ON THE STRUCTURE OF THE SPACES $\mathcal{L}_k^{p,\lambda}$

BARBRO GREVHOLM

Introduction.

Under special conditions on the subset Ω in \mathbb{R}^n, S. Campanato [3] proved that the spaces $\mathcal{L}_k^{p,\lambda}(\Omega)$ are isomorphic to the Lipschitz spaces $C^{h,\alpha}(\Omega)$ (see definitions in section 1), where $h+\epsilon=(\lambda-n)/p > 0$ and $0<\epsilon<1$, h integer $<k$.

With another method, based on the theory of interpolation spaces, we intend to prove that $\mathcal{L}_k^{p,\lambda}(\Omega)$ is equal to the Besov space $B^\alpha(\Omega)$, where $0<(\lambda-n)/p=\alpha<k$, even when $(\lambda-n)/p$ is an integer and with other conditions on Ω.

The plan of this article is as follows. In section 1 we give the definition of $\mathcal{L}_k^{p,\lambda}(\Omega)$, $C^{h,\alpha}(\Omega)$ and $B^\alpha(\Omega)$. Section 2 contains alternative definitions of $B^\alpha(\Omega)$, when $\Omega=\mathbb{R}^n$. In section 3 we prove

$$B^\alpha(\Omega) = \mathcal{L}_k^{p,\lambda}(\Omega), \quad 0<\alpha<(\lambda-n)/p<k,$$

if $\Omega=\mathbb{R}^n$ (theorem 3.1). Section 4 treats the corresponding result for an open, bounded subset Ω of \mathbb{R}^n, subject to certain restrictions (theorem 4.1).

The subject of this paper was suggested to me by professor Jaak Peetre. I thank him for valuable criticism and great interest in my work. I also thank Jörgen Löfström, who read the manuscript and gave much advice.

1. Definition of $\mathcal{L}_k^{p,\lambda}(\Omega)$, $C^{h,\alpha}(\Omega)$ and $B^\alpha(\Omega)$.

Let Ω be an open subset of \mathbb{R}^n and $p \geq 1$. Write

$$I_{x_0,r} = \{x \in \mathbb{R}^n | |x-x_0| \leq r\}$$

and $\Omega_{x_0,r} = \Omega \cap I_{x_0,r}$.

Definition 1.1. For k integer ≥ 0 and $\lambda \geq 0$ we say that $f \in \mathcal{L}_k^{p,\lambda}(\Omega)$ if $f \in L^p_{loc}(\Omega)$ and for every $r>0$ and $x_0 \in \overline{\Omega}$ there exists a polynomial $q_k(x)$

Received June 7, 1969.

Math. Scand. 26 — 16
of degree \(<k\), depending on \(x_0\), \(r\) and \(f\), and a constant \(C\), depending on \(f\), such that

\[
\left(\int_{Q_{x_0,r}} |f(x) - q_k(x)|^p \, dx \right)^{1/p} \leq C r^{1/p}.
\]

The infimum over all constants \(C\) in (1.1) is a semi-norm on the space \(\mathcal{L}^{p,\lambda}(\Omega)\), and it will be denoted \(|f|_{\mathcal{L}^{p,\lambda}(\Omega)}\). We decide to identify functions whose difference is a polynomial of degree \(<k\). Then we can use \(|f|_{\mathcal{L}^{p,\lambda}}\) as a norm and \(\mathcal{L}^{p,\lambda}(\Omega)\) is a Banach space.

Remark 1.1. The spaces \(\mathcal{L}^{p,\lambda}(\Omega)\) introduced in S. Campanato [3] are not quite the same as our spaces \(\mathcal{L}^{p,\lambda}(\Omega)\). Campanato works with the norm

\[
|f|_{\mathcal{L}^{p,\lambda}(\Omega)} = \left(|f|^p_{L^p(\Omega)} + \sup_{0<r<\text{diam}\Omega} r^{-\lambda} \inf_{q_k} \int_{Q_{x_0,r}} |f(x) - q_k(x)|^p \, dx \right)^{1/p}.
\]

Note also that Campanato uses the parameter \(k'=k-1\) in place of \(k\), so that our \(\mathcal{L}^{p,\lambda}\) is the space \(\mathcal{L}^{k,p,\lambda}\) in the sense of Campanato.

