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ON FINITELY GENERATED FLAT MODULES II

S.JONDRUP

1. Introduction.

A ring A is said to be a left n-FGFP-ring (right n-FGFP-ring) if every
flat left A-module (flat right 4-module) generated by n elements is pro-
jective (cf. Sandomierski and Smith [12]).

For a commutative ring 4 we have that A is a left 1-FGFP-ring if
and only if 4 is a left n-FGFP-ring for all » (cf. [9] and [7]).

In section 2 we shall construct a ring 4 such that 4 is a left and
right n-FGFP-ring, but neither a left (n+1)-FGFP-ring nor a right
(2 +1)-FGFP-ring (for any given n = 1). This construction is suggested by
P. M. Cohn.

The main result in section 3 is the following:

Let A be a subring of B and M a flat and finitely generated left A4-
module. If BR ,M is projective considered as a left B-module, then i
is A-projective.

As a corollary we have that a subring of a left n-FGFP-ring is a left
n-FGFP-ring, too. This result is a generalization of theorem 2.2 in [7].

In section 4 we shall prove that a right noetherian ring is a left
n-FGFP-ring for all n. By means of this result and the main theorem in
section 3 we shall derive some results concerning left and right semihere-
ditary rings.

The author wishes to express his gratitude to C. U. Jensen for valu-
able conversations during the preparation of this paper.

Noration. In this note all rings considered are associative. All rings
have a unit element, denoted by 1, homomorphisms preserve 1, subrings
have the same 1 and modules are unital.

2. Flat modules and the dependence number.

We recall that a ring A4 is said to satisfy ,ACC (cf. Cohn [2]) in case
any ascending chain of n-generated left ideals becomes stationary.
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For later purposes we need the following
Lryma 2.1. If the ring A satisfies ,ACC, then A is a left n-FGFP-ring.

Proor. It follows from the Morita-equivalence between 4 and A4,
(the ring of » x n-matrices) that it suffices to proves the lemma for n=1.
In this case the lemma is well known (cf. Sahaev [10]).

ProrosITION 2.2. For any given n =1 there exists a ring A such that A
18 a left and right n-FGFP-ring, but neither a left (n + 1)-FGFP-ring nor a
right (n+1)-FGFP-ring.

Proor. For notation and definitions in the proof we refer to Cohn [2].

Let K be a commutative field. We take 4 to be the K-algebra on the
generators x7;, i,j=1,...,m+1,v=1,2,..., and defining relations
(2.1) ij;fjx;'k =0, »¥v,

255% = Ty, -
The matrix E,=(zj;) is clearly idempotent. Furthermore K, E, =
E,E =0, v+v'. Thus 4, ., has an infinite set of non zero orthogonal
idempotents. Hence 4,, ,, is not a left 1-FGFP-ring (cf. Sahaev [10]), and
consequently 4 is not a left (n+1)-FGFP-ring.

It follows, as in [2, proposition 4.2], that theorem 3.1 in [2] can be
applied, so we conclude that A1(4) (the dependence number of 4) 2n+1,
Hence A satisfies ,ACC for n>2. We have now proved that 4 is a left
n-FGFP-ring for n>2. If n=1, then 4 is an integral domain [2, propo-
sition 2.2], and it is readily checked that an integral domain is a left
1-FGFP-ring.

Since all arguments are left and right symmetric, the proof of proposi-
tion 2.2 is complete.

ProrosiTION 2.3. Any n-fir (¢f. [2]) is a left n-FGFP-ring.

Proor. The proof requires only few modifications of the argument
proving theorem 2.B in [6]. We will state the proof for the reader’s
convenience. It is based on the following result on n-firs (cf. [2, Intro-
duetion]). :

I ayby+...+a,b,=0, m=n, (not all b; equal to zero), then there
exists a m x m unimodular matrix P such that

(@y,...,a,)P = (a,,...,0,....a,)
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with 0 on the ith place for a suitable <.
Let M be a flat left A-module generated by f;,...,f,, p<n. If there
is no nontrivial relation between the f;, then M is free. Assume

(2.2) Jiaaifi=0, r=p,

i8 a nontrivial relation between the f;. Since M is flat, (2.2) is a con-
sequence of a linear relation in 4, i.e., there exists a finite set of elements
JieM, 15j<k, and @;€ 4, 1i<r, 1£j=k, such that

(2.3) fi = Zjaﬁf, fOl‘ a].]. ’l:, Z,-aiaij = 0 fOl‘ allj .

We may assume not all the 4,; are zero, say @,; +0. Consider the rela-
tion
a8+ ... +a,8,, =0

and let P=(p;;) be a unimodular matrix such that 3;a;p; =0 for a suit-
able j. Let P-1=(f;;) be the (twosided) inverse of P and define

ft, =valva’ 1§t§r9
@) =3,a,p. 1Stsr,
Then
zta‘t,ft, = Z“ﬂ’pzﬁtva = Zvava =0.

