in [2, p. 477]).

3. Double dualization monads and algebras.

Let T=((Tst),n,u) be a ¥"-monad on the ¥ -category ¥, that is, 7',st
is a ¥ functor from ¥~ to itself (in particular, st z: 4 h B - AT & BT),
and 5 and u are ¥ -natural transformations

1, opr

satisfying the (usual) equations (1.6) and (1.7). Recall [3] that a T-alge-
bra is a pair (X,£), where X € ¥; and &: XT — X satisfies the unit- and
associative laws

(3.1) nxéE =1 &&= puxé;
a T-homomorphism (X,&) — (X',&’) is a morphism f: X - X’ so that
fT.&=¢f.

Let (D,0) be a T-algebra. Construct a transformation ¢: 7T —
(-A D)t D by putting 74 equal to the composite

y LT Aq b DD

(3.2) AT ((4 4 D)h D)T

(4 & D)hDT (AND)AD,

where A is defined as in (2.1). Since y and A are ¥ -natural in both vari-
ables, 7, is ¥"-natural in 4 (and natural in the extraordinary sense with
respect to (D,d)).

ProposrTiON 3.1. The morphisms v, from (3.2) constitute a transfor-
mation of ¥ -monads.

Proor. We have argued that v, is ¥ -natural in 4. It remains to

1,

be proved that “z commutes with the »’s and u’s”’. To prove

NaTq4 = Ya

means proving commutativity of the outer diagram in
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4% anDyabD (AhD)hD

N4 NaADhD Ly 1ho
y4T A
AT—»((AA\D)th)T — (AAD)YADT .

The left square commutes by naturality of #, the middle triangle by
Lemma 1.6 in [5], and the right-hand triangle commutes by (3.1). To

prove
baTs = (T)TTurphpYanphl)

means proving commutativity of the outer diagram in

AT? fa AT
y.T? yaT
(4 & D D)T? a (AhDhD)T
AT A
hp
(4 & D & DT)T AhD A DT? AADADT
(1ho)T 14 6T 1ho
1hé
(A4 hDhD)T AADADT AADAD
(?/Athth)Tl Yamp DT yhl yhl

A 146
ANDANDANDAD)Y T — ANDADADADT — AMDADADAD.

The top square commutes by naturality of x; then comes a pentagon,
and it commutes by Lemma 1.6 in [5]. The two next squares are com-
mutative by naturality of 4 and (3.1), respectively. The bottom right
square obviously commutes; the bottom left square (reading upwards)
again commutes by naturality of 4. Finally

YampaD) T -Wamp )T =1

comes from one of the standard equations between front- and end-

adjunctions
! Yuhpr (s ap)B* =1

for the fundamental adjointness (1.3). This proves Proposition 3.1.

We can perform a converse construction. If
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(3.3) z: T —>(~hD)hD

is a monad transformation, D can be endowed with a structure 8. This
follows from the obvious observation that D carries a canonical algebra
structure 4 for the (-4 D)A D monad. For, let I be the unit object
which is part of the data for a closed category. Then D~I D, and so

yhl: I&nDADAND -~ IAD

is an algebra structure on I D. Transporting it to D by means of
I A& D~ D defines the structure 4 on D. An easy (and well-known) argu-
ment gives that if 7: 77— 8 is a monad transformation and X, an
S-algebra, then

xr—F L xs_° . x

makes X into a T-algebra. So in particular, with the 7 of (3.3),

D

(3.4) DT —2 . (DAD)AD
makes D into a T-algebra.

THEOREM 3.2. There is a one-to-one correspondence between T-algebra
structures 6 on D and ¥"-monad transformations from T to the double dualiza-
tion monad for D.

The theorem will follow from the above observations together with

ProrosiTiON 3.3. The passage from v to 6 and conversely describes a
1-1 correspondence between the set of maps 6: DT — D and the set of
¥ -natural transformations T — (- D) A D.

