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UNIFORM MEASURES AND SPHERICAL HARMONICS

JENS PETER REUS CHRISTENSEN

This paper deals with miscellaneous results about uniform measures
which are generalisations of a theorem due to Chr. Berg. Furthermore,
we develop a theory which is a generalisation of the usual spherical
harmonics. Finally we apply the results to two-point homogeneous
spaces.

Let (M,d) be a locally compact metric space. Let u be a positive
Radon measure defined on the Borel field of M. Suppose w is uniform
with respect to d, which means that u has the property

Yez,ye M Vr > 0: u(S(x,7)) = u(S(y,r)),

where S(z,r) is the open ball with center  and radius r (see [1]). Let
A be a closed subspace of M and # a positive uniform Radon measure
on 4. Of course, # may be considered as a measure on M. All the
measures we speak about in the sequel are Radon measures defined on
the Borel field of the space under consideration. Unless otherwise stated
the measures are tacitly assumed to be positive.

THEOREM 1. Suppose that for every compact set K< M there are an
ex >0 and a O >0 such that for 0<e<ex and all x € K,
WS(x,e)) £ Cru(S(x,¢)) .
Then there is a A >0 such that @4 =2u|A and
A = lim,_ g c,(@)/c,(u),
where z € A, c(8)=0(S(x,¢)), and c(u)=u(S(z,¢)).

Proor. We define the kernel function

K (x,y) = c,(w)! for d(z,y)<e,
=0 for d(z,y)=¢.

Let ¢ be a continuous function on M of compact support. Define K g by
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(K@) = [ K y)p) duy) .
M

The following calculations and the functions involved make sense for ¢
sufficiently small. We easily obtain

lp(z) — K p(x)] = wye) = sup {|p(x)—p@¥)| | dz,y) Se} .

We choose ¢, so that K,p is supported by a fixed compact set K for all
0<e<egy. Then we have

lim,_,, f K,p(x) di(z) = f o(z) () .
Put 4,=c,(f)/c,(u). By applying Fubini’s theorem we obtain

f K p(@) d(a) = 4, f p)du(y) + [ (8(S(,e))/ew)p(y) du(y)
M\4

The theorem about dominated convergence shows that the last integral
tends to zero as ¢ tends to zero. If [,,¢(x)d@(x)=+0, this implies that

lim, A, exists and the theorem is now obvious.

Let now the situation be that of theorem 1.

THEOREM 2. Under the assumptions of theorem 1, the interior A of A s
closed. Therefore, if A+0 and M is connected, then A=M. If A+0,
then A is open.

Proo¥. If 440, then A,=1 for all ¢ <¢,, where ¢, is the radius of an
open ball contained in 4. Let z belong to 4. We then have 2(S(z,¢)) =
Au(S(z,e)) for all e<egy,. Further, because of @4=Au|ld this shows
u((M N\ A)nS(x,e))=0. This set, being open, must then be empty. Con-
sequently, we have S(z,¢)< 4 and theorem 2 is proved.

In the special case M =R" with the usual euclidean metric a much
stronger result can be obtained. We first prove an inequality in the
general case. Let the situation be as described before theorem 1.

Let K< M be a compact set and put

S(K,e) = {ye M| Ake K: d(k,y)<e} .

For &> 0 sufficiently small (such that c,(#) <o and c,(u) <o) we have
the inequality
(1) UK) £ (cop()[c,(w)) u(S(K,e)) .
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To prove this we put
lg(x) =1 for zeK,
0 otherwise .

Then we have

UK) = [ 1x(0) daty) = [ ( [ o) 1x(0) du(x)) dafy)
M M ‘M

- ( [ o) 1) dmm) du(z) S (ea(@)fe,u) W(S(K,e)) .
M ‘M

Roughly speaking, we can say that @ does not increase much faster
than w.

