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MISBEHAVIOUR OF SOLUTIONS OF
THE DIFFERENTIAL EQUATION y'=f(z,y)+¢ WHEN
THE RIGHT HAND SIDE IS DISCONTINUOUS

GERALD S.GOODMAN and JAMES A.YORKE*

1. Purpose.

It is well known that by consideration of the corresponding integral
equation, most qualitative theorems concerning initial-value problems
for the first order ordinary differential equation ¥’ =f(x,y) can be ex-
tended to the case where the right side is no longer continuous (see e.g.,
[2, §§ 45-46], [3], [4]). In this note, however, we shall show by example
that more than one widely used theorem in the continuous case cannot
be so extended, at least not in a form which would preserve its most
useful feature, as soon as the right side of the equation fails to be jointly
continuous at just a single point, even though it remains bounded and
continuous there in each variable separately.

2. Some theorems which cannot be extended.

THE APPROXIMATION THEOREM FOR THE MAXIMAL SOLUTION ([8], [9],
[7], [6)). Let f(-,-) be a real-valued function which is jointly continuous
in z and y for all (x,y) in Rx R. Choose any point (&£,7m) in Rx R and,
among all the solutions of the differential equation

E, ¥ = f(x,y)+e  (e>0 fized)

that pass through the point (&,m+ ¢), select any one and call it y (-). Denote
by yo(+) the maximal solution of the differential equation

E, Y = fl.y)

issuing to the right from the point (&,7), and suppose that B> & is so chosen
that y,(- ) exists throughout the interval [£,8]. Then, if o« is suchthat § < x < f,
the solutions y,(-) will exist on [&,«] for all e sufficiently small and will
converge uniformly on [&,«] to y,(-) as € tends to zero.
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An alternate version of this theorem (cf. [8], [9], [7]) has 8 > & so chosen
that all the solutions y (-) exist on [£, 8] for ¢ sufficiently small, and then
the conclusion is that the y,(-) converge uniformly on [£,8], as & tends
to zero, to a function y4(-) which turns out to be the maximal solution
of E, on [£,8]. When ¢ is restricted to a sequence of values tending to
zero, the theorem provides a constructive proof of the existence of the
maximal solution, in contrast with the usual proof ([3, p. 45]) which
requires the consideration of a continuum of solutions of the original
equation K.

Both versions of the approximation theorem rely heavily upon a com-
parison theorem to allow the solutions y,(-) of the equations E, to be
chosen so freely. The following one ([7], [5, §§ 44—45]) is typical.

THE COMPARISON THEOREM. Suppose f(-,-) and g(-,-) are both conti-
nuous and real-valued on R x R, with

fx,y) < g(x,y)

for all (z,y). Then no solution curve of the differential equation B issuing
to the right from an arbitrary point (§,m) will meet any solution curve of the
differential equation

G ¥ =9,y

that issues to the right from a point (&,17+90), 6> 0.

3. Formulation as an integral equation.

As an integral equation, the initial-value problem for the differential
equation E, takes the following form:

z

IE, y(@) = n + [ fluy(w) du.
é

This equation will have a solution as long as f satisfies the Carathéodory
hypotheses [2, §§ 576-582]: f should be measurable in z, continuous in g,
and have its absolute value dominated by a summable function of « which
is independent of y. Under these circumstances, every solution y(-) of
IE, will be absolutely continuous and, by the fundamental theorem of
calculus for Lebesgue integrals, will satisfy the differential equation E,
a.e. In particular, a solution y(-) of IE, will satisfy E, at every value of
x for which (z,y(z)) is a point of joint continuity of the function f, as
follows, e.g., from [10, p. 107].
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4. Example one.

Suppose that
f(x,y) = 2y/x for [y| < |x], z+0,
= 2 signay for O0< x| <|y| 2]z,
= 4signzy — yfr for 0<2(x| =< |y| <4z,
=0 otherwise .

The function f is continuous on the circle 22+ y%=1, and therefore, by
its homogeneity, is jointly continuous everywhere except at the origin.
There it remains continuous in x and y separately.

In the interval [—1,1], the maximal solution yy(-) of the differential
equation E, (understood in the Carathéodory sense), issuing to the right
from the point (&,7)=(—1,0), consists of the broken line

Yolx) =0 for —152<50,
= 2x¢ for 0<z=<1.

To confirm this, we may note that f(x,y) is locally Lipschitzian in y
forx <0, |y| < 2|z|, so that E, possesses a (locally) unique solution through
any point in this region. Since y4(z)=0 is a solution of the equation E,
in the half-open interval [—1,0) with yo(—1)=0, it is, by default, the
maximal solution on [—1,0) issuing from the point (—1,0).

At the origin, uniqueness breaks down. Therefore, to see that y,(z) = 2z
is the maximal solution of E, issuing to the right from the origin, we
verify, first, that it is a solution, and then note that f(r,y) satisfies
everywhere the inequality |f(x,y)| £2. Since every solution y(-) in the
Carathéodory sense in the interval [0,1], for which y(0) =0, is continuous
in [0,1] and differentiable in (0, 1], the mean-value theorem of differential
calculus applies, and we conclude that, for any « in (0,1],

y(@) = y(x)—y(0) £ maxo y,y'(u)x—0) = 2z,

which proves that y,(-) is maximal on [0,1]. (We could, of course, have
achieved the same result by estimating the integral in IE, (for £=%=0)
directly.)

Combining this with the result of the previous paragraph gives us the
maximal property of the solution y,(-).

On the other hand, taking for the solutions y,(-) of the equations E,,
for 0 <& <1, the functions y,(x) = —ex, we see that as ¢ tends to zero the
functions y,(-) converge uniformly on [—1,1] to the function y(z)=0,
which is not the maximal solution of E; on this interval.
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5. Example two.

In the above example, the maximal solution y,(-) fails to be differenti-
able at the origin. However, if we modify the definition of f inside the
first quadrant, we can produce an example where the maximal solution
Yo(+), as well as the e-solutions y,(-), are C»1 functions, and still the
convergence fails.

For >0, y>0, set ([2, § 585])

f(x,y) = ny/x  for y<am,
= na"1 for y2an,

otherwise, let f be defined as in the previous example. The maximal
solution on [—1, —1], issuing to the right from the point (—1,0), is now

Yolx) =0 for —1=52<0,
=z for O0=Zz=Z1.

The function y,(-) actually satisfies the differential equation E, at every
point of the interval [—1,1]. Nevertheless, taking the solutions y(-) as
before, we see once again that they do not converge to y,(-) on the inter-
val (0,1]. Nor does the comparison theorem hold when g¢(-, -) is taken to
be f(-,-)+e.

6. Final remarks.

When the discontinuity of f(-, -) occurs only at the left endpoint of the
interval [£,o0), the comparison theorem of § 2 still remains valid, cf.
[6, § 58]. Our examples show that this form of the theorem is essentially
best possible.

Under Carathéodory hypotheses on f and g, a somewhat weaker form
of the comparison theorem is known to hold (cf. [1], [4]) if the con-
clusion is modified to restrict the various competing solutions of G to
the maximal solution alone. With a similar restriction on the solutions
y*), the approximation theorem will likewise hold [3, p. 47], but its
principal virtue has now been sacrificed.
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