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THE SPACE OF LEBESGUE MEASURABLE FUNCTIONS
ON THE INTERVAL [0;1] IS HOMEOMORPHIC TO THE
COUNTABLE INFINITE PRODUCT OF LINES

C. BESSAGA and A. PELCZYNSKI

Let RN denote the countable infinite product of lines. In the present
paper we prove the following

TaEOREM. Each of the following metric spaces is homeomorphic to RN,
(a) The space D of (equivalence classes of) those measurable real valued
SJunctions z(-) defined on [0; 1] for which
ess sup |z(f)] = 1
osts1
under the metric inherited from the function Hilbert space L,=L,[0,1],

that 1s, ) N
1w—yu=(fmar—mnwm).
0

(b) The space S of (equivalence classes of ) real valued measurable func-
tions on the interval [0; 1] under the metric

¢l -yl

WW=“HWFWN,

that is, in the topology of convergence in measure (cf. (3, pp. 9-10]).

(¢) The space M of (equivalence classes of) measurable sets in [0,1]
under the metric defined as the Lebesgue measure of the symmetric difference
of sets.

The statements (a) and (b) of the Theorem are related to the following
general conjectures,

ConsECTURE 1. Every non-locally-compact closed convex subset of
the Hilbert space L, (or more generally every non-locally-compact closed
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convex subset of a locally convex separable complete linear metric space)
is homeomorphic to the whole space.

ConJecTURE 2. All infinite dimensional separable complete linear
metric spaces are homeomorphic.

The proof of the Theorem is based on some properties of certain specific
G, subsets of convex compact metric spaces, and it involves the concept
of a Z-set introduced by R. D. Anderson (cf. [1], [8]). Actually, in the
present paper we use the dual concept of a T'-set, that is, a set the com-
plement of which is a Z-set.

1. The apparatus of T'-sets.

Let X be a metric space, with metric d(-,-). By a T;set in X we
mean a subset 4 of X of type G, which satisfies the following condition:

(T) For every ¢> 0, every integer m = 0 and every map f: I - X, there
is a map g: I™ — A such that

d(f(a), g(a)) < & for aeclm.

Here by I™ we denote the closed m-cube, and by a map we mean a
continuous transformation.

It is easily seen that the class of T';-sets of a given metric space X is
topologically invariant in the following sense.

1.1. If #: X - X, (onto) is a homeomorphism, then an 4 is a Ty-set in X
if and only if 2(A4) is a T'y-set in X,.

In particular the property of being a T,-set does not depend on a
choice of the metric on X provided the metric induces the same topology.
An open 7,-set is called a T'-set. From the classical Baire’s Theorem it
follows that in complete metrizable spaces 7T-sets are exactly those
which are intersections of countably many 7-sets. A G,-subset (with
respect to the relative topology) of a Gy-set in a metric space is a G4-set
with respect to the whole space. Hence

1.2. If A is a Ty-set in a metric space X and B is a T'y-set in A4, then B
is a T;-set in X.

Another concept essentially employed in our proofs is that of the radial
interior (briefly “rint”’). Suppose that W is a convex set in a real linear
space E. Then we define

rint W = {we W : for each x € W there exists ¢> 0
such that w+e(w—z)e W}.
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In other words, rint W consists of the internal points of W (cf. [5, p. 410]),
i.e. of those points w € W which have the property that every line in
the space F passing through w either has only the point w in common
with W or intersects W along a segment having w as an interior point.
A simple elementary argument gives

1.3. If 0 erint W, in particular if W is symmetric with respect to
zero, then
rint W = {cw: we Wand 0Zc<1}.

By @ we denote the countable infinite product of the intervals [—1; 1].
The pseudointerior of @ is the set

P = {g=(z(n)>_,: |z(n)| <1 for n=1,2,...}.

Clearly we have

1.4. RN is homeomorphic to P.

The proof of Theorem 1 is based upon the following facts.

