MATH. SCAND. 27 (1970), 77104

AN INTEGRAL IN TOPOLOGICAL SPACES II
W.F.PFEFFER

0. Intreduction.

In the first part of this paper (see [12]) a Perron-like integral was
defined in an arbitrary topological space and its basic properties were
established. This part is mainly concerned with the connection between
the Lebesgue integral and the integral defined in [12, 3.3].

Since the Lebesgue integral is absolutely convergent, it is natural to
begin with a study of absolutely integrable functions. Some basic
properties of these functions are proved in section 2. In section 3 we
restrict ourselves to a locally compact Hausdorff space and describe
there a rather large family of absolutely integrable functions. Using
this family we define a certain measure, the Lebesgue integral with
respect to which coincides with our integral on all non-negative functions
(see sections 3 and 4). Another measure, closely related to the previous
one, is introduced in section 4. This new measure is regular and has no
regular extension. It is shown that the Lebesgue integral with respect
to it is a restriction of our integral whenever the basic additive set
function G which was used for the definition of our integral (see [12, 2])
can be extended to a regular measure. Section 5 is devoted to examples.

1. Preliminaries.

In this section we shall recall some definitions from [12] and establish
our notation.

By E we denote the set of extended real numbers. Besides the usual
addition and multiplication in E (see, for example, [3, (6.1), b), p. 54])
we define the division as follows: /0= + oo for ¢ 20, a/0= — oo for a <0,
af(+o00)=0, and a/b=a-(1/b) for a,be E, b+0, b+ + . If a,bc E, then
avb=max(a,b) and aab=min(a,b).

For an arbitrary set A, §(4) denotes the class (see [5, p. 251]) of all
extended real-valued functions with domain containing A. If ¢ is a
collection of sets we denote by &,(d) or F,() the family of all super-
additive or additive functions on J, respectively (see [12, 1.2]).
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Throughout P is a topological space and P~ =Pu(cw) is a one-point
compactification of P. If AP, A- and 4* denote the closure and the
boundary of 4 in P, respectively; if A< P~, A” and A° denote the closure
and the interior of 4 in P~, respectively. For every xz € P~ we choose
once and for all a neighborhood base I', at z in P" such that if xe P,
then U<P for all U eI,

Let o be a pre-algebra (see [12, 1.1]) of subsets of P such that I',<¢
for every x € P. We shall assume that there is a fixed integer p = 1 with
the following property: for each U e[, there are disjoint sets
Ui+ +sUpw from o for which U?_,U;,=UnP. By 1 we denote
the system of all sets 4 € ¢ such that A<U?_; U, where

U,eU{l,:xeP}, i=12,...,n,

and we choose a non-negative function G € &, (o) which is finite on A.
If 6coand A<P” welet 6,={Bed:B<=A}. A system d<o is said
to be semihereditary if and only if o,nd+0 for every finite disjoint
collection ¢,=¢ whose union belongs to §. A system d<o is said to be
stable if and only if J ¢ 6 and for every 4 €4 and every x € P~ there is
a Uel, such that 6 ,_+0.
With every point z € P~ we associate a certain family x, of nets

{B,,xeD,>} < g,

where (D,>) is isotonically isomorphic to a cofinal subset of (I,<).
The collection {x,:xzec P"} is called a convergence. For xze P~ and
éco,
#,0) = {{B}en,: {B,}<6} and 6* = {wxe P :x,(0)+0}.
If (D,>) is a directed set and x € D, we let
D(x) = {feD:p>ua}.

A net {B,,, feD’, >} is said to be a subnet of a net {B,,a€ D, >}
if and only if D’ is a cofinal subset of D and «;>f for all B D'.

Throughout we shall assume the convergence x to satisfy the following
conditions:

A y. For every xe P, {U,Uel,, <}ex, and for every integer i,
12629, {Ui, U T, ©} € %o

Ay If z€P” and {B,,x€ D, >}€x,, then for every Uel’, there
is an &y € D such that B, < U for all « € D(xy).

X'g. If € P” and {B,} € x,, then every subnet of {B,} belongs to »,.

X, If zeP”, {B,}ex,, and 4 e g, then also {B,nA4} € x,.
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A's. If 6o is a non-empty semihereditary system, then &* is non-
empty.

Ag. If <o is a non-empty semihereditary, stable system, then &*
is uncountable.

Let x € P°, A< P, and let F be a function on ¢,. We call the number
4F(x,A) = inf {liminf F(B,) : {B,} € %,(04)}
the lower limit of F at x relative to 4 and the number

the lower derivate of F' at x relative to 4.

Let 4 € ¢ and let f be a function on A-. A superadditive function
M on o 4 is said to be a majorant of f on A if and only if there is a count-
able set Zy,<A- such that

H(—@)(x,4) =2 0 for all xeZ,,

sM@x,A) 2 0 for all x€Zy U (o),
and
—oo f  M(x,A) = f(x) for all xe A~—Z,.

The number I,(f,4)=inf M(A), where the infimum is taken over all
majorants of f on A, is called the wpper integral of f over A. If

Iu(f’A) = - u("f:A) F too,

this common value is called the integral of f over A.
If A eoand fe F(A-) we denote by MM(f, 4) the family of all majorants
of f on A. The family of all functions integrable over 4 € ¢ is denoted

by B(4).

2. Absolutely integrable functions.

Let A eo. A function fe B(A4) for which also |f| € PB(4) is said to be
absolutely integrable over A. The family of all functions absolutely inte-
grable over A4 is denoted by B(4).

2.1. LEMMA. Let A € o, f€ R(A4) and let g € F(A-) have locally a narrow
primitive function in A-, that 18, for every x € A- let there be a Ue T,
such that ¢ has a narrow primitive function in AnU (see [12, 6.3]).
Then

Iu(fvg’A) = - u("'[ng]’A) and Iu(ng’A) = - u(—[ng]sA)'
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Proor. If I (—[fvg],4)= — oo, then by [12, 6.1],

Iu(fvg>A) = - u(——[ng],A) .

IfI,(—[fvgl,4)> — oo, then I (—[fvg])is finite; for I (—[fvgl) < — I(f).
Given ¢ > 0, choose M € M(f) such that M(4)<I(f,4)+e. The function

N = M-I(f)-I(—-[fvg))
is superadditive and finite on o 4. Since I (—[fvg])< —I(f)and I(f)< M,
NzM and N2z -I(-[fvg]) 2 -1,(-9).

Because g has locally a narrow primitive function, it follows from ',
that N € M(fvg). Hence

Iu(fvg,A) = N(A) = ‘S“Iu(_[fvy]:A)»
and the arbitrariness of ¢ gives

Iu(fvg9A) = - u(—[ng],A) .
Furthermore,

Iu(ng’A) = Iu("[_fv—'g]’A) = - u("fv”gsA) = - u(—[ngLA) .

