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ASYMPTOTIC BEHAVIOR OF
SOLUTIONS OF PARABOLIC EQUATIONS WITH
DISCONTINUOUS COEFFICIENTS

KJELL-OVE WIDMAN

1. Introduction.

The object of this paper is to investigate the behavior, as ¢ tends to
infinity, of weak solutions of parabolic equations with discontinuous
coefficients,

1.1) ou = 9 (aif(x t) au)
( ) 3t N 8x¢ ’ a(tj
and
ou 0 ou 0
2 — = (a¥@,t)—) + —f + f.
(1-2) ot ox; (a (@) ax,) + 8xif +7

It is shown that a solution of (1.1) in £ x(0,00) which satisfies
u(z,t) =0 for x € 02 is bounded above by a function in ¢ tending to zero
like an exponential. Also, solutions of (1.2) which satisfy the same bound-
ary conditions tend to zero, provided that f? and f do. As a corollary
we prove that if the a* and the boundary values of a solution u of (1.1)
have limits as ¢ tends to infinity, then % has a limit which is a weak solu-
tion of the limiting elliptic equation.

In the opposite direction it is shown that a non-negative solution of
(1.1) is bounded below by an exponential in ¢, on subdomains whose
distance to 02 is positive. The proof of this is accomplished via some
integral inequalities which should be of interest in themselves. In the
case when the a%/ do not depend on ¢ it is proved that, roughly speaking,
a non-negative solution is bounded below in 2 x (¢, %), #, > 0, by a power
of the corresponding solution of the heat equation. An additional assump-
tion here is that the parabolicity of the equation is not too large. It is
believed that this restriction is due only to the imperfections of the proof,
but we have not been able to remedy these.

Theorems of the first type, i.e. upper bounds and convergence to the
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solution of the limiting equation, are of course well known in the case
of non-divergence type equations with regular coefficients, see e.g. the
book [6] by Friedman, Chap. 6, or [4] or [5]. In [2] Aronson indicated
that the convergence to the steady state in our case follows from a theo-
rem of his and Friedman’s results. Our proof seems to be more direct,
though.

Lower bounds with less explicit asymptotic behavior are known even
for abstract equations in Banach space, see e.g. Agmon and Nirenberg [1].
Similar results for parabolic equations can be found in [6]. More precise
estimates like the ones given in this paper seem not to have been known
before for this class of equations.

2. Notations, definitions, and known properties.

£ is to be a bounded domain with regular, say C?, boundary 02 in R*,
the points of which are denoted by z=(z,,...,%,). The product
02 x (s, T)c R+l will be denoted by £2%,, with Q,=0%, 0<s<7T < cc.
About the coefficients a?/(z,t) we assume that they are defined in 2,
measurable, symmetric, that is, a¥/=a%, and that they satisfy the in-
equality
(2.1) A 0812 < a¥EE; S A,|8%, EeRM, 0<AjSAy<oo.

We also put A=4,/4,, and assume that fi e Ly(2;), f € L, (27) for all T,
T < oo.

To define weak solutions we need some function spaces.

Wsl(.Q) (and W,1(£2)) is the closure of Cy®(2) (respectively C™(£2)) in
the norm

n
(2.2) lultgn, = [wds + 3 [u2da.
2

=1 2

W Wb1(Q25) (and W,LY(Q,)) is the closure of the span of Cy™®(2) x C™(2,)
(vespectively C*(£27)) in the corresponding norm, that is, (2. .2) with inte-
gration with respect to ¢ added. Further, Vz (Qp)=V(2,) (and
V1(24)) will be the closure of ng'l(.QT) (respectively W,b1(02;)) in the
norm

Py = maxogicr f Wiz + S f f u? dudt.

t=1

We observe that [,u2dz is a continuous function of ¢ for u € V,1(2,).
We are now able to make the following definition:
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u 18 a solution of (1.2) satisfying the boundary conditions u(x,t)=0,
z €09, u(z,0)=uyx) € Ly(2) tf ue V,1(2r) for all T>0 and

(2.3) [[ (-vo+ attug, + i+ o} dwdt +
Qr
+ [u@ D@, T) dx - [ u@)p(,0) dz = 0
Q

Q

for all g € W,51(Qy).
If u belongs to Wyl1(2,) we can use a more convenient definition,
namely

(2.4) ff {wp+a¥u,p;+fip+fp} dedt = 0
9‘152

for any non-negative ¢, and ¢,, and for any function ¢ in I;zl. One gets
(2.4) from (2.3) by taking I'=t¢, and T =¢, in (2.3), subtracting, and inte-
grating by parts.