1.5. ProposITION. Suppose that W is an infinite dimensional compact
set in a linear metric locally convex space with rint W+0. Let A be a T-set
in W which is disjoint from rint W. Then there is a homeomorphism of W
onto Q which carries A onto P. In particular A is homeomorphic to RN,

1.6. Propos1TION (cf. [2]). If A is a T, set in RN, then A is homeomor-
phic to RN,

In the particular case W=¢), Proposition 1.5 has been established by
R. D. Anderson [2] (for an elegant proof see Toruriczyk [9]). The general
statement follows from that particular one and from the Generalized
Keller-Klee Theorem (cf. [4, Corollary 6.3]) which asserts that for every
compact convex set W in a linear metric space such that rint W+, there
exists a homeomorphism of W onto @ which carries rint W onto rintQ.

Proposition 1.6 is an easy consequence of Proposition 1.5. Indeed,
by 1.1 and 1.4, we may regard A as a T,-set in P. By Proposition 1.5
there exists a homeomorphism of @ onto itself, say F, such that F(P)=
@\rintQ. Clearly F(A) is a T,subset of @ \rint{). Since @\ rintQ is
a Tyset in ¢, the statement 1.2 implies that F(4) is a T;-subset of Q.
Thus, again by Proposition 1.5, there exists a homeomorphism of @
onto itself which carries F(4) onto P. Thus 4 is homeomorphic to P.
This completes the proof.
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2. Projecting into the upper hemisphere and the Main Lemma.

Let R denote the real line. We shall consider the Hilbert space R x L,
equipped with the inner product

1
((w,a), (0,9)) = wo + [2()y() dt
0

and with the norm ||(u,)||={(%,%), (u,2))}. We shall identify L, with
the subspace {0}x L, of the space Rx L,, and we shall use the same
symbols (-, - > and ||- || for denoting the inner product and the norm in L,.
By B we shall denote the closed unit ball of R x L,, that is,

B = {reRxL,: |x]|£1}.

We shall deal with two topologies on B. The first one induced by the
norm of the space R x L, and the second one induced by the weak topo-
logy of Rx L,. Both topologies are metrizable on B. The metric for
the weak topology on B is defined by
-

PN = 2 1 Kz
where (z,*) is a dense sequence in B (cf. [5, p. 426]).

Therefore, for every subset Z of B we shall distinguish between the
metric spaces (Z,||*|) and (Z,d*) with the metric inherited by the norm
and the d* metric of B respectively.

Let

forxand ye B,

K= {xeL,: |z|<1} and 0K = {geLy: [x|=1}
and define the map G': K -~ Rx L, by

G(x) = (1 —|lz|?t,x) for ze K.
Clearly
G(K) = {(w,x) e Rx Ly: ||(u,)]|=1 and =20}

is the “upper” unit hemisphere. Next we have
2.1. G is a homeomorphism of the space (K,||-|)) onto (G(K),d*).

Proor. Clearly G is a homeomorphism between the spaces (K,|-||)
and (G(K),||*|)). To complete the proof it is enough to observe that on
the unit sphere of a Hilbert space the weak and the norm topologies
coincide (cf. [3, p. 139]).

Next define for a subset X of K the set W(X)<B by
W(X) = {(w,x) e RxLy: ze X and 05w = (1 |lz]?)} .
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2.2, TEE MaIN LEMMA. Let X be a mon-one-point closed convex subset
of (K,||*]]) such that rint X +0 and Xn0K satisfies the condition (T) in
(X,d*). Then

(i) G(X) is a Tyset in (W(X),d¥),
(i) (X,|*]l) 8 homeomorphic to RN,
(ili) (XNnoK,|-|) ts homeomorphic to RN,

Proor. (i) Since X is a closed subspace in the (complete metric) Hil-
bert space, X is an absolute G, (cf. [7, § 31, III]). Thus, by 2.1, we infer
that G(X) is a Gy-subset of (W(X),d*). Evidently rint W(X)+4. It re-
mains to show that G(X) satisfies condition (T) in (W(X),d*).

