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ON THE STRUCTURE OF THE SPACES Z,7*

BARBRO GREVHOLM

Introduction.

Under special conditions on the subset 2 in R?, S. Campanato [3] proved
that the spaces ;P4 2) are isomorphic to the Lipschitz spaces C™¢(£)
(see definitions in section 1), where h+e=(1—n)/p>0 and O<e<]1,
k integer <k.

With another method, based on the theory of interpolation spaces,
we intend to prove that £, PAQ) is equal to the Besov space B=*(Q),
where 0<(A—n)/p=a<k, even when (A—n)/p is an integer and with
other conditions on 0.

The plan of this article is as follows. In section 1 we give the defini-
tion of Z,P4(2), C*¢(2) and B*(£2). Section 2 contains alternative defini-
tions of B*(f2), when 2=R". In section 3 we prove

B¥Q) = ZPHR), O<a<(A—-n)/p<k,

if =R (theorem 3.1). Section 4 treats the corresponding result for an
open, bounded subset 2 of R", subject to certain restrictions (theorem
4.1).

The subject of this paper was suggested to me by professor Jaak
Peetre. I thank him for valuable criticism and great interest in my
work. T also thank J6rgen Lofstrom, who read the manuscript and gave
much advice.

1. Definition of £, P*(R2), C"*(R2) and B*(2).
Let 2 be an open subset of R® and p=1. Write

I

To,r = {xe Rnl |x—x0|§7‘}

and Q, =020l ..

DrerintTION 1.1. For k integer 20 and 120 we say that fe Z,P42)
if f e L, (£2) and for every r > 0 and z, € £ there exists a polynomial g,(x)
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of degree <k, depending on z,, r and f, and a constant C, depending
on f, such that

1/p
(L.1) (D | |f<x)—qk<z)|vdx) < Crim

xo,r

The infimum over all constants C in (1.1) is a semi-norm on the space
Z,P*Q), and it will be denoted |f| g, 5,4q)- We decide to identify functions
whose difference is a polynomial of degree <k. Then we can use |f|g,s»
as a norm and .%Z,P*£2) is a Banach space.

REMARK 1.1. The spaces Z,PA(2) introduced in S.Campanato [3] are
not quite the same as our spaces £, P4(2). Campanato works with the
norm

1/p
Il gwia = (Iflip(g>+ sup [ri infg, | |f(z)—gu)? dx]) :

20e 0}
0<r<diam® Q20,7

Note also that Campanato uses the parameter &' =k —1 in place of %, so
that our £, 74 is the space &£, P+ in the sense of Campanato.

DEerFInITION 1.2, Let & be an integer =0 and let C*(2) be the space
of all & times continuously differentiable functions in Q.
Then C*(2) is a Banach space with the graph-norm
Iflomay = 2ish SUPzep |D¥f ()|
Here 1= (l,1,,...,l,) is an n-tuple, |l|=1,+1,+...+1,, and

DY (x) = Dy*Dys...D,"f(x), where D, = 9oz, .
DerFNiTION 1.3. For 0<e=<1 we say that fe C*+(Q) if fe C*R2) and

the derivatives of order % are Lipschitz continuous in £ with exponent e.
Take as a norm in C*#(Q)

| DPf (x) — DPf(y)|
I[flone = |flomay + sup sup - .
Ipl=h mﬂ:;i |z—y|

Campanato ([2] and [3]) has given the following characterizations of
Z P 2), 1= p<oo, for 2 open, bounded, and of “type &’ (see Cam-
panato [3, p. 138]).

ZpMQ) = Lrp(Q) if 1=0;
Z2pANQ) = LrAQ), Morrey space, if 0<4<n (for definition of
LrAQ) see Campanato [3, p. 157]);
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LrPA2) = O(Q2) if n<A<n+k-p, h integer <k-1,
(A—n)/p=h+e, 0<e<1 and Q convex;

L) = E(RQ) = LQ) if (A—n)[p=h integer £k—1
and 2 convex;

ZLPA Q) = P,(2) = {polynomials of degree <k—1}if A>n+kp.

REMARK 1.2. From the definition of £, 4 2) it follows that
ZLPNQ) = LPHQ), jS k.
We are now going to give another characterization of Z,P4(Q) for
0<(A—mn)/p <k with aid of interpolation spaces (see J. Peetre [6]).
Let A, and A4, be Banach spaces with norms ||, and |-|4,, respec-
tively. Put
K,(a) = inf,_qg10, (1@0] 4o+ |01] 4,) 5

J,(@) = max(|a| 4,7 |aly,), m*1.