2.2. CorOLLARY. If A € o and fe B(4), then

Iu(f+?A) = - u(—f+:A)! Iu(f_:A) = - u(—f_:A) ’
Iu(]fl’A) = - u(_IfI7A) .

2.3. THEOREM. Let A€o, f,fie F(A),c;€ B, c;+ £ o0,1=1,2, and let
f(@)=cyfi(x) + cofo() for all x € A~ for which ¢ fi(x)+ cofy(x) has meaning.
Then fe Po(A) whenever f,f, € Bo(4).

Proovr. If f,f, € Bo(4), then by [12, 6.5], f € P(4) and by [12, 6.4],

LCfL,A4) < e[ I(fil, A) + el I(1fol, A) < + o0
Now it suffices to apply 2.2.
2.4. CoroLLARY. Let Aeco. If f,g belong to PBy(4), then so do

5 I | fvg, and fag. If f,g € Bo(4), b € B(A), and f<h=g, then also
h e Po(4).

2.5. DEFINTITON. Let A €0 and fe §(4-). A function M € M(f,4)
for which Z,,=0 is called a narrow majorant of f on A.
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Using narrow majorants instead of majorants in definition [12, 3.3],
we can define the narrow integral I'(f, A). We shall introduce the symbols
m*, 1,4 P* and P, the meaning of which is obvious.

The close examination of proofs given in [12, section 6], will show that
all theorems of that section hold also for the narrow integral I*. It
turns out that this is true even if the convergence x satisfies only axioms
Ay—H 5. We note that the narrow integral I* and the integral defined
in [8], [9] are closely related.

If 4 €0, then clearly

—IuA('—f’A) s - u(—f’A) = Iu(f’A) = IuA(fsA)
for every fe F(4-). Hence P(A)<=P(4) and INf,A)=I(f,A) for every
fe ®(4). Examples 5.2 and [12, 8.6] show that the inclusions
0'(4) = BY(4) < B(4)
can be proper. However, we shall see that always PB,"(4)= P,(4).

2.6. ProposiTION. Let Aeco,feFA™) and let I (f,A)+ +oo. If
f=20 or f<0, then I, (f,A)=If A).

Proor. Given &> 0, choose M € M(f, A) such that M(A4) <I(f,4)+¢/2
and let Zy, = {2;,%,,...}.

Suppose f=0. Since ,(—G)(x,,4)20, there is a decreasing sequence
(Ui = Iy, such that

GU,rnA) £ g[2n+ktl k=1,2,... (see Ay, Ay .
Letting
F.(B) = 37.,G(U»nB) for every Beo,,
we have defined a function F, € &,(0,) for which 0<F, <¢/2n+l, If
{B,,a€D, >} € n,(04)

and k21 is an integer, then there is an «; € D such that B, < U," for
all x € D(«;) (see o). Hence, F,(B,)/G(B,) =k for all x e D(«,) and
it follows that  F,(x,)= +oco. Because M 20, M*=M+3 F, belongs
to M*(f,4) and

(1) LNf,A) = MN4) = M(4) + e < I(f,4) +e.

Suppose f<0. Since I,(f)(x,,A)=0 (see [12, 6.1]), there is U, eI,
such that
I(f,U,nA4) = —¢/2ntL

Math.Scand.27 — 6
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(see "y, Ay). Letting
FB)=3,I(f,U,nB) for every Beo,

we have defined a function F e §,(o,) (see [12, 6.6]) for which
—4e<F =<0. Because for every Be a4,

M(B)-F(B) = M(B)—1,(f,B) -3, 1(f,U,nB) 2 0,
it follows from ", that (M —F)(x,,4)=202=f(x;). Hence M*=M —F
belongs to M*(f,4) and again (1) is valid.
The inequality I,f,4)=1I,(f,4) now follows from the arbitrariness
of e. Since I(f,A)<I(f,A) for every f € F(A~), the proof is completed.

2.7. CoroLLARY. For every A € o, Py"(4)= By(4).

i¥ Proor. Obviously PB,(4)< By(4). If f belongs to Py(4), by 2.3
so do f+ and f-. Now according to 2.6, f+ and f- belong to PB,"(4).
and by an analogue of 2.3 for the narrow integral, so does f.

2.8. DerFINITION. Let 4 € 0 and F € §(o,). The functions (F € F(o,)
and °F € (o) defined by the rules

of(B) = inf 37_,F(B;) and °F(B) = sup 3. ,F(B))

for all B € o, are called the lower and upper variation of F on A, respec-
tively; here the infimum and supremum are taken over all finite disjoint
families {B}?_;<op for which }? , F(B,) has meaning.

W Obviously, ,FSF<°F, ,F<F@)<°F, and (—F)=-°F. Also
o (B)Z (F(A4) and °F(B) <°F(A) for every Beo,.

2.9. Lewvia. Let A € o and let F € (o ,) be finite. If F is superadditive,
8018 °F and F — (F 2°F. If F is additive, so are °F and (F, and F — F =CF.

Proovw. Let B,,...,B, be disjoint sets from ¢, with union B for which
32 ,°F(B;) has meaning. Further, let Ceo, and let C,,...,C, be
disjoint sets from ¢5. Then by [10, (1.2)], there are disjoint sets D;,. . .,D,

from ¢ such that
C— U£=10‘ = ;nlD" .

Suppose F is superadditive. Given disjoint families {Bﬁ}j’ilc Op;>
=1,2,...,n,

°F(B) z F(UL, UK, BY) = 3., 3L, F(BY),
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and we have °F(B) =z 3} ,°F(B,;). Furthermore,
F(0)—F(C) 2z F(C)-Z;_,F(D;) =z 3, F(C)),

and hence F(C)—F(C) =z °F(C).
Suppose F is additive. Given a disjoint family {B‘}]’;lc og, wWe obtain

ZJI'LlF(Bj) = 2;-‘=12?=1F(Bani) = 2.°F(B) ,
and so °F(B)<3? ,9F(B,). Also

F(C)-"F(C) = F(C)-3].1F(D)) = 3, F(Cy),
and thus
F(C)—°F(C) < oF(0) .

Since °F is additive, so is (F'=F —°F, and the proof is completed.

2.10. ProrosrrioN. Let 4 € o and fe P(A)— Bo(4). Then JI(f)(A)=

— 00,

Proor. Suppose J(f)(4)> —oo. Since JI(f)SI(f)< +oo, oI(f) is
finite and so is °I(f)=I(f)—I(f) (see 2.9). Choose M € M(f,A4) such
that M(4)<I(f,A)+1. Because °M € (o ) (see 2.9) and °M = M+, it
follows that 'M € IMM(f+,A4). Hence by [12, 6.4],

Iu(lfl’A) 2Iu(f+:A)-I(f’A)
2°M(A)—1(f,4)
20I(f)(A) — I(f,4) + 2 < +oo.