Proor. Let us start with a map §: DT — D. Then 7, is given by
(8.2). The clockwise composite in the following diagram is then the map
DT — D constructed out of :

yT A 1Ahé
DT— (DADAD)YT —> DADADT —— DADAD
tpT > (tphA 1A DT ~ ~

T A 14
IAD)T - IADADAD)T 5 IADADADT ——SIADADAD

1 (yh 1)T yhl yrhl
A V 1hé
> (IADY ———— IADT IAND
= |@p T = iy ~0
F |

- DT D.
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In the first row the first diagram commutes by naturality of y, the
second by naturality of 2, and the third one for obvious reasons. In the
next row, the commutativity of the “triangle’ is one of the adjunction
equations for the fundamental adjointness; the first square commutes by
naturality of A, and the second one for obvious reasons.

Finally, the bottom ‘‘triangle’”’ commutes by Lemma 1.7 in [5], and the
bottom square by naturality of . The counterclockwise composite in
the diagram is d. Conversely, if a ¥ -functor transformation z: 7 —
(= D)AD is given, we have to show that we get v back again when
applying the two processes. It can be done directly, but is quite elabo-
rate. Instead, we shall derive from (the Eilenberg—Kelly version of)
Yoneda’s lemma, that the process leading from z (assumed to be ¥'-
natural) to é is in fact one-to-one, onto; our process leading from J to =
is then the inverse, since we already have seen that it is a one-sided
inverse.

First notice that the T'w-operation can be used to establish a bijec-
tion (also called T'w)

¥-Nai(G,(-)F & D) ~ ¥-Nai(F,(-)G h D),
where & is a ¥ -category and
F: & -7 and Q: d*->¥

are ¥ -functors. For, let a v be given on the left; construct T on the
right by putting
Tx = (vx)Twxexrp X€l||.

Then Ty is ¥ -natural if and only if

(3.5) (Txh: I —->XFh (XQAD)

is ¥ -natural in X, by Lemma III.7.8, p. 547, of [2]. But (3.5) can be
described as the composite

W
1 = xahxFaD) W XOXED ¥ p4 XGAD),

which as a composite of ¥ -natural transformations is ¥ -natural. From
the involutory property of T'w it follows that the established correspond-
ence is one-to-one, onto.

In particular, we have an isomorphism

(3.6) ¥-Nai(T, (- h D) h D) —1}"» ¥-Nat(-h D,(-)T A D),
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but for the right-hand side here we can use Eilenberg-Kelly’s Yoneda
lemma (Theorem 1.8.6, p. 457, in [2]) to get a bijection I', displayed as
the first arrow in

r T
¥-Nat(~h D, (=T & D) — %I, DT & D) —— (DT, I h D)

(3.7) ';{,'(l,ip—l)‘:'

%;(DT, D).
Proposition 3.3 then follows from

Lemma 3.4. The bijection (3.6) followed by the bijection (3.7) sends t to
the structure tp,.4 displayed in (3.4).

ProoF. By (2.2), Tp is the composite from D D to the lower right-
hand corner in the diagram (3.8), p. 160.

The whole clockwise composite is (7). The whole counter-clockwise
composite is, again by (2.2),

But (3.8) on p. 160 commutes by naturality of » and ¢ and (extraordinary)
naturality of ev. So
(v)TwI’ = ) = (1p.d.3p)Tw .

Applying T'w to this equation and multiplying on the right by ¢! gives
the equality claimed in the lemma.

Remark 3.5. Since (BhD,ypAh1) is an algebra for the monad
- D h D (Remark 1.3), Proposition 3.1 implies that there exists a trans-
formation of ¥ -monads

(: =ADAD - -h(BhAD)h (BhD).
We can give a simple direct description of {. Consider

LB W1
(3.9) XADAD-— Bh(XhD)h(BhD)

Xh(BAD)A(BHD).