We have now obtained a nontrivial relation between fewer elements in
M. Furthermore the module generated by (fy,....f,, fri1....fp) is
equal to M. If we continue this argument, we get a set (fy,...,f,) of
generators for M and a nontrivial relation af;=0 (for a suitable je
{1,...,p} and a € 4). Since M is flat and 4 an integral domain, we infer
that f ;=0. If we choose p such that M is not generated by less than p
elements, then it follows that M is free with (f,...,f,) as a base.

3. The main results.
We start with the key-result.

THEOREM 3.1. Let M be a flat and finitely generated left A-module and
A a subring of a ring B. If the left B-module BQ 4M 1is B-projective, then
M is A-projective.

Proor. We have a short exact sequence

(3.1) 0>K->F -~ M0,
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where F is a free left 4-module with a finite base and K denotes the
kernel of ¢. From (3.1) we derive the exact sequence

(32) Tor;4(B,M)=0 - B 4K - BQF -~ BR M - 0

of left B-modules.

Since BQ® 4 F is a finitely generated B-module and B® 4, M is a finitely
generated projective B-module, we have that BQ , K is finitely generated.
We choose a generating set for BQ K of the form 1Qk;, 1<is<m.
From Bourbaki [1, exercise 23, p. 65] it follows that there exists a homo-
morphism % from F to K such that w(k;)=k, 1SiSm.

Let k be an arbitrary element in K. We will prove that w(k)=£k. If

l®k = z‘ib’i(l®k’i)’ biEB, léiém ’

say, then
1Qu(k) = (1zQu)(1Qk) = (1zQu)(Z;b(1Qk;))
= 3 (150u)(b,(18k,))
= 2:b;Qu(k;) = 3;0,(1Qk;) = k
and hence

1Q(u(k)—k) = 0.
Since K is A-flat, we have an exact sequence of left A-modules
(3.3) 0->AQ 4K - B K .

The element 1®(u(k)—k) is zero in B® 4K, hence also zero in 4A® K,
and consequently u(k)=k. This proves that (3.1) is split exact, hence M
is 4-projective.

COROLLARY 3.2. Let A be a subring of B. If B is a left n-FGFP-ring,
then A is a left n-FGFP-ring, too.

Proor. If M is a n-generated flat left A-module, then BQ M is a
n-generated flat left B-module (cf. [1, chap. 1, § 2, no. 7, proposition 8,
cor. 2]) and by theorem 3.1 M is 4-projective.

The proof of the next corollary requires only trivial modifications of
the argument proving theorem 1.7 in [7].

CoROLLARY 3.3. A s a left n-FGFP-ring if and only of A[[X]] is a left
n-FGEP-ring.

By combining corollary 3.2 and corollary 3.3 we get the following
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COROLLARY 3.4. A is a left n-FGFP-ring if and only if A[X] is a left
n-FGEFP-ring.

For further corollaries we refer to [7].

REMARK. Theorem 3.1 is known in special cases (cf. S.Endo [4,
theorem 1] and F. Sandomierski [11, theorem 2.8]).

4. Flat embeddings of certain rings.

We start this section with some elementary results concerning rings A
with wgldim4 < 1.

Lrmma 4.1. Let A be a commutative ring. If whd  (da+ AD)=0 for all
a,be A, then wgldimA <1.

Proor. It is enough to prove the lemma for 4 local (localization).
Let a be a finitely generated ideal and a,b two elements in a. Aa+4b
is flat and finitely generated, hence Aa+ A4b is free [1, Chap. 1, exercise
23 p. 65] and consequently Aa-+ Ab is generated by a single element.
This proves that a is generated by a single element. Since any finitely
generated ideal is flat, we have that wgldim4 < 1.

We recall that a ring is left semi-hereditary if each finitely generated
ideal is projective. If A is left semi-hereditary, then wgldim4 <1.

ProrosiTION 4.2. Let A be a commutative ring. If wgldimA4 <1 and
hd,(4a)=0 for all a € A, then A ts semi-hereditary.

- Proor. Since wgldimA4 <1, we have that any ideal is flat. If a is
a finitely generated ideal, then we have to prove that the rank function
r:Spec(4) - Z is locally constant (cf. [1, chap. 2, §5, theorem 1]).
The ideal a,, is a finitely generated flat ideal in 4, (for any prime ideal p),
hence a, is zero or free of rank one.