Definition 1.2. Let \(h\) be an integer \(\geq 0\) and let \(C^h(\Omega)\) be the space of all \(h\) times continuously differentiable functions in \(\Omega\).

Then \(C^h(\Omega)\) is a Banach space with the graph-norm

\[
|f|_{C^h(\Omega)} = \sum_{|\alpha| \leq h} \sup_{x \in \Omega} |D^\alpha f(x)|.
\]

Here \(l=(l_1, l_2, \ldots, l_n)\) is an \(n\)-tuple, \(|l|=l_1+l_2+\ldots+l_n\), and

\[
D^l f(x) = D_1^{l_1} D_2^{l_2} \ldots D_n^{l_n} f(x), \quad \text{where } D_\nu = \partial/\partial x_\nu.
\]

Definition 1.3. For \(0<\varepsilon \leq 1\) we say that \(f \in C^{h,\varepsilon}(\Omega)\) if \(f \in C^h(\Omega)\) and the derivatives of order \(h\) are Lipschitz continuous in \(\overline{\Omega}\) with exponent \(\varepsilon\). Take as a norm in \(C^{h,\varepsilon}(\Omega)\)

\[
|f|_{C^{h,\varepsilon}(\Omega)} = |f|_{C^h(\Omega)} + \sup_{|\alpha|=h} \sup_{x, y \in \Omega} \frac{|D^\alpha f(x) - D^\alpha f(y)|}{|x-y|^\varepsilon}.
\]

Campanato ([2] and [3]) has given the following characterizations of \(\mathcal{L}^{p,\lambda}(\Omega)\), \(1 \leq p < \infty\), for \(\Omega\) open, bounded, and of "type \(\mathcal{A}\)" (see Campanato [3, p. 138]).

\(\mathcal{L}^{p,\lambda}(\Omega) = L^p(\Omega)\) if \(\lambda = 0\);

\(\mathcal{L}^{p,\lambda}(\Omega) = L^{p,\lambda}(\Omega)\), Morrey space, if \(0 \leq \lambda < n\) (for definition of \(L^{p,\lambda}(\Omega)\) see Campanato [3, p. 157]);
\[\mathcal{L}^{p,\lambda}_k(\Omega) = C^{h\varepsilon}(\Omega) \text{ if } n < \lambda \leq n + k \cdot p, \ h \text{ integer } \leq k - 1, \]
\[(\lambda - n)/p = h + \varepsilon, \ 0 < \varepsilon < 1 \text{ and } \Omega \text{ convex}; \]
\[\mathcal{L}^{p,\lambda}_k(\Omega) = \mathcal{S}^{p}_{h}(\Omega) = \mathcal{L}^{1/n + h}_h(\Omega) \text{ if } (\lambda - n)/p = h \text{ integer } \leq k - 1 \]
\[\text{and } \Omega \text{ convex}; \]
\[\mathcal{L}^{p,\lambda}_k(\Omega) = P_k(\Omega) = \{\text{polynomials of degree } \leq k - 1\} \text{ if } \lambda > n + kp. \]

Remark 1.2. From the definition of \(\mathcal{L}^{p,\lambda}_k(\Omega) \) it follows that \(\mathcal{L}^{p,\lambda}_j(\Omega) \subset \mathcal{L}^{p,\lambda}_k(\Omega), \ j \leq k. \)

We are now going to give another characterization of \(\mathcal{L}^{p,\lambda}_k(\Omega) \) for \(0 < (\lambda - n)/p < k \) with aid of interpolation spaces (see J. Peetre [6]).