Let ¢>0 and let f: I™ -~ W(X) be a map. Observe first that without
loss of generality one can assume that f(I™)<rintB. (Otherwise take
an zy € Xnrint K and replace f by the function f+ $e(x,—f).) Next put
fi=pf, where p: Rx L, -~ L, denotes the natural projection defined by
P((u,x)) == for (u,x) € Rx L,. Since X NoK satisfies the condition (T) in
(X,d*), there exists a map g,: I™ - XnoK such that d*(f,(a),g,(a))<e
for a € I™. Let us set

8(a) = inf{0<s< 1] f(a)+5(g:(a) —fr(a)ll=1},
g(a) = f(a)+s(a)(g:(a) - f(a)) .
Since ||f(a)l|=|lf(a) +0(g,(a) —fi(a))]|<1 (because f(a) € rintB) and since

If(@)+1(gy(@) = @)l 2 Ip(f(@)+1(g2(@) —fi(@)))ll = ligz(a)] = 1,
we infer that the functions s(-) and g are well defined by the above
formulas. Clearly |g(a)||=1 for a € I™. By the convexity of W(X), we
h

ave g(a) = (1—s(a))f(a)+s(a)g,(a) e W for aclIm.
Since 0 <s(az) <1, we also have

d*(f(a),g(a)) = d*(s(a)fy(a),s(a)gs(a)) = d*(fi(a).g1(a) -

Therefore, to complete the proof of (i) it is enough to check the continuity
of g.

Let (a,)2_, be a sequence in I™ and let lim,a,=a,. Since 0=<s(-)<1,
every subsequence of (a,) contains a subsequence, say (a,), such that
there exists & limit, lim, s(a;, ) =c. Clearly, we have

1 = ||f(a) +c(ga(@) — fr(ao))l| = lim, ||f (“k,.)‘l's(ak,.) (91(“k,,)—f1(ak,,))” .
On the other hand,
I1f (@0) + 8(ao) (91(a0) — fr(ao))ll = 1.
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Since ||f(ay)]| <1, the half-line
{r e Rx Ly : x=F(ay)+Hg1(a0) —fi(ap)), t = 0}

has exactly one point in common with the unit sphere of R x L,. There-
fore

flao) + s(ao)(galay) — fr(ao) = limn(f (“k”)+3(“kn)(91(akn) —fl(“k,.))) .
This proves that g is continuous and completes the proof of (i).

(ii). By 2.1, the spaces (X,|-|) and (@(X),d*) are homeomorphic. By
(i), G(X) is a T's-subset of (W(X),d*). Obviously rint W(X) is non-empty
and disjoint from G(X). Since (W(X),d*) is a compact convex set which
can be affinely and homeomorphically embedded in RN (for instance put-
ting F(w) = ({(w, 2,*))2, for we W(X), where (z,*) , is an orthonormal basis
in R x L,), Proposition 1.5 implies that (G(X),d*) is homeomorphic to RN.

(iii) Since X is a norm closed convex subset of K, the space (X,d*) is
compact. As in (ii) we observe that the space (X,d*) is affinely homeo-
morphic to a convex compact subset of RN. Furthermore, the identity

embedding (XnoK,|*|) = (XnoK,d*)

is a homeomorphism, because on 6K the norm and the weak topologies
coincide (cf. [3, p.139]). Thus (XNnoK,d*) is a G5 subset of (X,d*),
because (XNoK,||-|]) is a closed subset of L,. Hence, by the assump-
tion, (X noK,d*) is a Tssubset of (X,d*). Obviously the sets rintX
and XnoK are disjoint. Therefore, by Proposition 1.5, the spaces
(XNnoK,d*) and RN are homeomorphic. Hence the space (X ndK,|-||) is
homeomorphic to RN. This completes the proof of the Main Lemma.

3. Proof of the Theorem.

Proor oF (a). Clearly the space D is a closed convex subset of (X, |]|)
and rint D44, Therefore, by the Main Lemma 2.2 (ii), it is enough to
establish the following

3.1. LEMMA. The set DnoK satisfies the condition (T) in (D,d*).

Proor. Let z;, denote the characteristic function of the interval
[z2—"; (¢+1)2-") for 4=0,1,...,2*—1 and for n=0,1,.... Let X, be
the 27-dimensional linear subspace spanned by the functions z, ,,
Xy s s %on gy ,- Clearly the sets U;-f;oXj and U ,(DnX;) are dense
in the norm topology in L, and D respectively. Hence they are also dense
in the weak topology. Thus for ¢>0 and for a map f: I™ — (D,d*),

using the convexity of the sets DnX,, j=0,1,..., one can construct a
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simplicial map f': I™ — (D,d*) such that d*(f(a),f'(a))<3e for aeI™
and f’'(I™)< X, for some index n. Next for each k>n we construct a
function %;: DnX, — D such that

(1) DnX,) < DnokK ,

(2) (), 2*)y = (x,2*) for xe Dn X, and for 2* e X, ,

(3) h, is a continuous function in the norm topology .

