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ON EQUATIONAL CLASSES OF ALGEBRAIC
VERSIONS OF LOGIC I

DONALD MONK

In this paper we study equational classes of one- and two-dimensional
polyadic algebras. We intend to extend this study to higher dimensions,
and to other kinds of algebraic logics, such as relation and cylindric alge-
bras.

For one-dimensional polyadic algebras the lattice of equational classes
forms a chain of type w+1, and we give explicit, simple, equations
characterizing each class. We do not have such complete results for
two-dimensional polyadic algebras, but we answer some fundamental
questions about their lattice of equational classes: there are X, classes;
each class is finitely based ; each class is determined by its finite members;
each class has decidable equational theory.

The methods of this paper are elementary, but we make essential use
of the fundamental article Jonsson [3]. Representation theory does not
play a role here, although we may mention that every two dimensional
polyadic algebra is representable, and every countable simple two-
dimensional polyadic algebra can be embedded in the algebra of all sub-
sets of w x w (cf. Everett and Ulam [1], McKinsey [5], Halmos [2, pp.
97-166]. G.- C. Rota suggested the problem of determining equational
classes of polyadic algebras. Several conversations with James S. John-
son were useful.

We use standard set-theoretical language. The letters m,n,... range
over w, the set of natural numbers. We use f: 4 - B, f: A>> B,
f: A>» B to indicate that f is a function mapping 4 into B, one-one into
B, or one-one onto B respectively. We denote by 4B the set of all func-
tions mapping A into B. The f-image of a set X is denoted by f*X.
We use f,,. interchangably with f(x,y,z). By I we denote the identity
function: Ir==x for all . If E is an equivalence relation on a set 4, a
subset of 4 is E-closed if it is a union of E-classes. The equivalence class
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of an element a € 4 is denoted by a/E. If X < 4 we let X/E = {x/E: xze X}.
Further, SA={X: X< 4}.

Symmetric difference is denoted by @. If U is a Boolean algebra with
operators, At is the set of all atoms of U; for a € 4, Ata is the set of
all atoms <a.

If K is a class of similar algebras, then HK, SK, PK are the classes of
homomorphic images of members of K, isomorphs of subalgebras of
members of K, and isomorphs of direct products of members of K. Thus
HSPK is the equational closure of K. An equational class K is determined
by Lif K=HSPL. If L={%: A c K, |A| <w}, we say that K is determined
by its finite members. A set I' of equations characterizes L relative to K
if L consists of all % € K in which all equations of I" hold. For algebras
A, B we write f: A -~ B to indicate that f is a homomorphism from Y
into B; A - B means that f: A > B for some f. Similarly f: A — B,
A>—» B (or Ax~B), etc. EqK denotes the set of all equations holding in
all members of K. A set I' of equations is decidable if, under some
standard Godel numbering, I" is recursive.

We assume an elementary knowledge of polyadic algebras (see Halmos
[2]). A one-dimensional, or monadic, polyadic algebra is a structure
{4,+,-,—,c) where {4, +, -, —) is a Boolean algebra, and c is a quanti-
fier on (4, +,-, —). Further PA, is the class of all monadic algebras.
The following known theorem is useful in section 1.

TuEOREM 0.1. If 9 is a PA, generated by m elements, then |A| < 222",

To introduce the notion of a two-dimensional polyadic algebra, we
define (0,1), (1/0), (0/1) € 22:

(0,1)0 = 1; (0,1)1 = 0;
(1/0)0 = 1; (1/0)1 = 1;
(0/1)0 = 0; (0/1)1 = 0

We treat a two-dimensional polyadic algebra, a PA,, as a structure
A={4+,", —,606,8(0,1),8(0/1),8(1/0));

for the appropriate axioms, see Halmos [2]. For the sake of reference,
we take the following redundant set as axioms (where ¢ € 22, and S(I '2)
is the identity on A4).

Pl (4, +,-,—) is a Boolean algebra;
P2 ¢,0=0;

P3 z=<cx;

P4 cfx-cy)=c;z-c;y;
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P5 c,c;x=cicix;

P6 S(o)z+y)=8(c)x+8(o)y;

P7 S(e)(—x)= —8S(o)x;

P8 S(e)S(z)x=_8(0c0 1)x;

P9 S(o)c;x=8(7)c;x if ar2~{i}=112~{i};
P10 S(o)coc,x=chc 2;

P11 8(0,1)cox=c,8(0,1)x;

P12 §(0,1)¢c,x=¢,8(0,1)x;

P13 ¢, 8(0/1)x=8(0/1)x;

P14 ¢,S(1/0)x=8(1/0)..

The following elementary theorem is useful.

THEOREM 0.2. If a ts an atom in a PA,, then cya is an atom in the
Boolean algebra cy* A, and cya is an atom in c,* 4.

Proor. Suppose 0cyb=<cye. Then a-cyb=+0 (otherwise c,a-b=0), so
a<cyb, coa<cyb, and cyb=cya.
Note that a simple monadic algebra is just a Boolean algebra with the
trivial ¢:
cx=1, x+0,
0, =0.