The interpolation space (4, 4;)pe 0<0<1, 1 =g = o0, is then defined by
each one of the equivalent norms

(1.2) (vﬁ—m (m_voKy(a))q) 1/q ,
(1.3) inf ( i (m-"’J,(u,))«)M,

where infimum is to be taken over all w, such that a=3%_u, in 4+ 4,.
(If g= oo we take as usual the supremum norm.)

We will work with the space C?(Q), but not with the same norm as
Campanato used. We identify functions whose difference is a polyno-
mial of degree <k and take as a norm

If lomay = S“Pxen,|z|=h|D’f(x)| .

From now on the notation C*(£2) will refer to this definition.

DrrFinNITION 1.4. The Besov space B%2) is defined by
B*(Q) = (C%2),C%2))y/k0or Where O<a<k.

(In the sequel we let & be the same integer as we used in the definition of
ZiPHQ2).)

The norm in B%(f2) is any one of the above mentioned interpolation
norms. Also in B*(Q2) we identify functions whose difference is a poly-
nomial of degree <k.

We need the following interpolation theorem.
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TrEOREM 1.1. Let 4y, A;, By, B, be Banach spaces and T o linear
operator such that
T: Ay,~>B,, T:A,—B,.
Then
T: (Ap,41)pq > (B, By)yy for 0<O<1 and g21.

For the corresponding operator norms My, M, and M, respectively, we have
M < MPMA-0.
The sign — stands for linear continuous mapping.

We also need

THEOREM 1.2 (S. Spanne [9]). Let 0<6<1. Then
(L (Q), L1 P D))poo © LiPAHR)  with A=(1-0)1g+ 04, .

2. Alternative definitions of B*(R"™).

We shall now give two alternative definitions of the space B*({2) in
the case 2=R”. The first one characterizes B*({2) by means of the
modulus of continuity. Write

Ay f(@) = fl+ty)-f(2),
AL f@) = A, (A5 (@), 1=2.3,....

Let k& be the integer in the definition of .Z,;?#* and suppose x<k. We
consider the norm

(2.1) SUPg<t<o0, ly|<1 t‘“[Afyf | Zoorn) -

(Again we identify functions whose difference is a polynomial of degree
less than k.) We shall prove that (2.1) is then an equivalent norm on
B*(Rn),

Our second alternative definition of B*(R®) is the following one. Let
¢ be a function in the Schwartz class S and write

o,(x) = 27" p(2~z), v integer.

Let ¢ be the Fourier transform of ¢ and suppose that ¢(£) is not zero
on the annulus 2-1<|&| <2 and vanishes outside it. We then consider
the norm

(2.2) sup, 27**|@, *f|Loogm -

We identify functions whose difference is a polynomial of degree less
than %, and we exclude all polynomials of degree higher than or equal %.
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This norm will depend on the function ¢, but two different ¢ will give
rise to equivalent norms. See J. Peetre [8] and J. Léfstrom [5].

Lemma 2.1, The norms (2.1) and (2.2) are equivalent on B*(R®).

Proor. We let pe 8 and @(£)+0 in }<|& <2, suppp={£|3=|£| =2},
@,(x)=2""p(2+xz). We can take ¢ such that

> @8 =1 for £+0.

y=—-00

See Hérmander [4, p. 121]. Now take f such that

I¢v*f,L°° é 0270‘ .

It suffices to show that
A% flg < Ot
Form the function
,‘;)v(E) = (euél_ l)kév(g) .

We get at once
(2.3) [y flze S 2¥|g,af | < 26O
Further we have

@@>=(éM—1v¢mw>=<w*w(

if ®eS and @(§)=1, when ¢(£)+0.
Let M, be the space of Fourier transforms of bounded measures on
R”, normed by

161 __

k
)(ﬁwwmwawra.

1

s, = [ 1du

R
Then it is easy to see that

P R
(&)
for 0 <t < oo (see L. Hormander [4]). Thus we get the estimate

(2.4) ol S CU2) g, xflz S (127)FC2= .