Assume that we have done this. Since the linear space U;?';OXj is
norm dense in L,, the sets

zeL,: |(z,2%) <i! for a*e X, n K}, k>n, i1=1,2,...,
2 k

form a base of neighbourhoods of zero for the weak topology of K.
Thus the condition (2) implies that the sequence (%,f')(a) converges to
f'(a) at each point a € I™ uniformly in the metric d*(-,-). There-
fore there exists an index k, such that for g="#, f' we have d*(f'(a),g(a))
< ¢ for a € I™. Hence d*(f(a),g9(a)) <e. It follows from (1) that g(I™)<
DnoK. Finally, since the set DnX, is compact, the norm continuity of
h, implies the weak continuity of k,. Therefore g is continuous.
To complete the proof we have to construct the functions %,. In the
following summations, ¢ runs through 0,...,27—1. For
z=23¢%,€DnX,

we put

hy(z) = 2xpm—1.
Here yp() denotes the characteristic function of the set

B(x) = Uy 4y(cy) ,

where
(i+1)2k—n—1

Ayc;) = U [24‘ 5 27 (j+ 271+ 01:))]

j=igk-n
for |c;] =1 and for¢=0,1,...,2*—1. Clearly &,(x) € DnoK. Furthermore,
for each j=0,1,...,2¢—1, we have

(), 25,1y = 2—k(2_l(1+ci)_(1_2_1(1 +0i))) = 27%c; = (z,2;,1)

where 1 =14(j) is chosen so that 2877 <j < 2k-7(;+1). Thus, by linearity
of the inner product with respect to the second variable, we get (2).
Finally, (3) is an obvious consequence of the inequality
lhx(®) = bi@)| = (2774 Zsle;— ¢/t = (27w — 2|}
for
z =362, and a =3c/x,.

This completes the proof of the Lemma and of (a).
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Proor or (b). By Proposition 1.6 and by (a), it is enough to show that
the space § is isomorphic to a 7T,-subset of the space (D,]||-|). To this
end define H: § - D by

H(z) = z(1+|2])"* for ze 8.
Clearly H is one to one and
H(S) = {xeD: mes{te[0;1]: |z(t)| =1} = 0}.
The inverse of H is defined by
H-Yx) = x(1—|2|)"t for xe H(S).

Obviously, if both spaces 8 and D are equipped with the topology of
convergence in measure, then H is a homeomorphism. Since the identical
embedding (D,p) — (D, || ||) is a homeomorphism (cf. [6, p.110, Theorem
D]), we infer that the map H: (S,0) - (H(S),| |l) is a homeomorphism.
Since § is a complete metric space, H(S) is a Gs-subset of (D, || ||). Finally
observe that H(S) satisfies the condition (T) in (D,|[-|]). Indeed, for a
map f: I™ — (D,|*||) and for 1 >¢>0 we put g=(1—¢)f. Thus H(S) is a
T,-subset of (D,|||l). This completes the proof of (b).

Proor oF (c). Define F: M — D by
F(A) =2y,-1 for AeM,

where y, denotes the characteristic function of the set 4. Clearly we
have

1
mes (4= A) = [ 114, & S g, 24| = 27 1F(Ay) = F(4,)]
0

and

(A1) = (Al = 2|34, — 14,ll = 2(mes(d;=~4,))t,

where mes(A4,+~A,) denotes the Lebesgue measure of the symmetric
difference of the sets 4, and A,. Hence F is a homeomorphic embedding
of M into (D,|| ||). Moreover F(M) is precisely the set DnoK. Thus, the
desired conclusion follows from the Main Lemma 2.2 (iii) and from Lemma
3.1. This completes the proof of the Theorem.
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