A subalgebra of a simple PA, or PA, is simple. By Jonsson [3] the lat-
tice of equational subclasses of PA; (or of PA,) is distributive.

1. Monadic algebras.

The lattice of equational classes of PA,’s is a chain of type w+1; in
this section we prove this and give explicit equations which characterize
each class relative to PA,.

For each mew~1 let %, be a simple monadic algebra of power 27,
and let K, =HSP{%,}. Let K, be the class of all one-element monadic
algebras. Thus KycK,<...<PA;. By Jonsson [3, 3.4], all of these
classes are distinct. Let L be any equational class of monadic algebras,
L+ K, and let L' be the class of all simple members of L. We distinguish
two cases.

Case 1. All members of L’ are finite. Then, by an ultraproduct or
compactness argument, L' has a member of maximum cardinality 2m.
Obviously then L=K,,.

Case 2. Some member of L' is infinite. Then all finite simple monadic
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algebras are in L’. Since every algebra is the union of its finitely generated
subalgebras, and since every finitely generated monadic algebra is finite,
L=PA,.

Each of the classes K, K,,. . .,PA, is characterized relative to P4, by
a single equation. For K, and K, we can take v,=v; and cvy=v, respec-
tively. For K,,, m € o ~2, we can take

(1) Hi<j<nc(vi®vj) =0,

where n = 2"+ 1; finally, for PA, take v,=v,. In the natural equation (1),
2m 4+ 1 variables occur. It is natural to ask how few variables can appear
in equations relatively characterizing K,,. The number 2™+ 1 can easily
be reduced to m; for m > 1, K,,, is relatively characterized by the equation

Hi<1<mc(vi@vj)°ni<z‘<m —’c(vi'vj) 'Hi<m _'vi'Hi<mc’0i =0.

On the other hand, if 2% <2m it is clear that an equation with p or
fewer variables cannot relatively characterize K,,. An exact value for
the number of variables needed is not known. A reformulation of this
problem is: for m>1, what is the least » such that ¥ € K,, whenever
every subalgebra of 9 generated by <= elements is in K, ?

Since each class K,,, as well as PA,, is finitely axiomatizable, by
Theorem 0.1 it follows that each EqK,,, as well as EqPA, is decidable.
It seems to be a difficult problem whether the full elementary theory of
PA,’s is decidable.

2. Algebraic lemmas for PA,’s.

In this section we collect some algebraic facts which will be needed in
discussing equational classes of PA,’s.

If A and B are two PA,’s and Fc A, an A-isomorphism of F into B
is a one-one map f of F into B such that if x,y € F, then f(x+y)=fx +fy,
fley)=fefy, f(~2)= ~fz, few=cofr, fow=cifz, [S(0,1)x=8(0,1)fz,
f8(1/0)x=8(1/0)fx, and fS(0/1)x=.8(0/1)fx; these conditions under the
assumptions that, respectively, x+y e F,...,S(0/1)x € F. The following
theorem is analogous to an unpublished theorem of Leon Henkin con-
cerning two-dimensional cylindric algebras and representable two-di-
mensional cylindric algebras. The present theorem, with its immediate
corollary that EqPA, is decidable, was independently proved by Henkin.

THEOREM 2.1. If A is a simple PA, and F is a finite subset of A, then
there is a finite simple PA,%B with at most 2°" elements, where m=12|F|,
such that there is an N-isomorphism from F into 9B.
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Proor. Let
Fy = FUc*F uc*F, F, = Fyu8(0,1)*F, u S(1/0)*Fy u S(0/1)*F, ,

and let B be the Boolean subalgebra of % generated by F,. Thus |B| < 22",
as desired. For the Boolean operations on B we take the restrictions of
those of A. Clearly B is closed under S(0/1), S(1/0) and §(0,1), and we
let these operations on B also be the restrictions of those of 2. Now for
any x€ 4 and 1< 2 let

(1) ¢/'% = [lecepenCit -
Clearly B is closed under ¢,’ and ¢,’, and we let the restrictions of these

to B be the remaining operations on B, giving an algebraic structure %B.
The following properties of the ¢,” are clear for any x € 4, 1< 2:

(2) Cici’x = Ci’x EB )
(3) cr < ¢,
(4) c,xeB = c¢@ =c¢;w.

From (4) it follows that the identity map on F is an U-isomorphism of
F into B. It remains only to show that %5 is a simple PA,. Conditions
P1, P6, P7, P8 and P9 are immediate. P2 follows from (4), and (1)
yields P3. Turning to P4, suppose z,y € B and i<2. By P3, z¢,'y<
¢;x ¢;'y; hence ¢/ '(xc;'y) <c;,'x ¢;'y. Next, let ¢ be any element of 4 such
that zc;'y<cte B. Then x<ct+ —c;'y, and the latter is a c;-closed
member of B. Hence c¢/z<ct+ —c;'y by (1), that is, ¢;/zc/'y<ct.
Using (1) again, this shows that c¢;x ¢,y <c,'(xc;'y). Hence P4 holds.
Using P1-P4 and (3) it is easily seen that ¢,'c;’c=c,'cy’x =1 whenever
0%z € B. Hence P5 holds (and % is hence shown simple if the remaining
postulates are verified). Condition P10 also easily follows now. It re-
mains only to check one of the two symmetric conditions P11 and P12,
say P11; and one of the two symmetric conditions P13 and P 14. say
P13. For P11, we have for x € B

(5) 8(0,1)cy’ = TTr<ccprenS(0,1)cet

(6) ¢,'8(0,1)x = HS(O,I)xselteBclt .