Solutions of (1.1) of course satisfy (2.3), or (2.4), with fi=f=0.

By a solution of (1.1) satisfying arbitrary boundary conditions we
mean a function u, continuous in the closure of 2%, {,> 0, belonging to
V{(24') and satisfying (2.3) (with 2, replaced by 2';) for all 7> 0 and
all subdomains Q'€ Q.

It is known (see LadyZenskaya et al [7, p. 181]) that for any initial
values u, € Ly(£2) there is a unique u € f721 satisfying (2.3). This solution
does have a very weak derivative in the ¢-direction ([7, p. 189]) but we
shall not need it. If the a', u,, f%, and f are regular enough, then the
solution belongs to Wzl'l(!),.) ([7, p. 209]).

The following approximation theorem is very useful.

If the sequence of coefficients a®™ are uniformly bounded, satisfy (2.1),
and converge to a' almost everywhere, and uy™ — uy tn Ly(2), f™i — fi
in Ly(27), and f™ — fin L,(2r), p large enough, for all T > 0, then for the
solution u™ of

W = (@), 4 (fo), + fo,
u™(2,0) = u™(z),
um(x,t) = 0, xze€0,

we have that u™ — u in I;ZI(QT) forall T

This theorem allows us to use definition (2.4) by first approximating
the equation, and the solution, carrying out the necessary partial inte-
grations with respect to ¢, and then letting m — co. Since the results
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will not contain any ¢-derivative of u, the procedure is perfectly legitimate.
We shall indicate at what stages in the proofs we let the approximation
parameter tend to infinity.

Other important properties of solutions of (1.1) are that they are
locally bounded, Holder continuous, and satisfy the maximum principle

u(z,T) = MAaX0,a¢<1) %(%, 1)

(see [7, p. 220]). From [7, p. 239] it also follows that a function u € 1}21
satisfying (2.3) is actually continuous in the closure of 2%, #,> 0, so our
definitions above are not contradictory. Finally we have the Harnack
inequality for non-negative solutions of (1.1):

. ’
MAXgy ey S ¥ Milgyion riaey¥ T2 Tp>0,2'CQ,

where y depends on n, 4,, 1,5, 7y, 7,, £, and £'. This inequality was proved
by Moser [8] in the case u € W,b1, but since y does not depend on wu,
the result holds in the general case, as was shown via the approximation
argument by Aronson [3].

3. The upper bound and convergence to the steady state.
To be able to formulate our theorem we note that

(3.1) Ho = inf (f ujdx/fuzdx) ,
9 2

where u ranges over Ifffgl and u, is the smallest non-zero eigenvalue of
Au+ pu=0.

THEOREM 1. Let u be a solution of (1.2), u(x,t)=0 for x € 002, and as-
sume that
(f9)2dadt -0, maxg |f| >0 as7—>o00.
Oty
Then u(x,t) —~ 0 uniformly for x€ 2 as t - co. If fi=f=0 we have more
precise tnformation:

f u(z,t)dx < et f u2x) dx
Q Q2

and
max, g |u(z,t)] £ Keh™h  $24,>0.

Here K depends on A, n, &y, 2, and [quyide.



ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF PARABOLIC EQUATIONS ... 117

Proor. We first establish two formulas. One gets them by assuming
% to belong to Wzl’l(QT), and putting ¢=u and ¢=~h"1(f— 7)u respec-
tively in (2.4), with k,7> 0. Integration by parts with respect to ¢ be-
tween 7 and 7+A then gives us

(3.2) luwt(z,t+h)de — % | vz, 7) dx
[ f

= - ffafuu dxdt + fff’u dxdt + fffudx

QLoin Q%rap Q%24h
and

(3.3) %fuz(x T+h)dr = — ff wdadt — — ff atuu(t— ) dedt +

Dzth Drvh
+ 7 ff fluy(t—7) dedt + % Jffu(t—r) dxdt .
QT Q%4 h

To establish (3.2) and (3.3) in the general case we use the approximation
argument mentioned in section 2.

If fi=f=0 we leave (3.2) as it is; if not take =1, use the parabolicity
(2.1) and Young’s inequality to see that the right hand side of (3.2) is
less than or equal to

— f f ug? dudt + } f j uldedt + A f f (fi)2 dwdt +

Qr4 iy Q%4
+ duohy [[ w2 dwdt + (uoha) ™ maxg,,, |12 mes (@)
Dy

After using (3.1) and rearranging, (3.2) becomes

” u?dedt < Kjuz(x 7 dw — Kfuzx r+1)de + C,
Q41
where we have put
C. =K f f (F92 dedt + K maxg._|f|?
QTe4y

with C, - 0 as v — oo. Similar manipulations show that from (3.3) we get
(3.5) fuz(x,m- 1)de < K ” u? dzdt + K ” u,? dedi + C,
2

Q74q Q%

gK”u;ddeo,,

Q%4
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where the last inequality follows after recourse to (3.1). Here K depends
on 4, uy, and 2 only. Combining (3.4) and (3.5) we get

K
(3.6) luz(x,‘r+ e S 7 iuz(x,r) dz + C, .

This inequality implies, via an elementary argument, that [,u%(z, 7)dz -0
as 7 — oo. To conclude that u — 0 we utilize the following inequality

37 u¥z,T) < K, f f utdzdt + K, f f (Fi)2 dedt +

92’—17. _QT—“T
+ K, maxgr ., |fI5,T2z7, e,

valid for non-negative solutions in f’21 of (1.2). The inequality (3.7) was
essentially proved by Moser [8], in the case fi=f=0. The proof in the
general case is only slightly more complicated, so we omit it.

The first part of the theorem evidently follows from (3.7) if u>0. If
% is not non-negative we solve the boundary value problem with initial
values u,+=sup(u,,0) and u,~=inf(u,,0) respectively, and u*(x,t)=0,
z €02. By the maximum principle v~ <u<u+, and since u+ and %~
tend to zero, the same is true for u.

To prove the second part of the theorem we defme 9(7)=[pu¥(z, 7)dx
and note that (3.2) and (3.3) imply

g(r+h) — g(x) < —24 f f u,? dzdt
Q%4h
and

g(z+h) < b ”uzdxdt.
Q%%4h

By (3.1),
(3.8) g(v+h) = bty f f w,tdrdt < }hpe~ A7t g(T) —g(v+R)].

From this we conclude that ¢'(r) S —2uy4,9(r) from which follows
(3.9) g(t) < g(0)e Pkt

provided that g is absolutely continuous, which is easily seen to be the
cagse. (Observe that it follows from (3.2) that g is monotonic.) However,
one can dispense with this by noting that from (3.8)

g(r+h) S (1+2huydy)19(7)
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which implies, with A=t/v, 7=0,1,...,7—1,
9(8) = (1+2p94,v71)~9(0),

and this gives (3.9) in the limit as » - oco. Finally the last part of the
theorem follows from (3.7) as above.

THEOREM 2. Let u be a solution of (1.1) in Q,, such that u is continuous
in the closure of 2%, t,> 0, for all T' < oo, and such that the boundary values
u|,q tend to g as t — oco. If a¥(x,t) — a¥¥(x) uniformly, that is,

supD]a‘f(x, t)_aij(x)l -0 ast—>oo,

then u(x,t) - w(x), where w(x) is the weak solution in Q of (@w,;);=0,
ze, w=g on 0Q.