Let \(A_0 \) and \(A_1 \) be Banach spaces with norms \(|\cdot|_{A_0} \) and \(|\cdot|_{A_1} \), respectively. Put
\[K_s(a) = \inf_{a=a_0+a_1} (|a_0|_{A_0} + m^s |a_1|_{A_1}), \]
\[J_s(a) = \max (|a|_{A_0}, m^s |a|_{A_1}), \ m \neq 1. \]

The interpolation space \((A_0, A_1)_{\theta, q}, 0 < \theta < 1, 1 \leq q \leq \infty, \) is then defined by each one of the equivalent norms
\[(1.2) \quad \left(\sum_{r=-\infty}^{\infty} (m^{-r\theta} K_s(a))^q \right)^{1/q}, \]
\[(1.3) \quad \inf \left(\sum_{r=-\infty}^{\infty} (m^{-r\theta} J_s(u_r))^q \right)^{1/q}, \]
where infimum is to be taken over all \(u_r \) such that \(a = \sum_{r=\infty}^\infty u_r \) in \(A_0 + A_1 \).

(If \(q = \infty \) we take as usual the supremum norm.)

We will work with the space \(C^h(\Omega) \), but not with the same norm as Campanato used. We identify functions whose difference is a polynomial of degree \(< h \) and take as a norm
\[|f|_{C^h(\Omega)} = \sup_{x \in \Omega, |x| = h} |Df(x)|. \]

From now on the notation \(C^h(\Omega) \) will refer to this definition.

Definition 1.4. The Besov space \(B^\alpha(\Omega) \) is defined by
\[B^\alpha(\Omega) = (C^0(\Omega), C^k(\Omega))_{\alpha/k, \infty}, \text{ where } 0 < \alpha < k. \]
(In the sequel we let \(k \) be the same integer as we used in the definition of \(\mathcal{L}^{p,\lambda}_k(\Omega) \).)

The norm in \(B^\alpha(\Omega) \) is any one of the above mentioned interpolation norms. Also in \(B^\alpha(\Omega) \) we identify functions whose difference is a polynomial of degree \(< k \).

We need the following interpolation theorem.
THEOREM 1.1. Let A_0, A_1, B_0, B_1 be Banach spaces and T a linear operator such that

$$T: A_0 \to B_0, \quad T: A_1 \to B_1.$$

Then

$$T: (A_0, A_1)_{\theta,q} \to (B_0, B_1)_{\theta,q} \quad \text{for} \quad 0 < \theta < 1 \quad \text{and} \quad q \geq 1.$$

For the corresponding operator norms M_0, M_1 and M, respectively, we have

$$M \leq M_0^\theta M_1^{1-\theta}.$$

The sign \to stands for linear continuous mapping.

We also need

THEOREM 1.2 (S. Spanne [9]). Let $0 < \theta < 1$. Then

$$(\mathcal{L}^{p,\lambda_0}(\Omega), \mathcal{L}^{p,\lambda_1}(\Omega))_{\theta,\infty} \subset \mathcal{L}^{p,\lambda}(\Omega) \quad \text{with} \quad \lambda = (1-\theta)\lambda_0 + \theta \lambda_1.$$

2. Alternative definitions of $B^\alpha(\mathbb{R}^n)$.

We shall now give two alternative definitions of the space $B^\alpha(\Omega)$ in the case $\Omega = \mathbb{R}^n$. The first one characterizes $B^\alpha(\Omega)$ by means of the modulus of continuity. Write

$$A_{ty}f(x) = f(x+ty) - f(x),$$

$$A_{ty}^l f(x) = A_{ty}(A_{ty}^{l-1} f(x)), \quad l = 2, 3, \ldots.$$

Let k be the integer in the definition of $\mathcal{L}^{p,\lambda}$ and suppose $\alpha < k$. We consider the norm

$$(2.1) \quad \sup_{0 < t < \infty, |y| \leq 1} t^{-\alpha} |A_{ty}^k f|_{L^\infty(\mathbb{R}^n)}.$$

(Again we identify functions whose difference is a polynomial of degree less than k.) We shall prove that (2.1) is then an equivalent norm on $B^\alpha(\mathbb{R}^n)$.