IA A TA

Now according to 2.2, |f| € B(A4) which is a contradiction.

2.11 COROLLARY. Let A€ and let o4 be a o-algebra. If fe P(A)— B, (4),
then I(f) 1s an additive but not a g-additive function on o,.

The corollary follows from 2.10, [12, 6.6] and [14, (6.1), p. 10].

2.12. THEOREM. Let o be an algebra and let »=x° be the natural conver-
gence. (See [12, 2].) Then P(4)=P(A4)=By(A) for every A eo.

Proor. Let A€o, fe R(A) and let o* (oI(f),4)+0 (see [12, 5.5]).
Then there is an x € A” and a net

{B.}aen € %[0 clo(f),4)] -
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Choose an integer k. Since ¢ is an algebra, to every o e D there is a
C.eop, such that I(f,C,)<k. Because {C,},.p€ #,%0,), it follows from
the arbitrariness of k that ,/(f)(#)= —oo; a contradiction to [12, 6.15].
Thus 0%, (oI (f),4)=0 and by [12, 4.1 and 5.6], also o_.(I(f),4)=0.
In particular, o/(f)(4)> — o and f € Py(4) (see 2.10). We conclude

Bo'(4) = B(4) = B(4) = Bo(4) = B,(4),
and the theorem follows.

Examples 5.2 and [12, 8.6] show, that the previous theorem is not
correct if o is not an algebra.

2.13. PrOPOSITION. Let A €a, fe P(A)— Po(4) and let M e M(f,A).
If M(A)< + oo, then

a =inf{,Mx):xe A~} = —o.
Proor. Suppose a> — o and let b=aA0. The function N=M —bQ is
superadditive on ¢, N> M, and for all e A-—Z,,,
WN@) 2 W M@)-b 2 [M(@)]* 2 f+() .
Hence N e M(f+,4) and by [12, 6.4],
I(f1,4) = 2L,(f*A)-I(f,4) = 2N(4)-I(f,4) < +oo.
Now according to 2.2, |f]| € B(4) which is a contradiction.

2.14. LEmmA. Suppose that x=x is the natural convergence. Let
Aeo, A—=A", and F € F(o,). If F(x)> — oo for all x € A, then also

a =inf{F(zx):zcd~}> —co.

Proor. Let a= —oco. Then there are z, € A~ such that ,F(z,)< —n,
n=1,2,.... Since A- is compact the set {z,},_, has a cluster point
woe A-. Choose an integer k. Given Ue I, , there is an integer ny = —k
for which x, € U° Furthermore, there is a set By €0y, such that

F(By)[G(By) < —ny = k.

Since {By}uer,, € #,%(0.4), it follows from the arbitrariness of k that
*»F(xy) = — oo; a contradiction.
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2.15. COROLLARY. Suppose that x=x° is the natural convergence. Then
PA(A) =B, (A) for every A € o for which A~ is compact.

Examples 5.2 and [12, 8.6], show that the corollary does not hold
for all A€o.

2.16. ReMARK. Theorem 2.12 and corollary 2.15 indicate that the
natural convergence »? is usually too large to give us a conditionally
convergent integral.

The next proposition in some sense characterizes the difference be-
tween the integrals I and 7. It will be illustrated by examples 5.2 and
5.3.

2.17. ProrosiTioN. Let A € o, fe P(4), g€ P (A4), and let S and S*
be the sets of all points x € A~ for which there is a net
{BoaeD, >} € x,(0,)
of disjoint sets such that

Z{f:B):xeDB)} = +oo and 3 {I"g,B,)|:ae D)} = +oo

for every B e D, respectively. Then S is countable and S* is empty.

Proor. We shall prove that S is countable. The proof that S* is
empty is similar and may be left to the reader. Let S be uncountable
and let F=M —I(f) where M is a finite majorant of f on 4. Choose
xeS—2Zy (such z exists, for Z, is countable), UeI,, a finite
c<  M(x)a0, and a net

{B,, x € D, >} € n,(0,)

from the definition of the set S. Without loss of generality we may
assume that

S{(f,B):xeD(f)} = —c0

for all g€ D (see A "3). According to ¢, and [12, 5.2], there is an «, € D
such that
B,cAnU and M(B,) z cG(B,) > —o

for all x € D(xy). Select «,...,x, € D(xy) for which

w1 I(f,B,) < cG(AnU) - F(AnU).



86 W.F. PFEFFER

Since F is a non-negative superadditive function,

F(AnU) z 32, F(B,) = 2.  M(B,) -2 (£, B,)
37 1G(B,)—cGAnU) + F(AnU)
2 F(AnU);

\

a contradiction.

We shall close this section by three almost-everywhere-type proposi-
tions which we shall list without proofs. Their proofs are identical with
those of the corresponding propositions in [6, 34-37] and [7, III, 19, 20].
We begin with a definition.

2.18. DeriniTION. For A< P, let y, denote the characteristic function
of A in P. The set 4 <P is said to be a zero set if and only if I (x4, P)=0.

For A< P, functions f,g € §(4) are said to be equal almost everywhere
on 4, in notation f=g, if and only if {x € 4 : f(x)=*g(x)} is a zero set.
The meanings of symbols f<g and f<g¢ are analogous.

Clearly, if A<P is a zero set, then y, e B,(4) and I(x,P)=0.
Using 2.3 and [12, 6.11] we can prove by the standard procedure that
the system of all zero sets is a hereditary o-ring (see [4, p. 41]).

Let us notice that in general there is no connection between a zero
set and a set 4 € o for which G(4)=0 (see 5.9 and 5.10).

2.19. ProrosirioN. Let Aeo and f,ge FA-). Then the following
statements hold :

(1) of I(f,4)< + o0 and I,(—f,A)< + oo, then |f| < + o0;

(i) of f=g, then I(f,A)=1,(9,4);
(iii) if f,g € B(4), f=g and I(f,4)=1(g,A), then f=g.

2.20. ProposiTiON. Let A € 0 and fe P(A4). Then
L) 2 f 2 —[-1(].

2.21. ProrositioN. Let A € o and f,g € B(4). Then I(f)=1(g) sf and
only if f=g.

3. The integral in a locally compact Hausdorff space.

So far given a set 4 € 0, we know only very few functions which are in-
tegrable over A. From [12, (6.1)] it follows that finite constants belong
to P,(4), provided 4~ is compact. However, if 4~ is not compact even this
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need not be true for non-zero constants (see 5.4). In this section we shall
specialize the space P and then describe some important families of
integrable functions. We shall also prove some theorems which will
be used in section 4.

From now on we shall assume that P is a locally compact Hausdorff
space and that U- is compact for every U e U{I,:ze P}. We note
that the second assumption is of a purely technical nature and brings
no loss of generality. It follows that the localization A of ¢ (see [12, 2])
is precisely the system of those A € ¢ for which A~ is compact.