<C and  |(t)* (tE)ly, S C
Mp

From (2.3) and (2.4) we get
|y, xf| 0 < C min(1,(£2-)k) 2*= .
However Al"el f(@)=32v,*f(x), so we have

oo < d
14 flio < €3 min(1,(2-)) 2= < C f 2= min (1, (fz-1)¥) ; < ot
) ‘

=00
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From the above calculation we obtain the desired norm inequality.
For the other part of the proof we take f such that |4} f|.~<Ct*.
Take also @ € S(R) such that $(£)+0 exactly for

< |& <3, ¢(n)>0

2+4c¢(n)
and set D (r)=D(x2~*)-2—. It is easy to prove that
(&)
— < for t=2",
1) . C fort=2

Now Ie~t #1 € S(R*) be such that ﬁl(§)=(ﬁ(§1)§(§), where @ is as above
and §(&)+0 for exactly |£|<3, £=2,3,...,n, where &=(&,&,,...,&,).
Then

k()
—rx»>r < 14
(eilel — l)k i, = 0 fOI‘ =2
and we conclude
RME |
- v 2
lh,l *f’L°° = I <(e,'351 _ 1)74) * Atelf Lo
hME)

= (eitﬁ_ l)k M |A£z1ﬂL°° S0t 2 02,

Here ¢” denotes the inverse Fourier transform of g. Repeat the construc-
tion for each one of the coordinate axes and add the functions to get
$=37_,h*. Now take @ as in (2.2). The function §(&) can be chosen
such that 9(£)=1 for 3} <|£| <2. Then (&) p(£)=p(&) (because supp p=
{£] =& =2}). So we have

|(Pv*flL°° = l‘/"r*‘Pv*fle é I‘pvlLl lwv*fle é 02'“ .

We also get the desired norm inequality.

THEOREM 2.1. The norms (2.1) and (2.2) are equivalent norms on
B*(Rn),

Proor. In view of lemma 2.1 it suffices to show that (2.2) is equivalent
to the norm on B*(R*). We take ¢ as in (2.2) and f such that
lp,f(@)| = C2=.

As before we can choose ¢ such that 3% ¢,(&)=1, §+0. Let f(z)=
@, +f(z). Then
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f@) = 3 f(x) (modulo polynomials of degree <k),

y=—00
where f,(x) and its derivatives are continuous functions. For any integer
820,
[l osamy = SUpP|i|=s lfoyloomn) = BUP|jj=, |(Dlg,) +f lcormy
s 27 supy_, |(D'9), *flgorny S C 279,

because Dp is a function with essentially the same properties as ¢.
Let k be the usual integer >x. We have shown that

|Slcommy = C2%  |f,|ckrmy = O 2=k

We get (with m=2% in (1.3)) that (2%)-«kJ(f)<const., that is,
£ € (COR™), CHR) s co-

Although the other part of the proof follows from section 3, we give a
direct proof here. We take fe B*(R")=(C%R"),C*(R")),/x00, k integer
> «. Equivalently this means that

m~*K (f) < const. ,
where

E(f) = infsp iy, (1fol cormy+ 7 | f1l cicrey) -

Now take ¢ as in (2.2). We let f=f, +f,, where f, € C°(R") and f, € C¥(R").
We want to estimate |p,*f(x)|. Putting D*®(y)=¢(y), we obtain

| 2-a f ?.() fx—y) dy} = (2"“ f ?.(y) (folz—y) +filx—y)) dy]

IIA

2= ([ 19,0010y oo+ | [ 7.0 e —9) |

IA

2 ( O1ilowwe + | [ @.0) Doy} dy )
277 O(| fol oormy + 27 | fil crermy)
(we omit the partition of ¢, see lemma 2.1.) and thus the estimation

27, * f(x)] = C27=inf ., ., (Ifolco+ 2| f1lcw)
< C(2k) kK (f) < const.

lIA

The corresponding norm inequality follows from the calculations.
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3. The case 2=R".
THEOREM 3.1. B*(R")=%,PAR") for 0<ax=(A—n)/p<k.

Proor. First we prove B*(R?)< .Z,P4(R"). By theorem 1.2 we get

(ZoP™(RR), L pntkD(RM)) g o © Z3PAR™)
with
A= =okVYn+ok(n+kp) =n+tap,

that is, x=(A—n)/p. (Here we use ZpP*R")<.Z,P"R"), see remark
1.2.) Now it suffices to prove

B+(R") < (ZPm(R"), £ 2 (R™)) /.00
with a=(A—n)/p and 0<«/k<1. Let I be the identity ma,pping.j We

will show that
(3.1) I: C%R") — Z,rn(R")

(3.2) I: CkRn) > &, pn+kp(Rn)

To prove (3.1) let us take f € C°(R"). Then

( f If (@) [ dx>1/p=<= lflcomn)( J 1 dx)lm= If lgowmy ™2 C

|e—o| <1 |z—o| =7

which means f € Z»"(R"). Next we prove (3.2). Let us take f € C¥(R").
Then from Taylor’s formula we get

f(x) — (polynomial of degree < k) = (k!)=* 3y (DYf )(xq + 0(2 — 20))(x — %, ),
where
(x— xo)l = (@ — 2. .. (x,— xOn)ln .
It follows immediately that
|f () = qi(@)] £ O supjyap (@ —2o) (DY )20+ 0(x — )] -
From this we get

