ON A THEOREM OF N. TH. VAROPOULOS

J. D. STEGEMAN

1. Introduction.

The following theorem is proved in [1]:

THEOREM OF VAROPOULOS. For any real number $v \ge 0$, any integer $m \ge 1$ and quasi all $f \in C_{\nu}(\mathbb{R}^m)$ (that is, all f outside some set of first category) the set $\Gamma(f)$ (the graph of f in \mathbb{R}^{m+1}) is a Sidon set in the discrete abelian group \mathbb{R}^{m+1} .

Here $C_{\nu}(\mathbb{R}^m)$ is the Banach space of all bounded continuous functions $f \colon \mathbb{R}^m \to \mathbb{R}$ which have bounded continuous partial derivatives up to order $[\nu]$ (entier of ν), and whose partial derivatives of order $[\nu]$ are of Lipschitz type $\lambda_{\nu-[\nu]}$. For the definition of λ_{α} , $0 \le \alpha < 1$, and Λ_{α} , $0 < \alpha \le 1$, we refer to [2, page 42].

To prove this theorem it is shown in [1] that all $f \in C_{\bullet}$ whose graphs $\Gamma(f)$ are non-Sidon lie in the union of countably many closed subsets of C_{\bullet} with empty interiors. In this article we shall indicate an alternative method to prove that these subsets have no interior, which avoids the use of lemmas 2.3 and 2.4 in [1]. The method also gives analogous theorems for the Banach spaces Λ_{\bullet} , $\nu > 0$, of all bounded continuous functions $f \colon \mathbb{R}^m \to \mathbb{R}$ which have bounded continuous partial derivatives up to order $(\nu) = \sup_{\nu' < \bullet} [\nu']$, and whose partial derivatives of order (ν) are of Lipschitz type $\Lambda_{\nu-(\nu)}$. These theorems could not be obtained by the method of [1] because polynomials are not dense (when restricted to compacta) in Λ_{\bullet} .

2. The method.

Instead of graphs $\Gamma(f) \subset \mathbb{R}^{m+1}$ we consider zero sets $Z(f) = f^{-1}(\{0\}) \subset \mathbb{R}^m$. The integer m in this article therefore corresponds to m+1 in [1]. Obviously the collection of graphs is contained in the collection of zero sets:

$$\left\{\varGamma(f)\;;f\in C_{{\bf v}}({\bf R}^{m-1})\right\}\;\;\subset\;\;\left\{Z(f)\;;f\in C_{{\bf v}}({\bf R}^m)\right\}\;.$$

The method is based on the following lemma.

Received October 31, 1969.

LEMMA. If $f: \mathbb{R}^q \to \mathbb{R}^r$, q and r positive integers, is a function of Lipschitz type Λ_{α} , and if $q < \alpha r$, then $f(\mathbb{R}^q)$ is a subset of \mathbb{R}^r with Lebesgue measure zero.

The proof is easy and is left to the reader. The conclusion is no longer true if $q \ge \alpha r$, as is shown for instance by the well known Peano function $f: \mathbb{R} \to \mathbb{R}^2$ which is of type $\Lambda_{\frac{1}{2}}$ and whose image of [0,1] fills a whole square.

Now let $m \ge 2$, $n \ge 1$, $p \ge 1$ be fixed positive integers, α a real number, $0 < \alpha \le 1$, and let $mn < \alpha p$. Consider \mathbb{R}^m as a vector space over \mathbb{Q} , the rational numbers, let $V \subset \mathbb{R}^m$ be an n-dimensional \mathbb{Q} -linear subspace of \mathbb{R}^m , and let $A = \{a_1, a_2, \ldots, a_p\} \subset V$ be a subset of V with $\operatorname{Card} A = p$. Further let $f: \mathbb{R}^m \to \mathbb{R}$ be a function of type Λ_α such that f vanishes in the points of A. We define $\Phi_f: \mathbb{R}^{mp} \to \mathbb{R}^p$ by

$$\Phi_f(x_1,\ldots,x_p) = (f(x_1),\ldots,f(x_p)).$$

The map Φ_f vanishes in the point $(a_1, \ldots, a_p) \in \mathbb{R}^{mp}$. Let $C \subset \mathbb{R}^{nm}$ be a cube in \mathbb{R}^{nm} and let $\Delta : \mathbb{R}^{nm} \to \mathbb{R}^{mp}$ be an R-linear mapping such that $(a_1, \ldots, a_p) \in \Delta(C)$.

Then $\Phi_f \circ \Delta : \mathbb{R}^{nm} \to \mathbb{R}^p$ is still a function of type Λ_{α} , hence by the lemma there are constants $x = (\xi_1, \dots, \xi_p) \in \mathbb{R}^p$ with arbitrarily small norms $|x| = \sup |\xi_k|$ such that the functions $(\Phi_f \circ \Delta) + x$ do not vanish in any point of C (not even of \mathbb{R}^{nm}).

A careful study of [1] should show how C and Δ have to be chosen depending on V and Δ . It follows then that for all $x \in \mathbb{R}^p$ there exists a function $g \in \bigcap_{r \geq 0} C_r(\mathbb{R}^m)$ such that

$$(\Phi_{f+g} \circ \Delta)|_C = (\Phi_f \circ \Delta)|_C + x ,$$

and such that $||g||_{C_n} \leq K|x|$, K a constant not depending on x.

This way to approximate f by functions f+g such that the functions $\Phi_{f+g} \circ \Delta$ do not vanish in any point of C replaces the technique of lemmas 2.3 and 2.4 of [1].

We now take $\alpha = 1$ and p = nm + 1. The proof of the theorem of Varopoulos can then be completed as in [1], with the change indicated above. Instead of approximation by polynomials we can approximate by functions in the larger class $C_* \cap \Lambda_1$. We leave the details to the reader of [1].

3. New results.

The method of section 2 gives in the same way the following results. We remark that theorem 1 below is the analogue of theorem 1' in [1]. THEOREM 1. If $m \ge 2$ and $0 < \alpha \le 1$, then for quasi all $f \in \Lambda_{\alpha}(\mathbb{R}^m)$ and all Q-linear subspaces $V \subset \mathbb{R}^m$ we have

$$\operatorname{Card}(Z(f) \cap V) \leq m \alpha^{-1} \dim V$$
.

THEOREM 2. If $m \ge 2$ and v > 0, then for quasi all $f \in \Lambda_v(\mathbb{R}^m)$ the zero set Z(f) is a Sidon set for the discrete group \mathbb{R}^m .

I would like to thank N. Th. Varopoulos for encouraging me to write this article.

LITERATURE

- 1. N. Th. Varopoulos, Sidon sets in Rⁿ, Math. Scand. 27 (1970), 39-49.
- 2. A. Zygmund, Trigonometric series I, Cambridge University Press, 1959.

DÉPARTEMENT DE MATHÉMATIQUE, FACULTÉ DES SCIENCES D'ORSAY, 91 ORSAY, FRANCE

AND

MATHEMATICAL INSTITUTE, UNIVERSITY OF UTRECHT, NETHERLANDS