Let € and 11 be the families of all compact and all open subsets of P,
respectively. By &, and © we denote the o-rings generated by € and U,
respectively. Obviously, © is a o-algebra which contains &,.

For A<P we denote by $.(4) the family of all functions fe §(4)
which are continuous and finite on 4.

3.1. Lemma. Let Aeo, feFA~) and F=I,f). If f 18 continuous
and finite at x € A-, then either

F@) = —u(=F)x) = f(x) or Fx)=y4(-F)x)= +oo.

Proor. Choose {B,,x € D, >}€ x,(0,). Since [+ F(B,)]/G(B,)= + oo,
whenever G(B,)=0 (see [12, (6.2)]), we may assume G(B,)>0 for all
xeD. Let w, and 2, denote the infimum and supremum of the set
{f(y) : y € B}, respectively. By X', there is «y € D such that B, €1 and
—oo< @, S0, < + oo for all « € D(«,). Therefore by [12, (3.1) and (6.1)],

0,G(B) = F(B,) = 2,4(B,),
and hence
w, < F(B,)[G(B,) = 2,

for all « € D(x;). According to [5, theorem 1(f), p. 86],

limew, = Iim2, = f(z),
and the lemma follows.

3.2. ProrosiTION. Let A € 0 and let f e F (A~) be a non-negative func-
tion. Then

Iu(f’A) = - u(—f’A)'

Proor. The proposition holds trivially if I,(—f,4)=—o. Let
I(—f,A)> —c. Then by [12, 6.1], ,I,(—f)(cc)=0, and since
—1,(—f)20, also ,[ —I,(—f)](c0)=0. It follows from 3.1, that —I,(~f)
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is a narrow primitive function to f on A4 (see [12, 6.3]), and the proposi-
tion is proved.

3.3. CoroLLARY. Let Ao and fe F(A4-). If I(f|,4A)< +oo, then
fe Bo(4)-

3.4. CoroLLARY. Let Aco,ceE,c+ + cand f=con A-. If G(4) < + oo,
then fe PBo(4).

We note here that though |c|G € M(|f|,4), in general, I(f,4)+cG(A)
(see 5.9).

3.5. CorOLLARY. Let A€o and fe F(A~). Then fe Py(4) whenever
S vanishes outside some compact subset of P.

Proor. There are disjoint sets 4,,...,4, from A such that
{fxed-:flx)+0}- < Ur  49.

According to [10, (1.2)], there are disjoint sets B,,...,B,, from ¢ for

which
U.;'ZIBI =P - U?——:lAi'

Hence
Iu(lf|9-A) = Z?=11u(|fl:AnAi) + z;';lIu(lfl»AnBl)
e lu(fl,4nAy)
< sup{|f(z) ;2 € A~} 3} ,G(4An4;) < +oo.

3.6. CoroLLARY. Let Aeco and Ce €. Then yo e Po(4).

Since every integrable function fe $,(A4-) has already a narrow primi-
tive function (see 3.1), corollary 3.6 follows from 3.5 and [12, 6.14].

3.7. ProposiTION. Let Aeo and fe F(A™). If axiom A, (see [12, sec-
tion 7]) holds, then fe P(A) whenever I (f,A)+ + oo.

Indeed, according to 3.1 and [12, 7.4], I,(f) is a narrow primitive
function to f on A. We note, however, that axiom )¢, plays the essential
part in this proposition. A slight modification of example [12, 8.2]
will provide a counterexample.

The next proposition is due to W. J. Wilbur.
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3.8. ProrosiTiON. Let A €0, fe F(A-), and let 1,(f],4)< +oo. Then
qu(f)("’o’A) = #[’_Iu(f)](w,A) =0.

Proor. Assume first f>0 and choose a finite M e M(f,4). For
Beo, we let
N(B) = sup 3., M(B,) ,

where the supremum is taken over all finite disjoint families {B;}! ,<Ap.
Imitating the proof of 2.9, it is easy to show that the thus defined func-
tion N € (o ) is superadditive. Since M is superadditive and non-
negative, N <M and N(B)=M(B) whenever BeA,. It follows that
N e M(f,A). Suppose ,(—N)(c0,A)=a<0. Then there is a net
{B,}eeD € #x(04) such that N(B,)> —}a for all xe D. Choose x e D
and disjoint sets B ?,...,B." from Ap for which

=1 M(B) > —}a.

Because B,i~ are compact, there is § €D such that B,n U} B,i=0
(see ;) and we can choose disjoint sets B/l,..., By for which

A M(Bg)> —%a .

Continuing this process by induction we construct a finite family
{B.}t =2, of disjoint sets such that

St M(B) > M(A) .
Since this is impossible, we conclude
0 = y(=N)(o0,4) = y[—I,(f))(e0,4) £ 0.
If fe &(A-) is arbitrary, then by [12, 5.1 and 6.4],
0 2 J[—T,(f)l(e0,4) 2 J[— T (fH)](o0,4) +4[— L (—f))(o0,4) 2 0.
Now the proposition follows from [12, 6.15].

3.9. LEMMA. Let Aec and fe FA-). If f20 and I,(f,A)< + oo, then
Iu(f’A) = S“P{Iu(f'Xc,A) :Ce @A—} .

Proor. Choose ¢>0. By ¢, &, and 3.8 there is a U € I'y, such that
Sl AnU ) < &

(see [12, section 2]). According to [10, (1.2)] there are disjoint sets
C,,...,C, from ¢ for which
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Ur,c,=4-1.
Letting C=U?_,0; we have Ce€,_ and

Iu(f’A) < ?=1Iu(f’oj) +e
= ?=11u(fx0’ Gj) + 25’=1Iu(fXC,A n Ui,oo) +é&
= I(fxc,4) +e.

The lemma follows from the arbitrariness of e.

3.10. CoroLLARY. Let A€o, feF(A-), f20, and let fxo e Ro(A) for
every Ce @, . Then fe Py(A) whenever I (f,A)< +oco.

3.11. Nore. If in corollary 3.10 I,(f,4)= + oo, then, as example 5.5
shows, this need not imply —I,(—f,4)=1,f,A4). On the other hand,
from —I,(—f,A)=1I,f A) does not follow that fy, e P,(4) for every
Ce@ _ (see 5.6).

3.12. NoraTioN. Let ¥ be the family of all sets A<P such that
%anc € Po(P) for all CeC. If AT we let v(4)=1,(x, P).

3.13. ProrosrtioN. The triple (P,%,7) 18 o complete measure space,
&<, and the measure v is inner regular on N and outer regular and finite
on G.