THEOREM 3. Let A< R™ be a closed subset with the uniform measure
(with respect to euclidean metric). Let @ be a connected k-dimensional
analytic manifold and P<Q a non-empty open set. Let ¢: Q — R™ be an
analytic mapping with p(P)< A. Then ¢(Q)< 4.

Proor. We define for 1> 0

%) = [exp(-Me-y)?) da(y).
R
From (1) it follows that 4, is a well-defined real analytic function of
@ e R™. It is constant on A, hence ,(p(y)) =1i,(x) for ye @ and x € 4.
The uniqueness theorem for Laplace transforms of measures now shows
that ¢(y) € A, and theorem 3 is proved.

Christian Berg has proved that if 4 is a compact subset of a sphere
with a uniform probability 4 and 4 has non-empty interior, then 4 must
be the whole sphere and the measure must be the natural one.

Berg’s theorem together with its analogue for R" can easily be derived
from theorem 3 and the uniqueness theorem for uniform measures
(see [1]). Thus the Lebesgue measure on R” is the only measure which
is uniform on a closed subset with non-empty interior.

Let (M,d) be a locally compact metric space with the uniform measure
u. Then for every continuous function f,

f f(d(z,y)) du(y) is independent of x € M
M

(if it is well defined for some x, € M). M is compact if and only if u is
finite (supposing M complete, but finiteness of u always implies that
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(M,d) is a precompact metric space; in this case we always assume that
u is a probability). Let 4 be a compact subset of R* with the uniform
probability 4 and suppose [,y d@(y)=0. Then we obtain

[@-yraaw) =2 + [y2dae).
A 4
Since the left hand side is independent of @ € 4, we have

THEOREM 4. A compact subset A of R™ with uniform probability & is
contained in a sphere with center in the center of mass.

Let (M,d) be a compact metric space. We call M a spherical space
if there is a probability measure 4 on M which satisfies the following
condition: For any continuous functions f and g there is a continuous
function % such that

vaze M [ f(da)gdw,2) du) = h(dw,z)
M

The measure « is called the spherical measure of M. It is unique because
it is easily seen to be uniform (let g be the constant 1).
Put

A = {k: M®*>R | k(x,y)=f(d(x,y)) with f real and continuous} .

& is a real commutative Banach algebra with the norm

Ikl = sup{|k(z,y)| | (x,y) € M?},

and the multiplication

(koh)(z,y) = f k(z,2) h(z,y) du(2) .
M

We do not always distinguish between k € &/ considered as an integral
operator (integration with respect to u) and % considered as a function
on M2

We call a complex continuous function ¢ a spherical function if ¢ is
an eigenfunction for each k € &/. Spherical functions ¢ and y are said
to be associated (¢ ass. p) if they belong to the same eigenvalue with
respect to each particular k € of. This is an equivalence relation, and
for a spherical function ¢ its equivalence class together with the con-
stant 0 is a linear space V of spherical functions. We define the kernel

Kc(x’y) = k(s)(e_d(x’y))+ ’
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where
k(e)! = J (e—d(x,y))* duly), e M arbitrary .
M
The arguments in the proof of theorem 1 hold also for this kernel and
yield 3
lime—)OHKs(p-(p“oo =0.

In particular K,p+0 for ¢ sufficiently small, so the eigenvalue for ¢
corresponding to K, is different from zero. K, being a compact operator,
this shows that the space V is finite-dimensional. Because every k € &
is self-adjoint, any two non associated spherical functions ¢ and y are
orthogonal. We choose a numbering V,, 7 € N, of the spaces of spherical
functions described above. Let k;, i € N, be the kernel of the orthogonal
projection on V, (there is a denumerable infinity of V,’s if and only if
the space M is infinite). A simple and standard application of the
theory of eigenfunction expansions yields the following facts (the com-
mutativity is essential for this):
For every k € o,
k(@,9) (=) Sikiki(z,y) ,

where the series on the right hand side converges in £, norm to the left
hand side. Each k;, being a limit of kernels in &7, belongs to &7. Let f
be an arbitrary continuous function on M. Then

Eef(x) = 3  fi(@) ,

where

Ks(x’y) (= ) ziliski(x’y)
and

1) = [ledwy) f@) duty)
M

The series 3,4 fi(x) converges uniformly as we know from the theory
of eigenfunction expansions. Furthermore K,f - f uniformly as & -~ 0.
This gives

THEOREM 5. Every continuous function f on M can be uniformly ap-
proximated by finite sums of spherical functions.