It is clearly ¥ -natural in X. So to see that (3.9) actually is { x, it suffices,
by Proposition 3.3, to see that it gives rise to the structure yzh 1 on
Bh D, (since yph1 was used to define ). To see this is fairly easy,
using I1.3.20, p. 480, and axioms CC 1 and CC 2 of [2].
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160

"aAYIa - ®@vyn)vaa

AYT
INI (I® vy (8'¢)
)® ) ® ) (1®ra) (Zza®r)
(@vaelavavad)via B0 (rI®lavava)via (e gy IOLD YIa < (1a®D) y1a
(1®7) 1 n
(ava)oza)yza « (Za®a@va)yia « ava «— I

QYT n @
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4. Commuting structures.

In this section, we define and study the notion of commutation of
structures on an object (with respect to two, possibly different, monads).
There are two approaches to this (they can be shown to be equivalent).
The one to be used here, defines the notion in terms of ®, and gives the
desired results in a fairly straightforward way. The other describes
commutativity in terms of  ; this is the approach of a preliminary draft
[6] of the paper, and is much more complicated. Of course, one might
define the notion of symmetric closed category without mentioning ®,
in which case the h-method could be applied, the ®-method not.

Recall [4] that the functor part 7' a ¥ -monad T on ¥~ has two canon-
ical closed (or monoidal) structures

wT,pT: ATQBT - (ARB)T.

DEeriNTION 4.1. Let Ty, T,, and S be ¥ -monads on ¥°, and let
70 Ty = 8,1=0,1, be "-monad transformations. We say that z, com-
mutes with 7, if the following diagram commutes for all 4,B € |¥;]:

wS
(4.1) AT,®BT, )48z AS®BS ? (AQB)S,

T, being the functor part of T;, S the functor part of S.

ProrosiTioN 4.2. The notion of structures commuting 18 symmetric.

Proor. This follows since c.y3 4 =3 p.(c)S by definition of § in
terms of y, where again ¢ denotes the symmetry.

ProrosrTION 4.3. The notion of commutation s stable under left and
right composition, that is, if
Qi T O,
T/ =>T,=8S=8
are transformations of monads, 1=0,1, and 7, commutes with ©,, then
00-To-0 commutes with 0,.7,.0.

Proor. It is obvious for composing on the left. For composition by
o on the right, the result follows if we know that the diagram below (and
the similar diagram with ¢ instead of ) commutes:

AS®BS (A®B)S
(4.2) 0,4Q0p C4®B
AS'QBS’ v (ARB)S’.

Math. 8cand. 27 - 11
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But these commutativities are immediate, using Lemma 1.1 in [4] to-
gether with the definition of y and .

One might thus define the notion of Freyd tensor product of ¥ -mon-
ads on ¥". Call 7;: T, = T,®T,,4=0,1, a tensor product of monads if

1) 7, and %, are commuting ¥ "-monad transformations, and

2) to any other pair 7;: T; = S of commuting ¥ -monad transforma-
tions, there exists a unique ¥ -monad transformation o: T,QT; —~ S
with 7,.0=17;, 1=0,1. (If such a T,QT, exists, it is essentially unique.)
Recall [4] that a monad T was termed commutative if 7 =97. In the
terminology of Definition 4.1 this then just says that the identity trans-
formation on T commutes with itself. So from Proposition 4.3, one
derives

ProrosiTioN 4.4. If T ts a commutative ¥ -monad, then any ¥ -monad
transformation
t: T=8

commutes with itself, S being an arbitrary ¥ -monad.

DrriniTION 4.5. Let T, T; be ¥"-monads on 7#”, and let an object D
have T;structure é;: DT; > D, ¢=0,1. Let 7,;: T; = -h DA D be the
corresponding ¥ -monad transformations. Then §, is said to commute
with 4, if 7, and 7; commute, and D,d, is called a commutative T,-
algebra if 7, commutes with itself.

By Propositions 4.2 and 4.3 we get

PROPOSITION 4.6. The notion of commuting structures 8,,0, on an object
D is symmetric. Further, it is stable under left composition, that is, if
o;: T = T;, 1=0,1, are ¥ -monad transformations, and 8,06, commute
(as above), then the Ty (resp. Ty') structures on D

(¢4)p-6;: DT~ D
commute.