Proor. The completeness of the measure 7 is obvious (see [3, (11.20),
p- 1565]). By 3.7, yc € Po(P) whenever C €. According to this and
[12, 6.11], given C €€, the system

To = {4=C: 14 B(P)}

is a o-algebra containing &;. Thus ¥ is a ¢-algebra containing &.
Let 4,,4, be disjoint sets from ¥. By [12, 6.4],

7(4,U4,) = ©(4;))+7(4y) .

If ©(4,) or ©(4,) is infinite, so is 7(4,U4,), and the equality holds.
If 7(4;)<+o, ©=1,2, then by 3.10, x4 € Py(P), and according to
[12, 6.5], the equality holds again. Hence 7 is additive on ¥, and its
o-additivity follows from [12, 6.11].

Finally, both regularity properties (see [4, section 52, p.224] of 7
follow from [12, 6.14].
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3.14. CoroLLARY. The measure t is both outer and inner regular on &,.

This follows from [4, section 52, theorem F, p. 228].

3.15. DerintrION. Let 4 € 0. A point x € A~ is said to be a density
point of 4 if and only if G(Un4)>0 for all UeI,.

The set of all density points of A is obviously closed and it is denoted
by Ag. If f,ge F(4-) and f(x)=g(x) for all xe Ay, then clearly
Iu(f’A) =Iu(gyA)

3.16. ProrositioN. Let A€o, fe F(A-), f=0, and let I,(f,A)< +oo.
If A- is paracompact, then the set A, ={x e Ag: f(x)>0} is o-bounded.

Proor. We have to prove that 4, is contained in a countable union
of compact subsets of P (see [4, p. 4]). Suppose the proposition is not
correct and choose a finite M € M*(f,4) (see 2.6). By ", and [12, 5.2],
for every z e A, there is a U, e I, such that

M(UnA4) 2 1f(x) G(UnA) > 0

for all U e I',(U,). Using Zorn’s lemma, we can find a maximal disjoint
subfamily {V, :xeT} of {UeTI(U,):xec A,}. If T is countable, then

B = [U{F nd-:z2eT}]-

is o-bounded; for by [1, theorem 7.3, p. 241], A~ being paracompact
is a disjoint union of open o-compact subsets. Hence thereisye 4,—B
and V,erl,(U,) such that V,nB=¢@. Since this contradicts the
maximality of {V,:zeT}, we conclude that T is uncountable. By
a standard procedure we can find ¢>0 such that M(V, nd)=c for
infinitely many « 7. Choose an integer k such that ck> M(4) and
different z; € T' for which

MVnd)ze i=12...k.
Since M = 0, we obtain
M(A) = 3%, M(V,,n4) = ck > M(4),

which is impossible.

3.17. CoroLLARY. Let Aeco and fe PBy(A). If A~ is paracompact,
then the set {x € Ag: f(x)+0} is o-bounded.



92 W. F. PFEFFER

Example 5.7 shows that the corollary is not valid if we replace y(4)
by B(4).

3.18. CoroLLARY. Let P be paracompact. Then A X is o-finite if
and only if AnPg is o-bounded. In particular, the measure v is o-finite
if and only if P is a-compact.

3.19. REMark. Example 5.8 shows that for a non-paracompact set 4-,
or space P, statements 3.16-3.18 are generally false. On the other hand,
from the proof of proposition 3.16 it follows that a weaker condition
than the paracompactness of A- will be sufficient. Namely, it suffices
if the closure of any o-bounded subset of A~ is also o-bounded. Thus,
for example, if A- is a well ordered set with the order topology, proposi-
tion 3.16 still holds. However, this A~ is paracompact if and only if it
contains a countable cofinal subset.

The following modest result holds generally.
3.20. ProrosriTioN. Let Aca, fe FA~), 20, and let I,(f,A)< + oo.
Then the set
Ay ={red-: f(x)>0and ,(—G)(x,4)<0}
18 countable.

Proo¥. Suppose 4, is uncountable and choose a finite M € M*(f, A4),
(see 2.6). For every x e 4, there is U, e I, such that

MUnA) 2 3f(x) G(Und) 2 — §f(z) (- G)(x,4) > 0

for all UeI'(U,). By a standard procedure we can find ¢>0 and an
infinite set {x,}> ;<=A4, such that

-%f(xn) ﬁ(—G)(xmA) =2c¢ for n=12,....

Choose an integer k for which ck>M(A4) and disjoint U, e I', (U,),
n=1,2,...,k. Since M =0, we obtain

M(4) z 3k, M(U,) z ck > M(4) ,
which is impossible.
3.21. CoroLLARY. Let 4 € o and fe B,(A). Then the set

fre A-: f(x)+0 and ,(—G)(x,A) <0}
is countable.

Example 5.7 shows that even for a paracompact space P the corollary
is not valid if we replace B,(4) by P(4).
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4. Connection with the Lebesgue integral.

If (P,%,u) is a measure space and 4 € %, then we denote by £,(4)
the family of all functions f € §(A4~) whose restriction to A4 is Y-measur-
able and for which the finite Lebesgue integral [,fdu exists
(see [3, (10.3), p. 126, (11.2), p. 149, and (12.2), p. 146]).

4.1. LeMMA. Let A€o and fe PBy(A). Then also fac € Ry(A4) for every
ceE,cz0.

Proor. According to [12, (6.1)] and 2.1,
Iu(fAc:A) = - u(—[fAc]’A) .

Since —f-=<fac<f, the lemma follows from 2.4.

4.2. THEOREM. Let v be the measure from 3.12. Then Ry(P)=L(P)
and

I(f,P) = prdt for every f € PRy(P) .

Proor. Let fe By (P) and A(f,c)={xeP:f(x)>c} for ce E. If
c20, we set

fo=1a[n(f=[frc)], n=1,2,. ...

{fn}::;l < S'130(})) )

and since f, /¥ 4,9, it follows from [12, 6.11], that A(f,c)eT. If ¢<0,
we have

By 3.14,

A(fi0) = P = N2, A(—f, —c+on ).

Hence by 3.13 again A(f,c) e ¥ and f is T-measurable.

Now let fe F(P) be a non-negative T-measurable function. Then
there is an increasing sequence {s,};> ; of non-negative ¥-simple func-
tions which converges to f. If either I, (f,P) or [pfdr is finite, then
by 3.11 and 2.3,

(3,021 < Bo(P) and  I(s,,P) = fps,.dr.

It follows from [12, 6.11] that fe B, (P) and I(f,P)=[pfdx.
For a general function fe I(P) we apply our previous result to f+
and f-. This completes the proof.

Except for a few special cases (see [13]) we do not know whether also
every function fe P(P) is T-measurable. The next proposition gives a
conditional answer.
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4.3. Prorosirion, If the lower derivate of every super-additive function
on o 18 T-measurable, then also every integrable function is T-measurable.

Proor. Given fe B(P), choose M, e M(f) and N, M(—f) such
that
M, (P)+N,(P) £ 1/n, n=12,....