Our second alternative definition of $B^\alpha(\mathbb{R}^n)$ is the following one. Let φ be a function in the Schwartz class S and write

$$\varphi_\nu(x) = 2^{-\nu n} \varphi(2^{-\nu} x), \quad \nu \text{ integer}.$$

Let $\hat{\varphi}$ be the Fourier transform of φ and suppose that $\hat{\varphi}(\xi)$ is not zero on the annulus $2^{-1} < |\xi| < 2$ and vanishes outside it. We then consider the norm

$$(2.2) \quad \sup_{\nu} 2^{-\nu \alpha} |\varphi_\nu * f|_{L^\infty(\mathbb{R}^n)}.$$

We identify functions whose difference is a polynomial of degree less than k, and we exclude all polynomials of degree higher than or equal k.

This norm will depend on the function \(\varphi \), but two different \(\varphi \) will give rise to equivalent norms. See J. Peetre [8] and J. L"ofstr"om [5].

Lemma 2.1. The norms (2.1) and (2.2) are equivalent on \(B^s(\mathbb{R}^n) \).

Proof. We let \(\varphi \in S \) and \(\hat{\varphi}(\xi) \equiv 0 \) in \(\frac{1}{2} < |\xi| < 2 \), \(\text{supp} \hat{\varphi} = \{ \xi \mid \frac{1}{4} \leq |\xi| \leq 2 \} \), \(\varphi_r(x) = 2^{-rn} \varphi(2^{-r}x) \). We can take \(\varphi \) such that

\[
\sum_{r = -\infty}^{\infty} \hat{\varphi}_r(\xi) = 1 \quad \text{for } \xi \neq 0.
\]

See H"ormander [4, p. 121]. Now take \(f \) such that

\[
|\varphi_r * f|_{L^\infty} \leq C 2^{rn}.
\]

It suffices to show that

\[
|\Delta_{t \xi_1}^k f|_{L^\infty} \leq Ct^s.
\]

Form the function

\[
\hat{\varphi}_r(\xi) = (e^{it\xi_1} - 1)^k \hat{\varphi}_r(\xi).
\]

We get at once

\[
|\varphi_r * f|_{L^\infty} \leq 2^k |\varphi_r * f|_{L^\infty} \leq 2^k C 2^{rn}.
\]

Further we have

\[
\hat{\varphi}_r(\xi) = (e^{it\xi_1} - 1)^k \hat{\varphi}(2^r \xi) = (t2^{-r})^k \left(\frac{e^{it\xi_1} - 1}{\xi_1} \right)^k (\xi_1 2^r)^k \hat{\omega}(2^r \xi) \hat{\varphi}(2^r \xi).
\]

if \(\hat{\omega} \in S \) and \(\hat{\omega}(\xi) = 1 \), when \(\hat{\varphi}(\xi) \neq 0 \).

Let \(M_n \) be the space of Fourier transforms of bounded measures on \(\mathbb{R}^n \), normed by

\[
|\hat{\mu}|_{M_n} = \int_{\mathbb{R}^n} |d\mu|.
\]

Then it is easy to see that

\[
\left| \left(\frac{e^{it\xi_1} - 1}{\xi_1} \right)^k \right|_{M_n} \leq C \quad \text{and} \quad |(t\xi)^k \hat{\omega}(t\xi)|_{M_n} \leq C
\]

for \(0 < t < \infty \) (see L. H"ormander [4]). Thus we get the estimate

\[
|\varphi_r * f|_{L^\infty} \leq C (t2^{-r})^k |\varphi_r * f|_{L^\infty} \leq (t2^{-r})^k C 2^{rn}.
\]

From (2.3) and (2.4) we get

\[
|\varphi_r * f|_{L^\infty} \leq C \min(1,(t2^{-r})^k)^{2rn}.
\]