Proor. It is sufficient to assume that u|,, is the trace of a function
in W) for each ¢, and that

Max,q|[0u/8t,g >0 as t > oo,

since we can approximate u|,, with two functions A,, &, satisfying these
requirements and with the properties that k, Su|,,<h, and k,hy —g.
Then we solve the boundary value problem with %, and %,, and with the
theorem being true for these two solutions, it is also true for » by the
maximum principle.

By a similar argument, using the maximum principle for elliptic equa-
tions, we can assume that ¢ is the trace of a W,!(£2)-function and hence
that u|,, belongs to a bounded subset of W,1(2) for 0 <, <t < .

Now let w(z,t) be the solution of (@), =0, W =1u|,q on 02, for each ¢.
By the maximum principle for elliptic equations we have that

max, W, £ max,,|oufof| >0 and maxy|w—w| >0

as t —~ co. Hence it is sufficient to show that u—% —~ 0.
Since Z=u—we V,! we can put p=7% in (2.4), and then after partial
integration with respect to ¢

A ff w2 dedt = f f augu; dedt

Pyt Dyyq
(8.10) < iff auu; dedt +
Dy
1 1
+ 4 [[ ey duar + ;fumx'* -fuwx'* ~ [ [ v, dwae.
QDyiy 2 i’ 9 g Pye1
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This inequality being true for regular a® it follows for general coefficients
by the approximation argument referred to above. Since u and w, are
bounded, and w € W,1(2) uniformly in ¢, it follows from (3.10) that

f f u,2 dxdt is bounded as ¢ - oo .

Pyyy

Now we note that % satisfies the equation
u, = (@9%;); + [(a¥ —a¥u); — w,,

that is, (1.2) with f/=(a*—@")u, and f= —w,. By the assumptions
about a%, and what was said above, f* and f satisfy the requirements of
Theorem 1, and hence % — 0, which proves the theorem.

4. The lower bound 1.

THEOREM 3. Let u be a non-negative solution of (1.1) with initial values
%y € L,. Then for every compact subset Q' of 2,

u(z,t) = Ke 2 x<lyl, e, t26,>0,
where K depends on uy, 2, Q', «, Ay, Ay, &y, and n.

The proof of Theorem 3 uses the a priori inequalities in

TaEOREM 4. Let u be a non-negative solution of (1.1) with initial values
o€ L,. Let v be the solution of the heat equation v,=2A;Av with lateral
boundary values zero and initial values uy. Then

(i) ff 'vz2u—a daedt < Kfuoz-a dz ,
o 1% 0
(i) ff auu; viut*dxdt < K fuoz—“ dz |
Roo ey
(i) f vu—edzr < K f wt—* da
2 o
@) [[orurdodt < o,
Q00

for all a<A.

We shall first see how Theorem 3 follows from Theorem 4 (iii).
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Proor or THEOREM 3. From (iii) it follows that for a fixed ¢ there is
at least one point in £’ such that »?u—>=< K for K large enough, K inde-
pendent of £. By the Harnack-Moser inequality we have

mingu(x,t+7;) = 1 maxgu(w,?)
2 plming v (x,t) = Ke P x<],
which is equivalent to the statement of the theorem. Here we have

used the estimate o(t)= Ke™** z e Q’, which easily follows from the
Fourier representation of v.

Proor or THEOREM 4. We first note that (iv) follows from (iii) and
Theorem 1. In fact, for « <1 we have by (iii),

fvz u—e—tdr < Kfuoz—“—‘ dx
2 2

for x +e¢<A. But by Theorem 1

f vy~ dy = f v2y—o—tys dr < Keharet f w2~ dx
Q Q

for ¢t=¢,>0. Integration over ¢ gives the result.
The next step will be to prove that (ii) and (iii) follow from (i). To
that effect put g=(u+¢)"1, p=v%'*+* in (2.4):

ff (w2 g+ — (1 + x)au;u; 02+ + 20w, v,0q'+*) dedt = 0

Qr
Integration by parts with respect to ¢ and Cauchy’s inequality give, with
Go= (2o +¢)7%,

oc‘lfvzq“ dr + (1+«) ff atiu;u;v2 g% dzdt
T Qp

< oc—lfu(fqo"‘dx + ff afu,u;v?qi+ dedt + ffaifviv,q“ dadt
T Qr Qrp
or

oc'lfvzq“dx-{-ocff atuuviqtte dedt < a-lfuo2““dx+lsz v,2q* dxdt .
T or Q ap

Here the 7' subscript at the z-integrals means that the integration takes
place over 2 with ¢=17.