Let pu(x)=yM,(x) for x€ P—Z,y and p,(z)=+oco for x € Z, ; sim-
ilarly, let g,(x)= —4N,(z) for xe P—Zy and g,(x)= —oco for z € Zy, .
Because Z,, , Zy, are countable, p,, q, are T-measurable, and so are
p=supp, and g=infq,. For z € P we put r(z)=p(x)—q(x) if this dif-
ference has meaning and r(z) =0 otherwise. Since ¢<f<p, r=0 and

0= Iu(r9P) S ianu(pn_qu)

s inf[1(pn, P)+1,(—qn, P)] < inf[ M, (P)+N,(P)] = 0.

By 2.19, (iii), =0 which means p=g=f.

We note that in general there is no connection between I(f,4) and

Jafdr for A € o n'T for which A+ P (see 5.10). However, we have the
following proposition.

4.4. ProrositioN. The following two conditions are egquivalent:

(i) I (f,4)=1,9,A) for every A € o and every f,ge F(A~) for which
f=g on A.

(ii) 0<X, and if A€o, then Py(4)=2,(4) and I(f,A)=[ fdr for
every f € Po(4).

Proor. (i) = (ii). If A<P and fe §(4), let f (x)=f(x) for x4
and f(z)=0 for xe P—A. Let 4Aeo. Then fe PB,(4) if and only if

Sf4€ PBo(P); for
Iu(gA’P) = u(gA,A)'*'Iu(gA’P—A) = u(g,A)

for every g € §(4-). In particular, if 4 € 2 and f=yx,4~, we obtain 4 € &,
(see 4.2, and [12, (6.1)]). Since ¥ is a o-algebra and ¢ is a pre-algebra
generated by 1,0=T. On the other hand, if 4 €T, then fe ,(4) if
and only if f, € (P). Thus by 4.2, B,(4)=L,(A4) for every 4 € ¢ and

I, 4) = IGsP) = [ fadr = | far
for every fe B,(4).
(ii) = (i). Let 4 €o. By 3.12,
A-—AeT and I(yop,A) = L"“‘A dr = 0.
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Therefore k= (+ o)y ,—~_, belongs to PR,(4) and
I(h,A) = im I(ny,~_4,A) = 0.
Given f,g € F(4~) such that f=g on A, we have
f@) = g(@)+h(z) and g(x) = f(2)+h()

for all x € A~ for which the right sides have meaning. An application
of [12, 6.4] will complete the proof.

4.5. DeFINITION. A measure u defined on a o¢-algebra U of subsets
of P is said to be regular if and only if U<=9, u is finite on €, outer
regular on ¥, and inner regular on 11.

This definition is taken from [3, (12.39), p. 177].

It follows from [3, (12.40), p. 187], that a regular measure yu is inner
regular on every A € A which is y— o-finite.

4.6. NoratioN. For A<P let
79(4) = inf{z(U): Ue Nand A<U}.

It is easy to see that 7, is an outer measure in P (see [3], (10.2), p. 126)
and we denote by T, the family of all z,-measurable subsets of P
(see [3, (10.5), p. 127]).

4.7. ProrosirioN. The triple (P,T,,7,) 18 a complete measure space
and the measure 7, 18 reqgular. A set A<P belongs to T, if and only if
ANC does for every C € €. Furthermore, Ty<=I and 14(A) = 1(A) for every
set A € T, which is vy— o-finite.

Proor. By [3, (10.7) and (10.11), p. 128-9], (P,T,,1,) is a complete
measure space. Using 3.12, the verbatim repetition of the proof from
[3, (9.32), p. 123] will show that U<=F,. Since 7,(4)=1(4) for every
A e Nn¢€, the measure 7, is regular (see 3.13).

The proof of the second statement is again the verbatim repetition
of the proof given in [3, (10.31), p. 138].

Let 4 € T, and 7y(4) < + <. By [3, (10.4), p. 139], there are monotone
sequences {C,}> ;<€ and {U,}> ;<1 such that

U ,C,=CcAcU=N,0,,
To(U;) < + o0, and 7,(U —C)=0. We have
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0 = 7o(U) — 74(C) = limo(U,) — limz,(C,)
= lim1(U,) — lim+(C,) = v(U) — ©(C) = «(U~0) .

Since v is complete, 4 € T and 7,(4) = 7(4). If 4 €T, is 1,— o-finite,
then there is an increasing sequence {4,}7° =¥, such that

A = U;O=1A
for n=1,2,... . Thus
To(4) = lim7y(4,) = limz(4,) = 7(4).

Because A€X if and only if ANCeT for every Ce€, T,=T; and the
proof is completed.

and 7y(4,) < +o0

n

4.8. CoroLLARY. If A€ X,, then 8, (A)=8(4) and [ fdry=[,fdr
for every fe 8, (4).

Indeed, for if fe &, (4), then the set {x € A : f(x) %0} is 7,— o-finite.

4.9. CoroLLARY. If P 148 paracompact, then z,(4)=1(4) for every
Aegq,.

Proor. Let A € F,. If 7(4) is infinite, so is 7o(4). Let 7(4)< +co.
By 3.18, AnPg is g-bounded and hence z,— o-finite. Therefore,

7o(4) 2 ©(4) = ©(AnPg) = 7(AnPg)
inf{z(U): Ue NWand AnPy<=U}
inf {t{UU(P—Pg)]: UeNand AnPyc=U} 2 74(4).

I

Il

4.10. ProBLEM. There are two open questions:

(i) Is ¥, a proper part of T ?

(ii) Does corollary 4.9 hold for an arbitrary locally compact Hausdorff
space P?

We feel very strongly that the answer to (i) is negative, at least,
in paracompact spaces. Concerning (ii), a remark similar to 3.18 applies
here.

Some contribution to these problems will be given in [13].

In theorem 4.2 the integral I on ,(P) was represented as the Lebesgue
integral with respect to the measure v. However, the measure 7 itself
was defined by means of the integral I (see 3.12). Now we shall start
with an apriori given measure y which is equal to @ on A and we shall
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investigate the relationship between the integral I and the Lebesgue
integral with respect to the measure p.

4.11. ProrosrrioN. Suppose that (P,%,u) is a measure space, a< ¥,
and G(A)=u(4) for every Acl. Let Ac o and suppose that fe F (4-)
vanishes outside of some compact set. Then I(f,A)= ][, fdp.

Proor. Using the same method as in 3.1 it can be shown that the
indefinite integral [fdu is a narrow primitive function to f on A.

4.12. ProrositioN. Suppose that (P,U,u) is a measure space with a
regular measure p,0<U, and G(A)=pu(4) for every Ael. Then A<F,
and u(Ad)=7\(A) for all A eN.