If z <cyt € B, then 8(0,1)x <¢,8(0,1)t € B and hence by (6)
¢,'8(0, 1)z < ¢,8(0,1)¢ = 8(0,1)cyt .

It follows that ¢,"S(0,1)x <8(0,1)cyx by (5). The converse inclusion is
similar.
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As to P13, if x € B, then ¢,S(0/1)x=8(0/1)z, and P13 results by (4).
This completes the proof.

The proofs of other algebraic facts which we need are facilitated by
the introduction of the notion of an atomic structure. This notion was
introduced and studied for arbitrary Boolean algebras with operators in
Joénsson and Tarski [4], and its theory was extensively developed for
cylindric algebras by Henkin. An atomic structure is a quadruple U=
(4,E.f,B) satisfying the following conditions:

Al A4 is a non-empty set;

A2 E is an equivalence relation on 4;

A3 fis a permutation of 4;

A4 BcAd;

A6 for all x,y € A/E there is an a € x such that fa e y;
A7 |Bnz|=1 for every x € A[E;

A8 fb=>b for each b e B.

Given an atomic structure U, we let
PA,A = (S4,U,n, ~,cy,¢,8(0,1),8(0/1),8(1/0)) ,
where, for any X< 4,

A9 ¢ X={acAd:3Ibe X(akb)};
Al10 ¢, X = {aed:3be X(faEfb)};
All 8(0,1)X={acd: facX};
Al12 8(1/0)X=U, xnpo/E;

A13  8(0/1)X =8(0,1)S(1/0)X.

Conversely, if B is a simple complete atomic PA, we let

%t% = <At%,E,f,C> >

where

Al4 E={(a,b): a,be At B,ca=cyd};
Al5 f=8(0,1)1At®;
Al16 C={aec AtB: S(1/0)a+0}.

The basic theorem on atomic structures is as follows.

THEOREM 2.2. (i) If A is a finite atomic structure, then PA, YU is a simple
finite PA,, and At PA, A ~A.

(ii) If B is a simple finite PA,, then LB s a finite atomic structure,
and PA, At B~ B.
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Proor. (i). Clearly PA,% satisfies P1-P4 and P14. Axiom P5 will
follow from simplicity, which we proceed to prove. Suppose 0+X<c A
and a € 4; we wish to show that a € ¢,c,X and a € ¢,¢,X. Choose b € X.
Choose z € fb/E such that fr € a/E (using A6). Thus aEfx, ffx=xEfb,
and b e X. It follows that a € cic;X. The proof that a € ¢,c,X is analo-
gous.

P6 and P7 are obvious for ¢=(0,1). If aeS(1/0)(XuY), with
X,Y< A, choose b e (XuY)nB so that aEb; this clearly implies that
a € 8(1/0)XuS(1/0)Y. The converse is similar, so P 6 holds for ¢=(1/0).
Suppose a € S(1/0)(~ X). Choose b € ~XNB such that aEb. Condition
A7 rules out the possibility that a e 8(1/0)X. Thus S(1/0)(~X)<
~8(1/0)X, and the converse is obvious. Hence P7 holds for o=(1/0).
Finally, from A13 it is now obvious that P6 and P7 hold for o=(0/1).

We take only one representative case for P8. Suppose a e S(1/0)
8(0,1)X. Choose b € §(0,1)X nB such that aEb. Thus fbe X; but fo=0
by A8. Hence b e XnB, so a € 8(1/0)X. The converse is similar.

As to P9, we also treat only one case: §(0,1)c,X =8(1/0)c,X. Indeed,
suppose @ € 8(0,1)c,X. Thus fa €c¢,X; choose € X such that aEfz.
Choose b € (fr/E)nB. Then fb=0bEfx, and so b € Bne,X. Since akb, it
follows that a € 8(1/0)c,X. The converse is similar.

P10 is obvious by simplicity, P11 is easy, and P12 follows from P11.
Finally, P13 easily follows from the remaining conditions. We have now
established that PA,% is a simple finite PA,. It is obvious that
At PA, A~ N.

(ii). Clearly At®B satisfies A1-A5. Let z,y € At®B/E. Choose dex,
bey. Then cy,fo=1, so d<cyc,fb. It follows that there is an a<c,fb
such that d<cye. Hence dEa,

8(0,1)a < 8(0,1)cyfb = ¢uS(0,1)8(0,1)b = cob .

Hence dEa, faEb, so a € x and fa € y, as desired—A 6 holds. For A7, let
x € AtB/E. Choose a € x. Then S(1/0)coa=cya, so

0 % ot = Dpeatmp<caS(1/0)0 .