1/p

1/
f@ - da)” s Orksupy Y| ([ 1d0)
|o—sol S7 sl <7
< Crmsobp (£ oxe -

The desired norm inequalities also follow from the above.
By means of (3.1) and (3.2) we conclude, using also theorem 1.1., that

I: BXR") = (C°(R™),CKR™)), g0 > (LoPMR™), L HP(RY)) g e -
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Now we show that #,7#(R*)< B%R"), ax=(1—n)/p, by proving that
f e Z;»*(R®) implies (see (2.2))

|(Pv*f|L°° = c2=.

We take a function X € C;*(R") with support in a neighbourhood of the
origin and such that

| @) X(@) dw = 0
for any polynomial ¢, of degree <k and
X)) +£0 for k<|f<2.

Let X (x)=2—"X(2-"z). Such a function X exists, see lemma 3.1 below.
Using Holder’s inequality we get

X af@l = |[ Ko=) f0) dy)| .
X, (@-y)(f(4) —au()) dy

|o—y|=CO2¥

S X o 1f — thlisu, 0 S C1K e (2P

X (@) dz)" = ([ 1X@e—)w dz)” 2-m
J |

= (J' |X(x)[1" dx)l/p’gvn/p’z—m = 2-%P | X |0 .

LOQ

But

We get
| X, 2f| g0 S C|X|pp(20)0-0P

Now we take p € S such that (&) 40 for } <|&| <2 and
suppy = {§| §= 1§ =2}
and X as above. Then we get
lp,* X, xflpe £ 19l | X, xf|p> £ 19|02 < const. 2,

where a=(A—n)/p. But p=y*xX €8 is a function such as ¢ in (2.2).
So we have proved that f in the norm (2.2) is bounded.

LemmMa 3.1. There exists a function X € Cy®°(R™) with support in a
neighbourhood of the origin, [q,(x)X(x)dx=0 for all polynomials g, of
degree <k and X(&)+0 for }<|&|<2.
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Proor. We take a function 6(z) € C;*(R) with support in |2|<C. Let
g(x)=D¥*6(x). Then g(x) € C;®(R) with support in |x|<C. Of course we
have

fg(x)dx =0, fwg(x)dx =0, ..., fx"-lg(x)dx =0,

Further let y(x)=g(x,)g(x,)...g(x,). Obviously y(z) e Cy™®(R*) and
Jqi(x)p(x)dz =0 for all polynomials g, of degree <k. We have p(£) e S
and (&) must be =0 in some point &,. Let us suppose that |£)|=1
(otherwise we can make a homothetic transformation that does not
change the properties above of ). We may suppose that 9(&)=2 0. Then
9(£) > 0 in a neighbourhood of &,.

Consider {pz(&)}, where pg(&)=9p(B-1£) and B an orthogonal matrix.
D'5(0)=0 because D%p(0)=0. Further 5(£)=+0 in £5=DBE,. We have
a set of functions {pg(&)} such that pz(£)>0 in a neighbourhood of a
point on the unit sphere. Now we cover the unit sphere by a finite subset
of such neighbourhoods corresponding to ¢, 9p,,. .., 95, We get

N
L& =39p6) +0 on |g=1
y=1

and in a neighbourhood of this set. We may suppose that this neighbour-
hood is % < |£] < 2 (otherwise we can repeat the covering argument above,
now with X&) =X(t£), ¢ constant). The function X(x) has the desired
properties.

4. The case bounded 2 <R".

We shall say that the open, bounded set £ <R™ satisfies assumption
(H), if it has

1) the lifting property,
2) the cone property,

which properties we now define.
DEerintTION 3.1. The set 2 <R has the lifting property if there is a
linear continuous mapping L such that
L: Ci(2) - CI(R*) for j=0,k
and RoL is the identity mapping on C¥(R) if R is the restriction to 2

of a function defined in R®.

DrerFintTION 3.2. The set 2 <R" has the cone property if to every point
z in £ there exists a neighbourhood O, of z and a corresponding bounded
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cone C, with vertex at the origin and the property y+C,<Q for
ye2n0,.

REMARK 4.1. £2 has the lifting property if the boundary of 2 is of
class Ck. See S. Agmon [1, p. 128] and J. Peetre [8].

If Q is of class C* it has the cone property. See Agmon [1, p. 129].

A convex set has the cone property.

THEOREM 4.1. If Q satisfies the above assumption (H), then L,PAH Q)=
BXQ2) for 0<x=(A—n)[p<k.