Proor. Because u is regular, the Lebesgue integral with respect to
u is a Radon measure (see [3, (9.1), p. 114]). Hence by 4.11, 4.7, and
[12, 6.14], u(C)=1,(C) for every C € €. From the regularity of u and
7, it follows that u(d4)=1y(A4) for every 4 € S. Let Ae N and CeC.
By [3, (10.34), p. 139], there are sets B,D e & such that

BcAnC<D and 1,(B—-D)=puB-D)=0.

From the completeness of 7, it follows that AnC € I, and thus by 4.7
also 4 €F,.

According to this proposition there is no loss of generality in assuming
directly that o=, and that G(A4)=17,(4) for all 4 4.
4.13. Lemma. Suppose that 6=Zy and that G(A)=17,(A4) for all A €.
Let Aeo and let Be T, be vy—o-finite. Then
I(xs:A4) = —I(—1p4) = w(4nB).

Proor. Let Be €. Then there is a non-increasing sequence {U,}< U
such that

{U;} < (‘s" B < n;|.0=1 Un’ To(n:‘;l Un—B) =0.

Choose ¢, € &,.(P) such that 0=¢,<1,¢,=1on Band ¢,=00on P-U,,,
and let
fn = A?___l(p,t, n= 1,2,. e e

Using 4.11, 2.19, (i) and [12, 6.13] we obtain that y5 € B,(4) and
Iz, 4) = lmI(fy,4) = lim [ fudzo = [ 15 dny = 7(dnB).

Math.Scand.27 — 7
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Let B € ¥, be an arbitrary v, — o-finite set. Then there is a non-decreasing
sequence {C,}<€ such that

U2,C, =B and 7(B-U>,0,)=0.

Using 2.19, (ii) and [12, 6.11] we obtain
Iu(xB’A) = - u(_XB’A) = liml(xcn’A) = Hm‘ro(AnOn) = To(AﬂB) .

If BeZ, is not 7,—o-finite the previous lemma is in general false
(see 5.5).

4.14. ProrositioN. If 6<%, then the following two conditions are
equivalent :

(i) If A-— A is ty—o-finite, then I (f,A)=1,(g,A) for every f,geF(A-)
Jor which f=g on A.

(ii) (4)=1,(A) for every A e A.

Proor. (i) = (ii). If A €4, then A~ is compact, and hence 7,(4')=
t[(P—A)]< +. By 4.7 and [12, 6.8, (6.1)],

t(d) = ©(4) = (x4, P) = L(34,4)+1(14, P - 4) = I(34-,4) = G(4).

(ii) = (i). According to 4.13, I(y,—_4,4)=0, and we can repeat
verbatim the second part of the proof of proposition 4.4.

4.15. CoroLLARY. Suppose that (P,U,u) 18 a measure space with a
regular o-finite measure u,0<W and G(A)=u(Ad) for every Ael. Let
A€o, FeF,lo,) and let Z<A- be a countable set. If
$F(x) = 0 forall xeZ u (),

«F(x) 20 forall xe A-Z,
xF(x) > —cc  forall xze A——(AV Z),
then F 20.

Proor. Since F € M(,F,A), the corollary follows from 4.12 and 4.14.

The reader should compare this corollary with [12, 5.9]. Examples
5.9 and 5.10 show that the regularity of the measure u is essential here
as well as in proposition 4.12.

4.16. THEOREM. Suppose that t, 18 o-finite, 6= T,, and that G(4) =t (A)
for all Aed. Then 8, (A)<=Py(A) for every Aeo and
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I(f,A) = fAdeo for every fe 8, (4).
This theorem follows from 4.14, 4.4 and 4.8.

4.17. PrOPOSITION. Suppose that 1, is o-finite, =T, and that G(4)=
7o(A) for all AeA. Let Aeco and fe B(A). If there are disjoint sets
A,,..., A, from o, with union A and such that f does not change its sign
on each A; 1=1,2,...,n, then fe P,(4).

Proor. We may assume that >0 on U*_ 4, and f<0 on U ,,,4,,
where k is an integer, 0<k=<n. By 2.2 and 4.4 we obtain

=I(=|f1,4) = L(f1,4) = 21 L(fl,4,)
=3 I(f,A) = 3i g I(f,4) + +oo.

Loosely speaking, this proposition says that if we want to obtain a
conditionally convergent integral, the system o must not be too large.

5. Examples.

The majority of the examples given in this section serve as counter-
examples. The rest are included for illustration purposes.

5.1. ExampLE. Consider the situation from example [12, 8.5]. Accord-
ing to 2.15, POU(P)=B,*(P). Hence by [9, 90], BO(P) is just the family
of all functions which are Lebesgue integrable over P and the integral
I° is equal to the Lebesgue integral. This gives the affirmative answer
to the problem from [9, 91].

5.2. ExampLE. Let P=FE,, =R, (see [12, section 8]) and consider
the natural convergence »°. If f(x)=x"1sinz~! for z+0 and f(0)=0,
then, using 3.2 and 2.17, it is easy to see that fe B([0,1)), but
£ & B (0,1)).

Using 2.15, it is not too hard to see that the integral I* coincides
with the one-dimensional Lebesgue integral on every set A € o for which
A- is compact. However, for an arbitrary set 4 € ¢ this is not any
more correct; for, for example, the function z-!sinz belongs to
B[, + o).

From [12, 7.3] it follows that the integral I is closed with respect
to the formation of improper integrals. Nevertheless, example 93 in [9]
shows that I does not coincide with the classical Perron integral (see
also example 8.4 in [12]).
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5.3. ExaMPLE. Let P=FE,, 0=%R,, and consider the natural conver-
gence x°. For (z,y)e P set: f(z,y)=2"'sinaz-! if 240 and f(x,y)=0
otherwise; g(r,y)=2"'sinz if 40 and g(z,y) =1 otherwise. Then it fol-
lows from 3.3 and 2.17 that f¢B([0,1) x [0,1)), but ge P([0, + o) x [0,1)).

5.4. ExampLE. Let P=[0,1) with the half-open-interval topology
(see [5, chapter I, K, p. 59]), let ¢ be the system of all Borel subsets of
P, and let G be the Lebesgue measure on ¢ (this has good meaning, since
the Borel subsets of P coincide with the Borel subsets of [0,1) in the
ordinary topology). The space P is Hausdorff but not locally compact;
for by [5, chapter I, K(d), p. 58], every compact subset of P is count-
able. We shall consider the natural convergence »° in P and show that
the function f=yp is not integrable over P.

Let M eM(—f,P) and ¢>0. If Aeco is countable, then G(4)=0
and hence by [12, (6.2)], M(4)zI,(—f,A)=0. Since yM(cc)20, there
is a countable set 4 € o such that

—e < M(P—A) £ M(P—-A) + M(4) < M(P).

From the arbitrariness of ¢ it follows that M(P) = 0 and thus I,(—f, P)=0.
Suppose that there is N € M(f, P) such that N(P) < ¢ for some ¢ € (0,1)
and let
60={Adeo:N)/G(4)<¢e}.