However \(\Delta_{t \xi_1}^k f(x) = \sum_{r = -\infty}^{\infty} \varphi_r * f(x) \), so we have

\[
|\Delta_{t \xi_1}^k f|_{L^\infty} \leq C \sum_{r = -\infty}^{\infty} \min(1,(t2^{-r})^k)^{2rn} \leq C \int_0^\infty \min(1,(t2^{-r})^k) \frac{dx}{x} \leq Ct^s.
\]
From the above calculation we obtain the desired norm inequality.
For the other part of the proof we take \(f \) such that \(|\Delta_{\ell_1}^k f|_{L^\infty} \leq Ct^a\). Take also \(\Phi \in S(\mathbb{R}) \) such that \(\hat{\Phi}(\xi) = 0 \) exactly for
\[
\frac{1}{2 + c(n)} < |\xi| < 3, \quad c(n) > 0
\]
and set \(\Phi_\nu(x) = \Phi(x2^{-\nu}) \cdot 2^{-\nu} \). It is easy to prove that
\[
\left| \frac{\hat{\Phi}_\nu(\xi)}{(e^{it\xi} - 1)k} \right|_{L^1} \leq C \quad \text{for } t = 2^\nu.
\]
Now let \(\hat{\psi} \in S(\mathbb{R}^n) \) be such that \(\hat{\psi} = \hat{\Phi}(\xi_1) \cdot \hat{g}(\xi_2) \), where \(\hat{\Phi} \) is as above and \(\hat{g}(\xi) = 0 \) for exactly \(|\xi| < 3, \xi = (\xi_2, \xi_3, \ldots, \xi_n)\). Then
\[
\left| \frac{\hat{\psi}(\xi)}{(e^{it\xi} - 1)k} \right|_{L^1} \leq C \quad \text{for } t = 2^\nu
\]
and we conclude
\[
|\Delta_{\ell_1}^k f|_{L^\infty} = \left| \left(\frac{\hat{\psi}(\xi)}{(e^{it\xi} - 1)k} \right) \ast \Delta_{\ell_1}^k f \right|_{L^\infty} \leq C t^a \leq C 2^{ra}.
\]
Here \(\psi^p \) denotes the inverse Fourier transform of \(g \). Repeat the construction for each one of the coordinate axes and add the functions to get \(\hat{\psi} = \sum_{k=1}^n \hat{\psi}_k \). Now take \(\varphi \) as in (2.2). The function \(\hat{\psi}(\xi) \) can be chosen such that \(\hat{\psi}(\xi) = 1 \) for \(\frac{1}{2} \leq |\xi| \leq 2 \). Then \(\hat{\psi}(\xi) \hat{\varphi}(\xi) = \hat{\varphi}(\xi) \) (because \(\text{supp} \hat{\varphi} = \{ |\xi| : \frac{1}{2} \leq |\xi| \leq 2 \} \)). So we have
\[
|\varphi \ast f|_{L^\infty} = |\varphi \ast \varphi \ast f|_{L^\infty} \leq |\varphi|_{L^1} |\varphi \ast f|_{L^\infty} \leq C 2^{ra}.
\]
We also get the desired norm inequality.

Theorem 2.1. The norms (2.1) and (2.2) are equivalent norms on \(B^a(\mathbb{R}^n) \).

Proof. In view of lemma 2.1 it suffices to show that (2.2) is equivalent to the norm on \(B^a(\mathbb{R}^n) \). We take \(\varphi \) as in (2.2) and \(f \) such that
\[
|\varphi \ast f(x)| \leq C 2^{ra}.
\]
As before we can choose \(\varphi \) such that \(\sum_{k=1}^\infty \hat{\varphi}(\xi) = 1, \xi = 0 \). Let \(f_\nu(x) = \varphi \ast f(x) \). Then
\[f(x) = \sum_{r=-\infty}^{\infty} f_r(x) \quad \text{(modulo polynomials of degree < } k), \]

where \(f_r(x) \) and its derivatives are continuous functions. For any integer \(s \geq 0 \),

\[
|f_s|_{C^s(\mathbb{R}^n)} = \sup_{|l| = s} |D^l f_s|_{C^0(\mathbb{R}^n)} = \sup_{|l| = s} |(D^l \varphi_s) \ast f|_{C^0(\mathbb{R}^n)} \\
\leq 2^{-sv} \sup_{|l| = s} |(D^l \varphi_s) \ast f|_{C^0(\mathbb{R}^n)} \leq C 2^{s(a-s)},
\]

because \(D^l \varphi \) is a function with essentially the same properties as \(\varphi \).