Choose be At®B with b<cye and S(1/0)b+0. Thus bexnC. Suppose
also that d e znC and b+d. Thus d <cee and S(1/0)d+0. Now

¢eS(1/0)d = S(1/0)d < 8(1/0)ced = cod = coa;
hence S(1/0)d=cqa by Theorem 0.2. Similarly S(1/0)b =cqa. Hence
cor = S8(1/0)b-8(1/0)d = S8(1/0)(b-d) = 0,
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a contradiction. Hence A7 holds. Note that we have shown that
8(1/0)b =cyb for any b e C. To verify A8, suppose b e C. Then

8(1/0)fb = S(1/0)S(0,1)b = S(1/0)b + 0;

hence fbeC. Further, c,fo6=.8(1/0)fb=8(1/0)b=ceb. Hence fbeCn
(b/E), so fo=b by A7. We have now proved that At® is an atomic
structure.

It is easily verified that the function g such that gr={a € At®B: a<x}
for any z e B is an isomorphism from B onto PA, At B. This completes
the proof.

THEOREM 2.3. Let A={(A4,E,f,B) and €=(C,F,g,D) be two finite
atomic structures. Suppose G: C —~ SA such that

(i) G s a one-one map of C onto a partition of A;
(ii) if u,v € C and uFv, then Gu|E=Gv|E;
(iii) if w,v € C and ulfv, then Gu/EnGv[E=0;
(iv) of u € C then Ggu=[f*GQu;
(v) if d € D, then BnU, gqa/E <Gd.

For X =C define @X=U, xGz. Then ': PA, 6 > PA,9.

Proor. From (i) it easily follows that G’ is a Boolean isomorphism
into. @' preserves c¢,. Let w e @'c,X. Choose x € ¢, X such that u € Gx.
Say zFye X. Then Gxz/E=Gy/E by (ii)). Choose ze Gy such that
u/E=z[E. Thus uEze Gy, ze X, uec,G'X.

Conversely, suppose that uec,G'X. Say uBve GQ'X, ve Gz, v X.
By (i) choose w € C such that » € Gw. Thus ve Gz, vculE, so Gu[En
Gw([E #0; by (iii), 2Fw. Hence w e ¢ X, u € G'ceX.

G preserves 8(0,1). Let ue@'S(0,1)X. Say ueGzx, x€8(0,1)X.
Thus gz e X. By (iv), fu € Ggz, so fue G'X and e 8(0,1)G'X. The
converse is similar.

G’ preserves c,: follows from the preceding two cases.

@ preserves S(1/0). Let we G'S(1/0)X. Say we Gz, xeS(1/0)X.
Choose d € XnD such that xFd. Thus Gz/E=Gd[E by (ii). Hence
choose w € Gd such that u/E =w/E. Choose b € (w/E)nB. By (v), be Gd.
Thus b e @’ XnB, so, since uEb, u € S(1/0)¢'X.

Conversely, suppose % € S(1/0)G'X. Choose b € G’X nB such that uEb.
Say be Gz, xe X. By (i) choose y € C such that v e Qy. Thus Gx/En
Gy[E +0, so by (ili) zFy. Choose d € z/FnD. Thus zFd, so by (ii)
Gz|E =Gd|E. Hence

b e BnU,.cqalE < Gd
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by (v). Thus be GxnGd, so x=d. Hence uec Gy, yFz, xc DnX, so
we@8(1/0)X.
It is obvious that G’ preserves S(0/1)X.

The following notation will be found useful in what follows. If
A=(4,E,f,B) is an atomic structure and » and v are E-closed subsets
of 4, we set

NY = {acu: fa=a},
PY = {acu:a*facu},
MY = {aecu: faecv}

Note that if u is an E-class, then NY 40 (since |Bnu|=1), and |P¥ is
infinite or else finite and even. If 4 and v are distinct E-classes, then
MY +0 by A6; also note that |MY|=|MX|. The limiting possibilities
IN¥ =1, P%=0, |M%|=1 can be realized.

THEOREM 2.4. Let U={4,E,.f,BY and €={C,F,q,D) be finite atomic
structures, and suppose given H:A|E>»C[F such that for all distinct
z,ye A|E,

(i) 1Pl <|P3l,
(i) [Nl — 3(PZ| — |PE,) < INZ],
(i) | M e, | < | M3

Then PA,E > PA, .

Proor. Let zy,...,x,, be an enumeration of A/E without repeti-
tions. For each ¢ <m and each j with ¢ <j<m choose Qy;,Q1;:, @z Ways
such that:

(1) QoSN QunB=0,and |Qo = max (0, | N, | - 3(1Pg| — |Pfl) —1);
(2) @y, is a collection of pairwise disjoint doubletons {y,z}< P¥ such
that fy=z, with
IQlil = |NI(£Ix.| - IQM' -1;
(3) inc—:pr (@2:Uf*Q20) Q1= 0, @iNf*Qy; =0, and |Qy;| = | P, |;
(4) Quy is a partition of My, into |M§,, g,| pairwise disjoint non-
empty sets.

To see that this is possible, note first that @,;; can be chosen to satisfy
(4) by virtue of (iii). Concerning (1)-(3), we consider two cases.