Then o is a non-empty semihereditary system (see section 1); for Peo
and if 4,B are disjoint sets from o—d, then

M(AUB)/G(AUB) 2 [M(4)+M(B)]/[6(4)+G(B)] 2 «,

and so AUB € o0—4d. The system 4§ is also stable (see section 1) in [0,1]
with the ordinary topology; for ¢ 6 and if 4 €4 and x €[0,1], then
there is an ordinary spherical neighborhood U of 2 such that

NA-U)/G(A-T) = [N(4)-NAnU)]/[6G(4)-G(AnD)]
S NA)[[G(4)-FAnT)] < ¢,

and so 4—U € 4. (Notice that the system J is not stable in P”: con-
sider oo.) It follows from [10, 2.5] that ¢* (see [10, 1.5]) is uncountable.
Hence by [5, chapter I, K(d), p. 58], the set of all accumulation points
from the right of ¢* is uncountable. Since every accumulation point
from the right of 6%, belongs to 6*, ,N(x,P) <& <1 for uncountably many
z e P. This contradiction shows that I,(f,P)=1.
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5.5. ExampLE. Let P=E;x E,, where E, is the set of all real numbers
with the usual topology and E,; is the same set with the discrete topology.
Then P is a metrizable locally compact topological group and hence
according to [2, (8.13), p. 76], it is paracompact. Let fe §,(P) vanish
outside some compact subset of P. Since the Riemann integrals

12 f(x,y) dy are finite for all x € E; and equal zero for all but a finite
number of x € E;, we can let

I = 3{[rwy ay v e By

and denote by p the regular measure in P induced by the function J
(see [3, section 9, 10]); the space P and the measure u are described in
[2, (11.33), p. 127]). On the sets (x)x E,, x € E;, the measure u ob-
viously coincides with the one-dimensional Lebesgue measure u,.

Let o be the pre-ring of all sets A<P such that

4, = {yekE, :(z,y)e A}

is an interval in E, for all xe E; and 4,=0 or A,=E, for all but a
finite number of ze€ B;. For ze P, let », consist of all sequences
{B, ) ,<¢ which satisfy axiom %", and such that either ze N2, B,
or B, =0 for all sufficiently large n. Using [10, 3.1, 3.2], it can be easily
seen that the convergence »={x,:zec P"} satisfies axioms 4 ;— .
With G=pg on A it is not too difficult to show that for 4 € g, fe PB(4)
if and only if the classical Perron integrals [, f(z,y)dy exist for all
z € E; and the sum

E{L:f(x,y) dy Ierd}

is convergent (see [5, chapter II, G, p. 77]); we have

15,4) = 3{[ , feg)dy v e By}

From 4.3, [9, 89] and [3, (10.31), p. 138], it follows that every inte-
grable function is uy-measurable. Hence all the measures y, v and 7,
(see 3.12 and 4.6) coincide and PBy(4)=8,(4) for every A € o for which
A-—A is p—o-finite.

The closed set B=E;x (0) is not ¢-finite; for u(C)=0 or + o accord-
ing to whether C<B is countable or uncountable, respectively. Let
A=E;%x(0,+ o) and let M € M(—xp,A4). Then

M e M(—xp, () x(0,+00)) forevery xe K,
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and hence
+M(z,4) =2 0 forall ze 4A-.

Therefore M =0 which implies I,(—yp,4)=0. However, since A- is
paracompact, it follows from 3.16 that I, (y5,4)= + co.

5.6. ExampLE. Consider the situation from [12, 8.4], with the natural
convergence x%. Let B<[0,1] be the Lebesgue non-measurable set and
let f=xp+xp_o1r Then

- u("'f’P) = u(f!P) = +oo,

FAxon € Bo(P);

for faypu=1xp and, according to [9, p. 90], every function from By(P)
is Lebesgue measurable.

however,

5.7. ExamMpLE. In P=A4 x {0,1}, where A is an uncountable set, we
shall consider the discrete topology. Hence P is a locally compact
and paracompact space. Let ¢ be the pre-ring consisting of all finite
subsets of P and of all sets (4 —B)x {0,1} where B is a finite subset
of A. For Beo put G(B) equal to the number of elements of B, if B
i finite, and put G(B)= + « otherwise. For z € P, x, consists of trivial
nets {J} and {(2)}; #,, consists of the net {U,U € I', =} where I is the
family of all sets Be g for which BuU(co) is a neighborhood of oo.
Obviously, axioms J¢,—X"y are satisfied here. For (r,y)eP let
f(@,y)=(-1)Y, and for Beo let

F(B) = 3{f(2) : 2€ B},

if B is finite, and F(B)=0 otherwise. Then F is a narrow primitive
function to f on P. Hence f e B(P) and I(f,P)=0. However, according
to 2.2 and 3.19,

—I(=f*P) = I(f+,P) = +oo.

6.8. ExampLE. Let P=[0,1]4—(6), where A is an uncountable set
and 0 is a zero function on A. With the relative topology from [0,1]4
the space P is Hausdorff and locally compact but not o-compact
(see [5, p. 114]). Let o be the pre-ring consisting of all sets X, . ,K,—(0),
where K,<[0,1] is an interval for all xe A and K,=[0,1] for all but
a finite number of x € 4. On ¢ we define the natural convergence x?°,
and if

K = X,eaK.~ ()
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belongs to ¢ we let
G(K) = HaeA:u'l(Ka);

here u, denotes the one-dimensional Lebesgue measure in [0,1]. Ob-
viously, 7(P)=1; however, since Pz=P (see 3.14), the set PnP is not
o-bounded (see 3.18).

5.9. ExamMpLE. For an ordinal «, W(x) denotes the set of all ordinals
less than « with the order topology. Let P= W (), where {2 is the first
uncountable ordinal. For a Borel set 4 <P we set u(4)=1 or 0 according
to whether 4 does or does not contain an uncountable closed subset,
respectively. By [4, section 53, problem 10, p. 231], the function u is
a non-regular measure on &. Letting o=, G =y, and using the natural
convergence %% we obtain

T =3, =expP,
where exp P denotes the family of all subsets of P, and 1=1,=0.

5.10. ExamPLE. Let P=W(2+1) and define 4 on & as in 5.9. Letting
0=8, G=y, and using the natural convergence »°, we obtain

T =3, =expP,
and
T(A) = 1o(4) = y4(2) forall A<P.

If A=P—{Q}, then, although yp_,(x)=yxy(x)=0 for all xc 4,
IGgp_s4) = G(4) = 1 while I(yp,4) = 0;

also [ xp_4d7r=0.
If F= —@, then F is ¢g-additive on ¢; then ,F(x)= + oo for ze P — {2},
and ,F(Q)= —1. Nevertheless, F(P—{Q})= —1.
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