Define
Uy, = {p €Spec(4) | r,=0}.
Then
U, = Spec(4)\ Supp(a)

is an open subset of Spec(A4) [1, chap. 2, § 4, prop. 17] and consequently
we are done if we can prove that Supp(a) is open. Let a be generated
by (@;), 1 =1 <n. Since Aa, is projective, we conclude that Supp(4a;) is
open, hence Supp (a)=U?_, Supp (4e,) is open.
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ProposriTION 4.3. (fiven « ring-homomorphism g from A to B such that
B is flat as a right A-module. Suppose that o is a monomorphism. If
wgldim A <1 and any flat and finitely generated left ideal in B is projec-
tive, then A is left semi-hereditary.

Proor. Let a be a finitely generated left ideal in A. Then B®  a is a
flat left B-module. Since B is 4-flat, B® 4a is an ideal in B. From theo-
rem 3.1 we infer that a is 4-projective.

REMARK 1. Any finitely generated flat left ideal in A4 is projective if
A satisfies one of the following conditions:

i) A is left coherent.

ii) 4 is a left n-FGFP-ring for all =.

COROLLARY 4.4. For a commutative ring A with wgldim A < 1 the follow-
ing conditions are equivalent:
i) A is semi-hereditary.
ii) @, (the classical quotient ring of A) is von Neumann regular.
iii) The complete direct product B of the quotient fields of A/p, where p
ranges over all minimal prime ideals in A, is A-flat.

Proor. ii) implies i) by proposition 4.3.

A is a subring of B (cf. [5]). So iii) implies i), since B is von Neumann
regular.

It follows from S. Endo [3, § 4, proposition 1] that the quotient field
of A[p is isomorphie to Q,/pQ,. Hence B is a module over Q. If 4 is
semi-hereditary, then @, is a von Neumann regular ring [3, § 4, proposi-
tion 1] so B is flat as a module over . Since @, is A-flat, B is 4-flat.
We have now proved that i) implies ii) and iii).

That implication i) implies iii) is due to C. U. Jensen.

REMARK 2. It is easy to give examples of commutative non semi-
hereditary rings 4 with wgldim 4 <1 (see for instance C. U. Jensen [6]).
Since any ring 4 with wgldim 4 £1 can be embedded in a von Neumann
regular ring [5], we see that the flatness of B is essential for the validity
of proposition 4.3.

CoROLLARY 4.5. (Sandomierski [11, theorem 2.10]) Let A be a ring
with wgldim A <1 and zero left singular ideal. If Q, the complete ring of
left quotients of A, is flat as a right A-module, then A is left semi-hereditary.
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Proor. It follows [8, § 4.5, proposition 2] that @ is a von Neumann
regular ring, and hence any finitely generated flat left ideal in @ is
projective.

We conclude this section by the following

THEOREM 4.6. If the ring A 18 right noetherian, then A is a left n-FGFP-
ring for all n.

Proor. Let rad(A4) denote the prime radical of 4 (cf. Lambek [8]).
B=A[rad(A4) is a semiprime (in Lambek’s notation), right noetherian
ring. Hence the complete ring of right quotients of B is completely re-
ducible [8, § 4.5, proposition 3, corollary]. Moreover B is a left n-FGFP-
ring for all n [corollary 3.2].

Let M be a finitely generated flat left A-module. We have a short
exact sequence of left A-modules

(4.1) 0O-K->F->M->0,

where F is free and finitely generated. Since M/[rad(4)M is B-flat and
finitely generated, M/[rad(A4)M is B-projective.
From (4.1) we derive the short exact sequence of left B-modules

(4.2) 0 - K/rad(4)K — F[rad(A)F - M[rad(A)M - 0.

Since M/rad(A)M is projective, (4.2) is split exact and hence
K[rad (4)K is finitely generated as a B-module. From [8, § 3.5, proposi-
tion 4] it follows that rad (A4) is nilpotent and consequently K is finitely
generated [1, Chap. 2, § 3, no. 2]. So we conclude that M is 4-projective.

CoROLLARY 4.7. If the ring A can be embedded in a right noetherian
ring, then A is a left n-FGEFP-ring for all n.

COROLLARY 4.8. Suppose A can be embedded in o right noetherian ring.
If wgldim 4 <1, then A is left and right semi-hereditary.

Proor. It follows that any flat and finitely generated left or right
A-module is projective. Since any finitely generated left or right ideal
in A4 is flat, the proof of the corollary is complete.

A similar result has been obtained by Small (cf. [13]).
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ADDED 1IN PROOF. After writing this paper I have become aware that
proposition 4.2 has also been proved by W.V.Vasconcelos [On finitely
generated flat modules, Trans. Amer. Math. Soc. 138 (1969), 505-512] and
that corollary 3.2 has been proved by I.I.Sahaev [On rings over which
any finitely generated module is projective, Izv. Vyss. Ulebn. Zaved. Ma-
tematika 9 (1969), 65-73. (In Russian.)].
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