Case 1. |N§, |- 3(|PL| - |P§,,)—1<0. Then
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Thus @y; can be chosen as in (2), and then |PE~U o «|>|P§, |. It is
then clear that @,; can be chosen as in (3). Of course in the present
Case 1 we let Qy;=0.

Case 2. |N%, |- 3(|PX|—|Pg,,|)—1>0. By (ii) we can choose @ as
in (1). Then
IN%a:i‘ - lle -1= %(!Pagf, - ‘Pgm,l)

Then we can choose @,; as in (2), and we will then have

IP:?[:,"VUate'(XI = !PIng,l ’

1

which makes possible the choice of @,; satisfying (3).

We now define a function @ by recursion. If G|U,_;Hx; has been
defined, let G on Hx; be such that @ maps
N, ~ D oneoneonto {{a}: a€Qy}UQy,
N§..nD one-oneonto {(NLUPL) ~ (Qo:U QU QU f*Qs)},
P}, one-oneonto {{a}: a€@y}u {{fa}: acQy}
in such a way that Ggd = f*Gd for all d e P§, ;
for every j<+t and for every de M %m‘.,mj, Gd = f*Ggd;
and for every j>i, G maps Mg, Hz; One-one onto Qs34 -

It is routine to check that the conditions of Theorem 2.3 are met, so
PA,E > PA, .

In order to generalize 2.4 we need the following theorem, which is of
independent interest.

TaEOREM 2.5. Let A be a simple infinite PA, such that c,*A is finite.
Then every finitely generated subalgebra of U is finite. In fact, if X< A
then the subalgebra generated by X has at most 25" elements, where m =
8lc,*4| +4|X|.

Proor. Let By=Xuc,*4uc,*4. Note that |cy*4|=|c,*4| because of
the Boolean automorphism 8(0,1). Let

B, = B, U 8(0,1)*B, U 8(0/1)*B, U 8(1/0)*B, .
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The Boolean subalgebra generated by B, clearly coincides with the
PA,-subalgebra generated by X, and the theorem follows.

In Halmos [2, pp. 92-93] it is shown that Theorem 2.5 cannot be
extended to all PA,’s.

Our next result is a generalization of Theorem 2.4 and plays a crucial
role in the next section. We recall that for any PA, %, the c,-closed ele-
ments of 4, form a Boolean algebra; we denote this Boolean algebra
by co* A.

THEOREM 2.6. Let W be a simple finite PA,, and B any simple atomic
PA,. Assume that H: Atcy* U ~-» Atcy* B. For distinct atoms z,y of
co* let

fe = |{a € Atz: 8(0,1)a=a}|,
g, = |{a € Atz: a+8(0,1)a € Atzx}|,
by = |{a € Atz: 8(0,1)a € Aty}|;

and similarly define fi ., 0ghgs gy Then H extends to an isomorphism
from W into B iff for any two distinct atoms x,y of c,*U the following con-
ditions hold :

B 9e<dns -y
() gur, is infinite, or g is finite and fr — 9 no— o) <faz;
(iii) h:w = th,Hy'

Proo¥. = : both (i) and (iii) are obvious. Now assume that g is
finite. If @ € Atz and a=.8(0,1)a € Atz, then

Han{beAtHx: b+8(0,1)b € At Hx}

is either empty or has a positive even number of elements. From this
observation the inequality (ii) follows easily.

<=: By Theorem 2.5 we may assume that B is finite. Passing to the
associated atomic structures we see that the conditions of Theorem 2.4
are satisfied, and the proof of Theorem 2.4 gives the desired result.

THEOREM 2.7. If A is a simple PA, with |cy*A|=2m+1, then U has a
subalgebra B with |c,*B|=2™.

Proor. By Theorem 2.6 we may assume that for distinct atoms z,y
of ¢y*4 we have

l{a € Atz: 8(0,1)a=a}| =1,
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{a € Atx: a+8(0,1)a € Atz}| = 0,
l{a € Atz: 8(0,1)a € Aty}| = 1.

Now let 2 and y be distinct atoms of c,*U. Let B consist of all a € At
such that a £ x+y and 8(0,1)a £z +y, together with all elements

a+b with ¢ <z, b <y, 8(0,1)a+8(0,1)b < 2

for some z € Atey*4, 2z + z,y;

IA

a+b with a < 2, b < y, S(0,1)a
a+b with a <z, b <y, 8(0,1)a

y, 8(0,1)b < x;
a, S(0,1)b =b.

]

It is easily checked that the subalgebra generated by B is the desired
subalgebra of 9.

We now turn to the case of PA,’s with c,*4 infinite. Here a central
role is played by the following lemma.

LeEmMA 2.8. Let A={4,E,f,B) and €=(C,F,g,D) be two finite atomic
structures, with 9-|C|2<|A[E|. Then PA,€ —> PA, .

Proor. Let n=|C| and m=|C/[F|. By Theorem 2.7 we may assume
that |4/E|=9mn. Let (z;;:i<m,j<3,k<3n) be an enumeration of
A[E. For i<mlet Z,={z;;: j<3, k<3n}. An i-selector is a subset X of
A such that Xnz +0 for all j<3, k<3n, while X<cU;_ g 3.2-
Now we claim:

(1) For each i <m there is a family T' of 3n pairwise disjoint :-selectors
such that X< M, , for each Xe7, and Xnf*Y=0 for any
X,YeT.