For a continuous function f on M we form the (formal) series
fl@) ~ 2 fi=)

with f; as above. For a finite signed measure » we form the formal series
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v~ Z),
where

o) = [Idwy) doy)
M

The main theorems on spherical harmonics (Parseval’s equation, unique-
ness theorems, for these formal series) are easily derived from theorem 5.

We now suppose that the spherical space M is infinite. We define
H,=3?,V,and h,=3" ,k;. The mapping 0,: M — H, is defined by

Ba(a)(®) = hy(a,x) .

The mapping 6, has the fundamental property that ||0,,(a)—6,(b)], is a
function of d(a,b). Furthermore 0, is continuous. Hence the image of »
under 0, is a uniform probability on 0,(M). We put

&, = 8SUp {d(“«',y) | en(x)'_' en(y)} .

Then ¢, - 0 as n - oo (if this were not the case we would obtain a con-
tradiction with the uniqueness theorem for the formal series associated
with a measure, in this case a point measure). Suppose now ¢, >0 for
all n. For a point a € M we put

K,(a) = {ze M |0,(x)=0,(a)}.
The function
d(z,K ,(a)) = inf {d(x,y) | y € K,(a)}

cannot assume the value ¢,. Hence the set
Bn(a) = {x eM I d(x’Kn(a')) < s'n}

is both open and closed. For every z € B,(a), we have d(z,a)< 2¢,.
Hence the point a € M has a neighbourhood base consisting of sets which
are both open and closed. If M is not totally disconnected, this shows
&,, =0 for a suitable n,, hence ¢, =0 for n=n,. This gives

THEOREM 6. Let (M,d) be a spherical space which is not totally discon-
nected. Then there is a positive continuous function ¢ such that D=god
18 a new metric on M, and M with this melric is isometric with a subset
of a sphere in a euclidean space.

However, M with the new metric D is not necessarily a spherical
space but only a prespherical space (the smallest algebra containing &/
and closed under pointwise multiplication is commutative).
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Let now (M,d) be an infinite totally disconnected spherical space.
Let A< M be a set which is both open and closed and 4+4d, M. Put

b4 = d(4, [:A) = inf {d(x,y) | x4 A yéA}.

The function 1, is continuous and is an eigenfunction for K, for every
e<d,, the corresponding eigenvalue being 1. Then 1, is a finite sum of
spherical functions and the corresponding kernels k; satisfy

(2) koK, = k; for ¢ sufficiently small .

The space spanned by the functions 1,, 4 open and closed, is dense in
the space of continuous functions (it is an algebra and separates points).
Let %, be one of the fundamental kernels and ¢ a spherical function corre-
sponding to k;. Let S be a finite linear kombination of functions 1,
with

llp—Slloy < 8.

S is a finite sum S=3,¢, of non associated spherical functions. The
inequality above implies

lp—8ll* = llp — @alls® + Zosellpalle® < 62,

where @, is the member of the sum which is associated with ¢. We
choose d < ||p|l; and the inequality above then implies @, 0. This shows
that (2) is satisfied by k,. But for i € N, z,y € M we have

ki(z,y) £ kyx,x) = ki(y,y) > 0

because k; is positive semidefinite and only depends on d(z,y). Let now
¢ be sufficiently small for the kernel k;, namely such that k;o K,=Fk;.
Then

ky(z,z) = f R (2,2)k,(2,2) du(z) < ky(x,7) f R (2,%) du(z) = ky(x,2) .
M M

This shows
kyz,x) = kyx,x) for d(z,z) sufficiently small .