This is the time to let the approximation parameter tend to infinity,
after which we let ¢ - 0, only to find that we have proved (ii) and (iii).
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The corner stone, and the difficult part of this section, is the proof of
(i). We first note that it is no restriction to assume that « has lateral
boundary values zero, i.e. that u e f’,}(QT). For technical reasons we
shall need that 4 <1 in the proof. To circumvent this we first prove that
(i) holds with M-'% and M-1%, where these functions are determined
as the solutions of v,=4,4v and (1.1) respectively, with initial values
M-2%y=M-! min(uy, M), M constant >0. By the homogeneity we
then get

ff lu>dadt < KJ‘,Eoz—a dz ,
oo 0
from which by the maximum principle
ff lu dedi 3 Kfa'02~a dr = Kfuoz"‘ dx ,
D o :

for every compact subset D of 2. But 7,2 - v,2 a8 M — oo, uniformly
on every D, and (i) follows. Hence we shall henceforth assume that
0suxl.

We introduce a positive ¢ in the integral and use Taylor’s formula,
again putting ¢=(u+¢)~!

jf v 2q*dadt = 0—‘-' jf v,2(logq) dxdt = 3 i' 1,.
on y=0 %! on Vi

»=0

The trick is to estimate the growth of the integrals I, by deriving an
iterative inequality for them. Thus integration by parts and Young’s
inequality give (we suppress summation over ¢ while the integration
always is over 2,)

L, = f f v, (logg)y+! dzdi
= (v+ l)fjviuivq(logq)’ dxdt — fijv(Iogq)’“ dadt
< Hr+1p? f J‘ v, 2(logg)+! dzdt +
+ v+ 1) f f u 2v?q? (logq)—! daedt — A, f f v, (logg)y+idzdt.
To estimate the second term in the last membrum we put

@ = viq(logq)
in (2.4). Then
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(4.1) » f f u 2v2q?(logg)—! dadt
< w4 ff a‘iu,u;v g (logq) -t dxdt
= 1! f f w,v2q(logq)y dadt + 24,71 f J' alu,v;vq(logqy dxdt —
- 41 f f az;u;u;v2q? (logq) dwdt
< A4 f J. uv2q(logqy dedt + 2,71 J' f au,u;vrq? (logq)y dxdt +
+ 41 f f ativ,v;(logq) daxdt — A, f fa"u,u,v’qz(logq)’ dzdt .

The second and the fourth term in the last membrum cancel, and the
third term is <A-1I,. In the term containing v, above we integrate by
parts with respect to ¢:

-t ff vv,(logg)+! dxdt

S 4,71 [ug?(ogaor* - 40+ )it [ [ vPuiglogay dude
2
Collecting terms we get
Lo S 0+ 100 L+ 30+ DA [ [ wotqloggy dedt + v+ 1)311, +
+ i f U (108 p)"+ dw — 3(» + 1) A, f f uvtq (logqy duds .
Q2

We are again fortunate and the second and the last terms cancel against
each other. Hence we get

4.2) L., S s@+1)p—1)"121, + yp—1)-13,-1 f s (logge)*t d .
2
The procedure just described does not work for »=0 and »=1, instead

we proceed as follows.
For y=1 the first step is almost the same, giving

I, 2§, + 2ffu,,2v2q2 dxdt — ).flffluv,(logq)a dadt .