For let &« be a rotation of 3n: al=I0+1 for I+1<3n and x(3n—1)=0;
and let B be a rotation of 3: f0=1, f1=2, f2=0. Forj<3, k<3n,l<3n
choose

xig € M(2(3,5,k),2(¢,B85,6'%));

J
and let X;={w;,;:j<3,k<3n}. Clearly (X;:l<3n) is a system of 3n
pairwise disjoint i-selectors all <M, , with X;nf*X, =0 for each
L,I'<3n. Thus (1) holds. Similarly:

(2) If ¢ <4’ <m, then there is a family 7' of 3n pairwise disjoint ¢-se-
lectors such that X< M, . for each X € T

Now let {z,,...,2,,}=C/F. By (1) choose for each ¢<m sets G, H,
such that
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(3) G; and H; are families of pairwise disjoint i-selectors such that
X< My, for each X eG,UH,; and Xnf*Y =0 for any X,Y e
G,UH,,

4) fXeGuH;and YeG,UH, and X+ Y, then XnY =0,

(5) G;nH,;=0,

(6) 1G4 =IN i~ 1,

(7) |Hy| =3Py,

By (2), if ¢ <4’ <m choose a family K. of pairwise disjoint i-selectors all
S M 4,5, such that

(8) |‘K‘ii'l = |'M:t".‘£3"[ and U K'ii' = ‘Mziz’i“

We now define L: C —~ S4; we define L on x,,...,z,_, by recursion.
Suppose that ¢<m and LM(xyU...Ux;_,) has been defined. Let L
mapN,. ~D one-one onto {XUf*X: X e G;}, and let L map P, one-one
onto H;u{f*X: X € H,} in such a way that

Lgu = f*Lu for each ueP,, .
Furthermore:

for uea;nD let Lu = My, ~ UL¥M,, ~D);
for ¢' <4 and w e M. let Lu=f*Lgu;
for 1<+’ let L map M, one-one onto K.

Now by Theorem 2.3 the desired result follows.

THEOREM 2.9. If W is a simple PA, with cy*A infinite, then every
simple finite PA, can be embedded in N.

Proor. By Theorem 2.8 it suffices to prove

(1) for every m e w~1 there is a finite subalgebra B of A with
m < |cy*B|.

Let X be any subset of c*4 with m members. Let By=XuS8(0,1)*X,
and let B, be the Boolean subalgebra of B, generated by B,. Clearly B,
is a subalgebra of U with the desired property.

For the proof of Theorem 2.11 and for later purposes it is convenient
to expand on some previous notation. If ¥ is an atomic PA, with c,*4
finite, a signature of A is a quadruple t= (m,f,g,h) such that for some
x: m>—»> Atcy*Y and for 1,5 € m,

Math. Scand. 27 — 5
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fi = l{a e Atz;: 8(0,1)a=a}| N w;
g; = |{a € Atx;: a+8(0,1)a € Atz } N w;
by = |{a e Atz;: 8(0,1)ac At} nw .

We say then that ¢ is compatible with x. Given two signatures s;=
(m,fi,95h;) for ¢ € 2, we write s,<s, provided that my=m,, go; <91s, 91;
is infinite or fo;— 4(g1:—go:) <f1s, and Ay <hyy; for all distinet 4,5 <m.
Clearly X is a partial ordering on signatures. Further, by Theorem 2.6,

THEOREM 2.10. If A is a simple finite PA, and B is a simple atomic
PA, with |cy*A|=|c,*B|, then U can be tmbedded in B iff there are signa-
tures 8,t of W, B respectively such that s<t.

TaEOREM 2.11. Let i<w, and let L be a finite set of simple atomic
PASs W with |cy*A| =2t Let M be the class of all finite simple PAy’s B
with |cy*B| =2t such that B cannot be imbedded in any N € L. Finally, let
N consist of one algebra from each isomorphism type of the minimal mem-
bers of M under the subalgebra relation. Then N is finite, and for each
finite simple PA,E with |cy*C|=2¢ the following two conditions are equiv-
alent:

(i) € cannot be tmbedded in any N e L;
(ii) for some B e N, B can be imbedded in €.

Proor. Let S be the set of all signatures of members of L; note that
S is finite. Let 7' be the set of all signatures s'=(¢,f’,g’,h’) of finite
simple PA,’s such that s’ (¢ for all t€ S and such that the following
conditions hold, where 8"’ = (¢,f"',9",h""):

(1) if j<4, f;’>1, and " differs from s’ only in that f;''=f;'—1, then
8"’ <t for some t € §;

(2) if j<1i, g/ >2, and &' differs from s’ only in that g;" =g,'—2, then
8"’ <t for some t € §;

(3) if j,k<i, j+k, hj>1, and " differs from s’ only in that k=

hjp—1 and hy;=h;;—1, then 8" Xt for some ¢ € S.

