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ON THE DIRICHLET PROBLEM FOR
FUNCTIONS ON THE EXTREME BOUNDARY
OF A COMPACT CONVEX SET

J.BEE BEDNAR

1. Introduction.

The aim of this paper is to provide a different and hopefully simpler
proof of necessary and sufficient conditions for solvability of the Dirichlet
problem for bounded functions defined initially on the extreme boundary
of a compact convex set. Originally, this problem was solved for the
metrizable case by E. M. Alfsen in [2]. Working independently, A. J.
Lazar [6], and E. Effros [4] recently removed the metrizability restraint
for Choquet simplexes. Finally, E. M. Alfsen [3] gave a proof for the
general case. However, since the proof in [3] pertains to a more intricate
situation, it is somewhat cumbersome. It is hoped that the proof below
removes some of this detail.

2. The theorem.

Throughout this section, K is an arbitrary compact convex subset of
a locally convex Hausdorff topological linear space. The set of extreme
points of K is denoted by eK. The terminology, notation, and basic
notions concerning real affine functions, resultant of a measure (=inner
and outer regular Borel), simplex, and maximal measure may be found
in [7].

A closer analysis of the techniques used to develop the above notion
of maximal measure leads one to suspect the possibility of extension to
a slightly more general situation. A compact Hausdorff space, X, and a
linear subspace of the space, C(X), of continuous real valued functions
on X form the setting in which the extension is to take place. Two meth-
ods produce the same results and are explained below. In subsequent
paragraphs, E is a linear subspace of C(X) which contains the constants
and separates the points of X.

The first method replaces the set of continuous convex functions in the
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definition on p. 24 of [7] by the set S(E) of all functions on X which are
pointwise supremum of finite families of £ and proceeds as in subsequent
pages of [7]. This approach leads quite naturally via [2] to the concepts
of upper and lower E-envelopes of a bounded function defined initially
on a subset M of X. For such a function the respective envelopes are
defined for z € X by

f@) = inf{g(z): ge B, g M2f}
and
f(@) = sup{g(x): ge E, g|M <f}.

Note that when X = K, E = A(K), the space of continuous affine functions
on K, and M = K the above is formally equivalent to [7, p. 18].

The second approach takes cognizance of the fact that, under the as-
sumptions above, E is an archimedean ordered normed space [5] and so B
is linearly order isometric to 4 (L) [5], where

L = {ReE*: R(1)=1=|R|}

has the weak-* topology, and E is the uniform closure of E in C(X).
Now A(L) determines the maximal measures on L, and E determines
the Choquet boundary of E in X [7, p. 38]. As E separates the points of
X it is clear that, up to a homeomorphism, the closure of the Choquet
boundary is eL. Since maximal measures on L are supported by eL,
they may be identified in a canonical manner with certain measures on X
which are supported by the closure of the Choquet boundary determined
by E.

Either of these two methods produce the same set of maximal meas-
ures. Moreover, an E-maximal measure, #, may be shown to be maximal
if and only if u(f)=u(f) for each f in C(X) [7, p. 64].

Before proceeding to the theorem, a boundary measure [3] is a measure
u on the o-ring, F, generated by eK and the Baire sets of K, and such
that |u|(K\eK)=0. It is shown in [7] that each maximal measure »
on K can be associated with a boundary measure 7'u, in such a way
that # and T» have the same resultant. Of course, it is also true that
and Tu agree on all continuous and hence on all Baire functions on X.
These facts are used below without further reference.

THEOREM [3]. 4 bounded real valued function f on eK has a continuous
affine extension to all of K if and only if
(a) the upper and lower A(K)-envelopes are continuous on eK, and
(b) Tuy(f)=Tuy(f) for any two maximal probability measures u, and u,
with common resultant.
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ProOOF. Necessity: Obvious.

Sufficiency: Let f be any bounded real function on eK which satisfies
(a) and (b). Denote the upper and lower A(K)-envelopes of f by f and f
respectively. Since f and f are continuous on ek, it follows [1, p. 4] that
f@)=f(x) for all z e eK. Thus f already has a continuous extension to
eK. For simplicity of notation this first extension is again labeled f.

A simple application of the Krein-Milman theorem shows that A(K) is

isometrically isomorphic to
A = {gleK: ge A(K)}.

Since A-envelopes of functions defined on subsets of eK are restrictions
of the A(K)-envelopes of these functions, notational simplicity is again
preserved by denoting these envelopes by the same symbols.

Now the remarks above make it clear that the theorem obtains pro-
vided 4 can be shown to be the set

(1) B = {fe C(eK): fleK satisfies (a) and (b)}.

Using the results in [7, p.19] and their duals, in conjunction with (a), it
is easy to show that B is a linear subspace of C(eK) and obviously B2 4.
A straightforward combination of (a) with the definition of infimum
yields

inf{g(x): ge B, g|Mzh} = inf{g(x): ge 4, g|M =21}

for any subset M of eK and bounded real function 2 on M. A similar
result holds for lower envelopes. Thus B-envelopes of functions may be
denoted by the same symbols as used for 4.

One implication of the above envelope agreement is coincidence of
the Choquet boundaries determined by 4 and B. That is, the common
Choquet boundary of 4 and B is eX. This follows from the second method
of determining the E-maximal measures by way of the characterization
of the extreme points of a compact convex set in [7, p.27] and the
definition of Choquet boundary. Of course, one of the principle ingredients
above is the identification of B with A(L) and 4 with 4(K). Here

L = {Re B*: R(1)=1=|R|}}.

Now identify eL (eL) with eK (eK) via the preceding remarks. Let p
be the restriction map of L onto K (K is identified with {R € A*: B(1)=
1=||R|}). Observe that if p were known to be one-to-one, then the
nature of the order structure (see [5]) of (B)* and A* forces the restric-
tion map between these spaces to be one-to-one and onto. Duality then
implies that B=4, or B=A4, since B2 4.
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To show that p is one-to-one, observe that the remark following (1)
(see also [7, p. 64]) together with the agreement of the 4 and B envelopes
allows one to conclude that A-maximal measures are B-maximal and
conversely. As each point of L (or K) is represented by at least one
maximal probability measure, p will be one-to-one if it can be shown
that two maximal probability measures %, and %, which have a common
resultant in K also have this same resultant in L. To do this, recall that
if u, and u, have a common resultant, then 7'», and 7'u, also have this
common resultant. By assumption (b) the boundary measures 7%, and
Tu, must have a common resultant in L. But this can happen only
when %, and 4, have a common resultant in L. Thus p must be one-to-
one. This completes the proof.
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