Further
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ff u 2v3@® dedt < 2,71 ffaijuiu,-vzqz dadt
= A1 ff uviq dedt +2ﬂl“1ffa‘fuivjvq dzdt
= 21‘1ffu,vzq dxdt+§ff u2v?q? dedt +
+ 2,2, [ [0, dwt

Partial integration with respect to ¢ gives

ffu,vzq dadt < fuoz(logq) dx+ 22, ff vAv(logq) dzdt

2
= fuoz logg dx— 22, ff v,2logq dxdt + 22, fj v, u;vq dxdt
Q2
=< juoz loggq, do + 14, ff u 2v2q% dedt + 44, ff v,2 dadt .
2
This implies
(4.3) ff u2v?q dadt £ 4 J. uo? loggy da + 8(1+4,4,72) ff v 2 dxdt .
2
On the other hand,
-4 f J vo,(logq)? dedt < 4,1 fuoz (logq)? — 4,1 f f u,v2qlogq dxdt .
By (4.1) with »=1 we get ’
—A1 ff u,v%q logg dadt < A jf v,2logq dxdt .
Combining these inequalities we get
(44) I, < (164+2,71) f u,2 logq daz+32(1 + 244, 2) f f v,? dwdi+ 241, .
Finally :
I, = ff v,2logq dedt = 2 ffuiv,vq dxdt — 2,71 ffvv, logq dzdt
=2 ff v 2 dxdt+ 2,71 fuoz loggodx + 34,71 ff atiu;u;v2q? dedt —

Q

-1 ffu,vzq dzdt .
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By putting ¢ =v%(u+¢)~! in (2.4) and using Young’s inequality we find
that the sum of the last two terms is =24, [[v,2dxd¢, hence

(4.5) I, < KI(,+11-1fu02 logg, dx

2
By (4.2), (4.4), and (4.5)

v!
(v—p)!

I EKviirIy+K Y 2‘”f u,2(logq,y—* dx .
u=0 2

Thus with x <2

d ) ¥

r < K”vmzdxdt zo(o—;)"+1{§j -3
Qp v=

»!

M3

v=0 7! ;=0 (v—p)!

K oo
= = [[o2avar + K [uter 3 <‘3‘-)”,
A—a u=0 A

Qp Q2

A simple integration by parts shows that

ffvxzdxdt < %fu‘fdx < %fuoz‘“dx,
Qp Q Q

Q‘V!

v

[

A J’ %o2q,? do
2

the latter inequality being valid since [u,| < 1. Hence

Ki
(4.6) J.f v 2q*dadt < T U2~ da .
Q7

—x
Q

This is an excellent opportunity for letting the approximation parameter
m tend to infinity. The convergence in the integrals in (4.6) causes no
difficulties. It should perhaps be remarked that 1=A"™ will depend on m
also, but since we have chosen « fixed <4 and A™ - 4 this is no problem
for m large enough.

The theorem now follows by letting ¢ tend to zero while employing
Fatou’s lemma.

5. The lower bound II.

To be able to derive a lower bound for % valid out to the boundary
of 2 we have been forced to restrict the class of equations. Hence we
make the assumption that the coefficients of (11) do not depend on ¢.
By Fourier’s method the solution  can be written
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(5.1) U = z cktpk e—rk‘ N
k=1

where y,, and y,, are, respectively, the eigenvalues and eigenfunctions of
the operator 0fox,(a*0[ox;) in L,, and c, is the I scalar product of
. and u,. The series (5.1) converges in V,}(2,) for all 7', and in
Wobh1(2%,) for all T'>¢,>0. It might be expected that a good lower
bound could be derived using the representation (5.1), but this is rather
doubtful. Anyhow, although a reasonable lower bound for y, is known
(see [10]), good upper bounds for y,, k=2, are conspiciously lacking.
Hence we have been forced to use another, more direct method, which
is an extension of the one used in [10].
We first state the main theorem of this section.

THEOREM 5. Let u be a non-negative solution of (1.1) where the a¥ do
not depend on t. We also assume A>4%. Then if 6(x) denotes the distance
from x to 082,

u(z,t) = Kor(z) e ™t t24,>0, zeQ,

for all r=2(2n+ B+ %) [B%(B+13) such that B+4 <A, f>0.