It is then clear that the following conditions hold for each s’ € T', where
t=(s,f% ¢' i) for each t € S:

(4) Vj<i ff <max{f{+3g/+1: fl9i<w, teS}
(5) Vj<i g/ <max{gi+2:g9/<w,teS}
(6) Vj,k<i (j+k=hj<max{hi+1: ki<, tel)).

From (4)-(6) it follows that 7' is finite. However, it is clear that any



ON EQUATIONAL CLASSES OF ALGEBRAIC VERSIONS OF LOGIC I 67

signature of a member of N is in 7'; hence N is finite. The equivalence
of (i) and (ii) is obvious.

THEOREM 2.12. For every n there ts an m > n such that every finite stmple
PA, of power =m has a proper subalgebra of power >n.

Proor. Let m=22", where p=12n+5. Let U be a finite simple P4,
of power >m. We consider two cases.

Case 1. |co*A| <n. Let X be any subset of A of power n+1. Then,
by 2.5, the subalgebra of A generated by X has at most 12n+4 ele-
ments, and is, hence, proper.

Case 2. n<|cy*4|. Let X <cy*4 have n+1 elements, and choose B,
as in the proof of Theorem 2.9. The desired conclusion again follows.

3. Equational classes of PA,’s.

In this section we apply the lemmas of section 2 to obtain information
about the lattice .# of equational classes of PA,’s.

THEOREM 3.1.If an equational class K< PA, has a simple member N
with cy*A infinite, then K=PA,.

Proor. By Theorems 2.1 and 2.9.

The following theorem results at once from Theorems 2.1, 2.5, and 2.9.

THEOREM 3.2. Every equational class of PA,’s is determined by its finite
members.

We now discuss covers in . By the argument of Jénsson [3, Corol-
lary 4.4], we have:

THEOREM 3.3. If K <PA,, then K has a cover in L.

THEOREM 3.4. PA, does not cover any Ke £.

Proor. Let n be maximal such that K has a simple member % with
lce*d|=n. Let B be a simple PA, with w>|c*B|>n. Then K<
HSP(KU{B}) < PA,.

THEOREM 3.5. Suppose L and K are equational classes of PA,’s such



68 DONALD MONK

that L covers K. Then there is a finite simple W € L ~ K such that B e K
for each proper subalgebra B of A, and L=HSP(KU{A}).

Proor. Let € be a simple algebra in L but not in K. By 2.5 there is
some finite subalgebra 9 of € which is in L but not in K, Thus

K<HSP(Ku{3}))<L,

so HSP(Ku{2})=L. By Jonsson [3, 3.6 and 3.2], the simple members
of L are those of K together with members of S{%}. If B <, the simple
members of HSP(KU{B}) are those of K together with members of
S{%B}; B ¢ K would yield HSP(KU{8})=L and so % € KuS{®8}, contra-
diction.

To complete our discussion of covers, we first need the following im-
portant result about equational classes.

THEOREM 3.6. If K is an equational class properly contained in PA,,
then there exist me w~1 and Ly,. .., L, <K such that the following condi-
tions hold :

(i) K=HSP(L,u...UL,);
(ii) Vi<m(L; s a finite set of simple (if 0<1i) atomic PAys A with
leo*A| = 2¢);
(iii) Viem~1 VU (If A is a simple PA, with |c,*A|=2¢, then A e K
iff every finite subalgebra B of U with |c,*B|= 2% can be imbedded
in some member of L;).

Proor. Let L, be a singleton of a one-element PA,. By Theorem 3.2,
K is determined by its finite members. Hence K=HSPM, where M is
the class of all simple atomic members of K. Since K= PA,, there is an
m € w~1 such that for any A eM, |c,*4|<2™ Now let tem~1 be
fixed. Let 7', be the set of all signatures of members A of M with
leo*4|=2¢, and T'; be the set of all <-maximal members of 7';. For
each s T let A, € M have signature s, and let L;={A : s T;}.

To verify (iii), let % be a simple PA, with |c,*4|=2! First suppose
A e K, and B is a finite subalgebra of A with |c,*B|=2¢. Thus B e M.
Let ¢ be a signature of 8. By Zorn’s lemma, t<s for some s € T';’. Then
by Theorem 3.6, B8 can be imbedded in 9, as desired. The converse
follows from the equational character of K. Condition (i) clearly fol-
lows from (iii). It remains only to show that L; is finite.

Suppose L, is infinite. Let F be a non-principal ultrafilter on 7';, and
let B=P, 7, A/F. Then B is again a simple atomic member of M
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with |co*B|=2!. Let ¢ be a signature of B, say t=(s,f,9,k). There is a
formula p with the following properties:

(1) the free variables of y are v,,...,v; ;;

(2) If € is a simple atomic PA, with |¢,*C|=2% and with {z,,...,z,_;)
an enumeration of the atoms of ¢ *€, then €k y[x,,...,x;_,] iff
for all distinet j, k<<,

(f; finite = |{a € Atx;: S(0,1)a=a}| = f;),
(g; finite =~ |{a € Atx;: a+8(0,1)a € At} =g;) ,
(h;, finite = |{a € Atx;: S(0,1)a € At} =hy) .