Proor. We carry out the proof by showing that

Li2HQ) —> (CO2),04Q))arte00 — (COR), CHRM)) 1o —
— LR > LPHQ)

Here steps two and four are immediate. Step three follows from section 1.
Therefore only step one remains to be proved.

Choose a finite, open covering {0,}:_; of 2, such that to each O; we
can find a bounded cone C; and z+ C; <2 for xe 2 NnO,. This is possible,
because £2 is bounded and has the cone property (use the Heine-Borel
theorem). Now take fe %, P4(2). We shall consider 2n0,; and prove
that fe BY2n0,). Let C; be the cone corresponding to O,.

Choose a function X € Cy®(R*) with

a) the support in —C;={y; —y € C;} and

b) [X(x)dr=1 and

¢) fq(z) X (x) dx=0 for all polynomials g of degree less than k and with
no constant term.

LrmmMa 4.1. There exists a function X € Cy°(R™) with the properties a),
b) and c) above.

Proor. Let us take 6(x) € C;®(R) with the support in [a,b] such that

f@dx L1t
o (k=1)!"
Then we have

0(x)

fwdx= =(k~1)!f?‘~dx= 1

z
and
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j » DE-16(x)

f o D0
X

dx = 0, x = 0.
x

Now set @(x) =zt D¥-14(z).

We want the support of X to be in —C,;. Choose a “cube” in —C;
and construct X as a product of » functions @(x,) with their supports in
the desired intervals. This completes the proof of the lemma.

Now let p,(x)=X(2"+1x) 20+Un — X(27x) 2». For »20, w,(x) has sup-
port in —C,;. Then we get

iww+mm=%,

for if g € Cy®(R™) we have, if N> N,,

[ (2 01+ X)) gt da—t0)| = | [ x2%0) 2 g da— 10|

y=0
_ I [ xw) (g (ﬁ%n) - g(O)) dyl

< [1X@ o (o) —90) | dy < e

Thus
J(x) = §:qp,*f(x) + Xxf(x) forzelnO,.

v=0

Note that the terms on the right side are well defined functions and they
are continuously differentiable up to the order we want.

Let f(x)=v,*f(x) for »20 and f_,(x)=X=xf(x). We have f(x)=
3%/.(x) for x € 2n0;. We shall prove that

2= J(27,f,) £ CO|f|lgwpng forallv.

For »= 0 we have, taking supremum over all z € 2n0,,
owanop = sup | [ ww=9) @) dy |

= sup ’ f v (-9 (f(¥) - 2:(y) dy !

sup

2 f v((x=9)2)(f(y) —2x(y)) dy |

s sup 2 ([lw-n2)ray)” ([ re)-awed)”

(x—y)2¥esuppyo
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IA

sup 2m2~vn/p’0( f |f(y)—qk(y)|1’dy)”"

Qnlz co-v

2P C\f| gppinyC27%P = C(27)A™P|f| o piq, -

IIA

Further we get
Ify|clr(9no,-) = suP|a|=k|D“fw100(un0,-) = sup|Dy,*f(x)|

= sup| [ Doyol(@—1)2) 2 (9) dy |

= sup

2+ [ g e -1)2) 210 dy |,

where the last three suprema are taken for x € 2n0,, |x|=k. But ¢, =
D=y, is a function with essentially the same properties as y,. Thus we
can use the same estimate as above. We get

Iflckanoy S 27%C (27)4VP | f| 4 o a0y -

With similar methods we can treat f_;(z)=X xf(z) and get analogous
estimates.
Then we have for all »

(2vk)are max(lfv'comnoi): 2k |.m0k(9no,-)) s Cif ngp,l(n) >
where o =(1—n)/p, O<ax<k.
We have proved that fe B(2n0;) for x=(A—n)/p and for an arbi-

trary set O; in the construction above.

Lrmma 4.2, If f(x) e BX2n0) and n(x) € Cy™(R") and suppny<O, we
have n(x)f(x) € B*(L2).

Proor. It suffices to notice that the mapping

F: f(z) > n(z) f(x)
is such that

F: C2n0) - C%2), F: C¥L2n0) > CHQ).
The statement then follows by the interpolation theorem.

Now we can conclude the proof of theorem 4.1. In fact we choose to
the finite, open covering {0;};_, of £ a partition of unity, that is, func-
tions (7;);_, such that
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7n; has support in O; and Y #(x) =1, when zeQ.
=1

We have shown that #,fe B*(2) (lemma 4.2). Thus we have also
i f € BX(R2). But 3i_nx)f(x)=f(x) when ze Q. Thereby theo-
rem 4.1 is proved.
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