Theorem 5 follows from Theorem 6 and Lemma 1.

THEOREM 6. Let u be as in Theorem 4, and let v be a solution of the heat
equation vy=A Av in QY with regular initial values v, Sul,. Then

uzKv, =zef, t2t,>0,

for all r=2(2n+ B+ 62 [B%B+1) such that B+4 <A, f>0.

REMARK 1. The regularity of v, is needed in order to ensure that v,
is bounded.

REMARK 2. It is of course believed that the requirement A>3} is due
only to the method of proof and should not be there. Moreover, it is
conjectured that r can be chosen considerably smaller, at least r=n/x,
& < A, which is the best known estimate for y,, see [10].

The following lemma should be well known.

LemMa 1. Let v be a non-negative solution of the heat equation v;=2,Av
in Q.. Then
v 2 Kdx)eh*t, zeQ, t2¢,>0.
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ProoF. One can e.g. proceed as follows. First consider the case when
£ is a sphere |z| =0 and v|,, is the Dirac function with support at the
origin. Then ov[on=c>0 for ¢=%,. This follows from symmetry and
[6, p. 49]. The next step is to compare v with a constant times y,e o4
in Q_%, where y, is the non-negative solution of

Au — pou = 0, ul,g =0.

Now by Harnack’s inequality the lemma follows for arbitrary placement
of the support of the Dirac function, and then of course for general ini-
tial values. For general £ satisfying an interior sphere condition the
lemma follows again by the maximum principle.

For the proof of Theorem 6 we need three more lemmas.

Lemma 2. If w ¢s as in Theorem 5, then w,uy,... are all bounded in
Qb for all t,>0.

Proor. As we remarked above the series converges in ﬁ’zl’l(Q"’T),
and it is easy to see that the same is true for the differentiated series.
Since the partial sums of the differentiated series are obviously solutions
of (1.1), we can go to the limit in (2.4). Hence u,uy,... are solutions
of (1.1), and the boundedness follows from Theorem 1.

LEMMA 3. Let u and v be as tn Theorem 4. Then

.02
” ul s dedt < @, f<i=}, 1>0.
Dtooo

Proor. Integration by parts gives

1 1
ff |y 2v2u-1"*dxdt = — fu,vzu—“ dx — —fu,vzu-“ de +
oy x
+ ff uyviu—*drdt + 2ffu,v,vu—“ dzdt,

1 1
fju,v,vu-“dxdt = —— | ul~ypvdr — —— | ul~*vvdr —
l—uo o l—«

- ff ul={v2+vyv} dedt .

By Theorem 3 and Lemma 2 all integrals involved are bounded inde-
pendently of 7', for x<A. Now by Young’s inequality,
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ff lucl dwdt %ff o2y ot + ;”' s dmdt

The two integrals on the right are bounded by the above and Theorem 4
for 1+ p<A.

We shall also need the following Sobolev type lemma. (At this point
the author profited from a discussion with prof. L. Nirenberg. See

(91,

I:EMMA 4. Let f=f(2,%,,. . -,2,,t) be a non-negative function belonging
to Wb 3(Q2y) for all T>0. Then for 0<b=<1,

] n/(2n+b)

[ff |f|2+om daedt
[ f | Ilezdxdt] " [ NG dxdt]m+ [f if(w,T)lbdx]”b,

where K depends only on the diameter of Q. If b=1, the non-negativity is
superfluous.