Let ¢ be the sentence

N ..Hvi_l[ Ni<i(v; is an atom of the c,-closed Boolean part)/u,u].

Thus ¢ holds in B, so U={se T;': ¢ holds in %A} e F; hence U is in-
finite. For each s e U there is a signature u, of B such that s=<u,.
Since U is infinite and B has only finitely many signatures, there is an
infinite subset ¥ of U and a signature v of B such that s<v for all
se V. Since V=T, and veT,, this is a contradiction. The proof is
complete.

CoROLLARY 3.7. Any equational class of PA,'s is determined by a finite
set of its simple members.

Our discussion of covers is now completed by the following result:
THEOREM 3.8. Each member of £ has only finitely many covers.

Proor. Let Ke &, K+ PA,. Choose m,L,,. . .,L, in accordance with
3.6. Then choose N,...,N,, in accordance with Theorem 2.11. Suppose
K' covers K. By 3.5, K’=HSP(KU{QI}), where 9l is finite and simple,
and B € K for each proper subalgebra B of %. By Theorem 2.7 we see
that either U is a minimal P4, such that |cy*4|=2m+! or else U is iso-
morphic to some member of UKm ;- At any rate, there are only finitely
many choices for %, up to isomorphism, as desired.

Theorem 3.6 is also crucial in proving the following theorem, which is
one of the main results of this paper.

THEOREM 3.9. Each member of £ is finitely based.

Proor. Suppose K € &, K+ PA,. Choose m,L,,...,L, as in 3.6. Let
t<m. Let N; be chosen in accordance with 2.11, and let =,
max{|B|: BeN;}. Now there is an open formula p, with variables
Vgs+ - s ¥p;-1> Wos - - -, Wy—1 Such that:
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(1) for any PA,B, Bk plby.. . .,bp; 1,0, . .,d;4] i {by,...,0,,,} is
a subalgebra of %, and d,,...,d;_; are all of the distinct atoms of
the Boolean algebra of c,-closed elements of {b,,. ..,b,, ,}.

Now let § be the set of all signatures of members of L,;; note that § is
finite. For any j<4 and l<w let ¢;;; be the open formula

/\kSI[O# up Ay, <wyAS(0, L)uy =+ uy A S(0, l)ukSw,-AVKn‘.(uk:vs)] A
A /\s<tsk(us'ut= 0)
For s=(1,f,9,h) € 8, j <1, l<g;, and f;,9;< w, we let
p(i,j,8) = f+1g;—1-1).

Then let ¢; be the following sentence:
Vvg.. . Yo, Vwg. . .Yw; 4 {"/’i e Vs=-(i,f,g.h)ea [( Ni<igj<e
- Ju,. .. Eugjtp,-jgj) (/\,-<,-,,,}.<m,f}.<a,/\,<,,j, loga Vg ...V
(qom A Nk<n [0 F v AV S w;AS(0,1)v, % v,
A8(0, 1)y, <w; > Vqluy < vk)] - =32y ... Iy,
[Atsp(s,:i,l)(o + A 2, <w;A8(0, 1)y =1,) A /\t<r(75: CXp= 0)] ))
A (/\J‘,k<t,j=!:k,h,~k<w —Juy. .. Huhik (/\lshjk [04= wAU < Wy
AS(0, Dy wy, AV ep(ry= ”t)] A Ne<rsnp(te .= 0)))]} .

Clearly ¢, is logically equivalent to a universal sentence y;. We now
claim:

(2) for any i <m, if B is a simple PA, then 9B satisfies y; iff each finite
subalgebra € of B with |¢,*C|=2% can be imbedded in a member
of L,.

Indeed, the direction <= is obvious. Now suppose that € is a finite sub-
algebra of B with |¢y*C|=2¢ which cannot be imbedded in any member
of L;; let € be minimal with this property. Then € is isomorphic to
some member of N,, and hence |C| <n,. It easily follows that y, fails in €,
and hence also in 9.
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Now let 04 be a universal sentence logically equivalent to the follow-
ing sentence:

=305« 301 [Aicizmin (00 0= 0) A A cmr (€03 =A% 0)] A At
From 3.6 and (2) we easily infer that:

(3) for any simple PA,B, B satisties 0 iff B e K.
Now with each open formula ¢ we associate a term 7p:

(0=f) = ¢ty (0@DE), (=) = —70, 7T(eg > 01) = —T0o' TOL

Then p holds in a simple PA, iff 79=0 holds in A. It follows that if
the open part of 05 above is g, then 7o=0 characterizes K relative to
PA,, as desired.

CoRrOLLARY 3.10. |.&#|=X,.

From Theorems 2.1, 2.5, and 3.9 we obtain

CoROLLARY 3.11. For each K € ¥, EqK is decidable.

In conclusion we may mention the following unpublished result of
Ralph McKenzie, which constitutes a far-reaching generalization of a
part of 3.9:

THEOREM. If A is a finite lattice with finitely many additional opera-
tions, then HSP{} is finitely based.

AppED 1N PROOF. The question concerning the number of variables
needed to characterize K,, relative to PA; has been solved by Th. Lucas.
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