Suppose now D=¢od is a new metric on M such that M with this
metric is isometric to a subset 4 of R*. Owing to theorem 4, 4 must be
a subset of a sphere with center in the center of mass. We suppose 4
is contained in the unit sphere with 0 as center of mass. Let 6: M — R®
be the D-isometric imbedding. The usual scalar product k(z,y)=
0(z)-0(y) is a kernel which is in &/. The kernel k£ must be a finite sum
of kernels k;. Hence, for all z,y € M with d(z,y)<¢, (¢, sufficiently
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small) we must have k(x,x)=k(x,y). This contradicts, however, that 6
is an isometry. Thus we have

THEOREM 7. Let (M,d) be an infinite totally disconnected spherical
space. Then the conclusion in theorem 6 fails to hold.

Let (M,d) be a compact metric space and @ its group of isometries.
M is a two-point homogeneous space if for all z;,y;,2,,y,€ M,

A(x1,91) = A@g,y,) = Jp € G: @(a)) =2yAp(Y1) =¥; .

In particular @ is transitive on M. Hence there is a unique G invariant
probability, which is easily seen to be a spherical measure. Since a
kernel k is @ invariant if and only if k(z,y) is a function of d(z,y), it is
easily seen that the spaces V, are precisely the finite dimensional spaces
of continuous functions which are irreducible under the action of the
group G; for a projection kernel corresponding to such a space is G
invariant.

TaEOREM 8. Let (M,d) be a compact two-point homogeneous space which
18 not totally disconnected. Then the group G of tsometries is a Lie group
in 1ts natural compact topology. Hence the space M has a unique analytic
structure such that G 18 a Lie transformation group on M.

Proor. The mapping 0,, from the proof of theorem 6 is injective for a
suitable n. Denoting by O(H,) the Lie group of orthogonal transforma-
tions of H,, we consider

b,: G—O(H,)
defined by
(Ou(Df)(z) = f(I7(=), IeG.

0, is a continuous group homomorphism. Let I be different from the
identical mapping of M onto M. Then there is o€ M with z+I(x,),
which implies 6,,(z,) = 0,(I(x,)) or

hn(xo’x) * hn(I(xo):w) = hn(xo’I_l(x))

or §, is injective. 0, is then an isomorphism between G and 6,(@).
Being a closed subgroup of a Lie group, 0,(G) is a Lie group. Now
theorem 8 follows from a well-known theorem about Lie groups.

The conclusions of theorem 8 are known under the condition of con-
nectedness of M (see [2]).
Consider the group {0,1} and put G={0,1}N. With the usual product
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topology, G is a compact abelian group. For z,y€ @, where z=
(@1, %g,...) and y=(¥1,Ys,- . .), We put

d(x,y) = 252 1o, — 4] 370

This metric determines the product topology on G, and with it G is a
two-point homogeneous space. Moreover ¢ is infinite and totally dis-
connected.

The following problems in connection with the preceding results
remain open.

1) If AcR" is a closed subset with a uniform measure u, it seems
probable that A4 is an analytic submanifold. Perhaps more dubious
is the conjecture that 4 has a transitive group of isometries.

2) How many of the preceding results have analogues in the non
compact case? The definition of a spherical space carries over with a
minor modification. To avoid irregularities we assume connectedness.
It is easily seen that the set

ye M |d(z,y)=r}
has a uniform probability if it is non-empty and
S,r) = {ye M |d(x,y)<r}

is compact. This suggests a natural definition of harmonic functions.
Are there ‘“many’” non trivial harmonic functions?

3) Is it possible to choose the function ¢ in theorem 6 such that
(M,d) is not only a prespherical space but a spherical space? If (M,d)
is a compact metric space with a group @ of isometries satisfying

Ve,ye M JpeG: o¢x)=y A p(y)=2,

then it is easily seen that (M,d) is a prespherical space. How many
results carry over to this case?
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