Proor. We need only consider the case when the right hand side is
finite.
For almost every (x,t)=0Q,,

f@om < [[Ifdde]™ s K [[If2de]"", i=1,....n,
Pt < [[1fd 1F P2 d] ™ + |f@ TP
Multiplying we find
freeem < K{[[1£0 1F12-2 @™ + 1f @, 1)) T [ 12 deci] ™

Now integrate successively with respect to x;, j=1,...,n and ¢, and use
Hélder’s inequality each time:

j I, 9. = IT, Ug,;”]lm.
This gives us
[ [ 1f12+orm dedi
s K0 [[[ £2 dwat] {[[ [ 1001102 dwdd] "+ [[ 17 Dle ] 7}

Young’s inequality completes the proof.
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Proor oF THEOREM 6. We shall use Lemma 4 to derive an iterative
inequality for the sequence of integrals

,,(k+z>pv—k
f f (u+¢) “1”’ ’
where p=1 + }b/n, where b and k will be determined later, and where the

integration is taken over Q%_.
Applying the lemma to the function

f — ok 2"l a1 gp—1g-1 / (u + 8) ap®12-1
we get

_ v(k+2)p"‘1—kp -2 2v(k+2)p" 1gp~t 12
<K, J' f v e + f J U g i S|

poCe+ap* e 1kp=127Y) 116
+ K, f f o dwdt|  +

(u + 8)lmp”'lz_1+l

poG+2)p" 12 —kp~ 1271 v
+ K, f f v dwdt| .

(u + s)ap'_lbz-l

Note that the lemma is applied first in Q%,, then by letting 7' tend
to infinity the boundary integral disappears since » tends to zero expo-
nentially and the denominator is = &>0. We consider the third integral
first and apply Hoélder’s inequality with exponent 2/b, which gives us
the following estimate

o /(2= 12-b)yb pk+2p"1—kp~1 172
2/(@-b) __
f o] (4 2ED dxdt ff (u+e“1""1 dzedt| .

Hence if we choose b such that 2/(2—b)=1+8, §<A—$, and ! such that
Ib/(2—b)=2, the first factor will be bounded independently of ¢ and »,
by Lemma 3, and if we then choose k such that kp-1+I=Fk the second
factor is equal to I,_,. This gives us

b=28/(1+p), L=2/B, & - 2(2n+B)/6* .

The fourth integral in the inequality above is found to be < KI,_; after
use of Holder’s inequality and the fact that v, and v are bounded and
decay exponentially as ¢ — co.

Now to estimate the second integral we put g=v®+2p" ™ —kp™ [yep" 141
in (2.4) and use Young’s inequality to get

Math. Scand. 27 - 9
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pe+2p" " —kp~?
ij -
J' J- a9 u,uy (g ey dxdt

p+2p" 1 -kp~1-2 ple+2p" kp1
ffvxz——————-——~dxdt+Kffu, ———— dxdi .

(w+ ey (w+e)?" 41

IIA

Integrating in the last integral by parts and using that v is a solution of
the heat equation we get

k+2)p"~ ~kp~1
K f j o de dt

b u+ )ap”—1+1

P pk+2p" " —kp~-2
<K, f ulr2-ow" k™ gy 4 K f f vt dwdt +
(u+e)?

y pe+2p" " 4Ekp~t

1 ——T i

+ % ff a'l ug uy (0o dxdt .
Note now that v-2< Kv-? and v,2< K to get

(5.2) I < K,I

v = yoy

a+ K,fu"‘“““’""l—’“"1 dx .

o

We observe also that if lim infl, ,J,~1=0 for all ¢>0, where J, is the
integral for ¢=1, in (5.2), then

L™ £ K max, uk+2-=
for infinitely many », which leads to
(6.3) es8 SUPgro,, V¥t (u+¢e)* £ K < oo,

where K is independent of ¢, and this is the statement of the theorem.
(In fact this case does not accur unless v=0, since we can choose K
arbitrarily small).

In the opposite case we have that for at least one £¢>0

(5.4) J, < KI, v»=1.2,...,

but since when ¢ decreases I, increases and J, does not, (5.4) is valid
for all sufficiently small ¢. Using (5.4) in (5.2) we find

Ivllp é KvIv—l

An examination of the constants shows that K, < K*, and after iteration
the last inequality becomes
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—¥ —H
L < I, T,  K»™ < K1,.

But I, is bounded independently of ¢ by Theorem 4, and by letting »
tend to infinite we are again led to (5.3) and the proof of Theorem 6 is
complete.
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