Let 6,,6, and 7,7, be as in Definition 4.5, and let B be an arbitrary
object. By Remark 3.5 we have a ¥ -monad transformation

(2 =ADAD > -h(BAD)A(BAD),
and therefore, by composition, ¥"-monad transformations
(4.3) 7.0t Ty—>=-h(BAD)h(BAD), i=0,1,

which by Theorem 3.2 means that we have a T structure on Bh.D
“induced by 4,”, ¢=0,1. If §, commutes with ¢,, that is, 7, commutes
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with 7,, then by Proposition 4.3, the two transformations in (4.3) also
commute, so that we have

ProposITION 4.7. If the Ty-structure 8, on D commutes with the T,-
structure 8, on D, then also the induced structures on B D commute.

One may describe the induced structure on B D directly as the
composite

(BAD)T BADT BAD.

The proof of this fact involves a medium sized diagram. We omit it.

The complete link between the notions of commuting structures, com-
muting ¥ -monad transformations, and commutative ¥ -monads is given
in

THEOREM 4.8. Let T be a ¥ -monad on ¥". Then the following three
statements are equivalent:

(i) every algebra (D,0) for T is commutative
(ii) every ¥ -monad transformation with domain T commutes with itself;
(iii) T %s commutative in the sense of [4].

Proor. Proposition 4.4 establishes (iii) => (ii), and (ii) = (i) is trivial
in view of Definition 4.5. Finally assume (i) for the algebra (D,8)=
((A®B)T,n4@5), and let 7 be the corresponding #"-monad transforma-
tion T => (= D) A D. Denote the two closed structures on (-~h D)h D
by PP, PP, respectively. Then by assumption, the clockwise composite
in the following diagram commutes:

T4Q7p
AT®BT 22" (4 h (AQB)T A (AQB)T) @ (B h(ASB)T h (AQB)T)

wT 17)1' wDD{ll‘/“)DD
}
(A®B)T f4®p (A®B)h (AQB)T h (ARB)T
1hnhl
il . (A®B) h (A®B) h (ASB)T
ih1

IA(AQB)T .
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Hence, by (4.2), the left hand composite commutes, provided * commutes.
But using the definition of v (and writing £ for A®B), * is the outer
diagram of

*nT A 1y
ET (EAET A ET)T — EANET A ET? EANETAET
yET (1) ((Lhn)AD)T (L) A1 (Lhn)hl
) (Lhng)T A hu
(EANENE)YT ———— (E&NEAET)T — EANEAET? ENEAET
A gl L
~ E&NENET ——— IANET.

)

Diagrams with no number commute by naturality. The diagram (1)
commutes by extraordinary naturality of y, and (2) commutes by a
monad law. Finally, (3) commutes using Lemma 1.7 in [5], naturality
of 1, and the equation

(4.4) yjhl =1.

To prove (4.4), apply Tw to it and use naturality of 7w with respect to
j. Since Tw(y)=1p4 p, the left hand side gives just j. To see that

Twi) =3,

apply (II1.3.15), (I1.3.17), and Proposition III.1.1 of [2].
Let us finally, without proof, state how the notion of commutation of
structures can be defined in terms of the A -structure. Let

6y: DTy—D, 6,: DT,—D

be T, and T,-structures on D. Then §, and é, commute in the sense of
Definition 4.5 if and only if the following diagram commutes for all X:

Stl lfhél
(XhD)T,h DT, — %
XT, —° . XhDAD (X AD)T, D,
1hd, A1 a1
xopr,hp — 207 |
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where 7, is the monad transformation associated to é,, and st; is the
strength of 7';. Note that the equalizer of the square (if it exists) is the
“subobject of homomorphisms from X D to D” (with respect to the
T,-structure 6, on D and the structure induced by 8, on X A D). The
“subobject of homomorphisms” was used by Bunge in [1] and Linton in
[8] to define the ¥ -category of algebras for a ¥ -monad, and by the
author in [5] to define the closed category of monads for a commutative
¥ -monad on ¥". For the special case of the equalizer for the square
diagram above, one may even prove that it defines a submonad of
- DA D, “the dual of T, with respect to D”’; compare also [7].
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