Let \(k \) be the usual integer \(> \alpha \). We have shown that

\[
|f_s|_{C^\infty(\mathbb{R}^n)} \leq C 2^{r\alpha}, \quad |f_s|_{C^k(\mathbb{R}^n)} \leq C 2^{r(a-k)}.
\]

We get (with \(m = 2^k \) in (1.3)) that \((2^{r\alpha}-s/k) J_s(f_s) \leq \text{const.} \), that is, \(f \in (C^0(\mathbb{R}^n), C^k(\mathbb{R}^n))_{a/k, \infty} \).

Although the other part of the proof follows from section 3, we give a direct proof here. We take \(f \in B^\alpha(\mathbb{R}^n) = (C^0(\mathbb{R}^n), C^k(\mathbb{R}^n))_{a/k, \infty} \), \(k \) integer \(> \alpha \). Equivalently this means that

\[
m^{-\alpha} K_\varphi(f) < \text{const.},
\]

where

\[
K_\varphi(f) = \inf_{f = f_0 + f_1} (|f_0|_{C^0(\mathbb{R}^n)} + m^r |f_1|_{C^k(\mathbb{R}^n)}).
\]

Now take \(\varphi \) as in (2.2). We let \(f = f_0 + f_1 \), where \(f_0 \in C^0(\mathbb{R}^n) \) and \(f_1 \in C^k(\mathbb{R}^n) \). We want to estimate \(|\varphi \ast f(x)| \). Putting \(D^k \Phi(y) = \varphi(y) \), we obtain

\[
2^{-\alpha} \left| \int \varphi(y) f(x-y) \, dy \right| = 2^{-\alpha} \left| \int \varphi(y) (f_0(x-y) + f_1(x-y)) \, dy \right| \\
\leq 2^{-\alpha} \left(\int |\varphi(y)| \, dy \, |f_0|_{C^0(\mathbb{R}^n)} + \int |\varphi(y)| \, f_1(x-y) \, dy \right) \\
\leq 2^{-\alpha} \left(C |f_0|_{C^0(\mathbb{R}^n)} + \int \Phi(y) \, D^k f_1(x-y) \, dy \right) \\
\leq 2^{-\alpha} C (|f_0|_{C^0(\mathbb{R}^n)} + 2^{rk} |f_1|_{C^k(\mathbb{R}^n)})
\]

(we omit the partition of \(\varphi \), see lemma 2.1.) and thus the estimation

\[
2^{-\alpha} |\varphi \ast f(x)| \leq C 2^{-\alpha} \inf_{f = f_0 + f_1} (|f_0|_{C^0} + 2^{rk}|f_1|_{C^k}) \\
\leq C (2^{rk})^{-s/k} K_\varphi(f) \leq \text{const.}
\]

The corresponding norm inequality follows from the calculations.
3. The case $\Omega = \mathbb{R}^n$.

Theorem 3.1. $B^\alpha(\mathbb{R}^n) = \mathcal{L}_{k}^{p,\lambda}(\mathbb{R}^n)$ for $0 < \alpha = (\lambda - n)/p < k$.

Proof. First we prove $B^\alpha(\mathbb{R}^n) \subset \mathcal{L}_{k}^{p,\lambda}(\mathbb{R}^n)$. By theorem 1.2 we get

$$(\mathcal{L}_{0}^{p,n}(\mathbb{R}^n), \mathcal{L}_{k}^{p,n+kp}(\mathbb{R}^n))_{\alpha/k, \infty} \subset \mathcal{L}_{k}^{p,\lambda}(\mathbb{R}^n)$$

with

$$\lambda = (1 - \alpha k^{-1})n + \alpha k^{-1}(n + kp) = n + \alpha p,$$

that is, $\alpha = (\lambda - n)/p$. (Here we use $\mathcal{L}_{0}^{p,n}(\mathbb{R}^n) \subset \mathcal{L}_{k}^{p,n}(\mathbb{R}^n)$, see remark 1.2.) Now it suffices to prove

$$B^\alpha(\mathbb{R}^n) \subset (\mathcal{L}_{0}^{p,n}(\mathbb{R}^n), \mathcal{L}_{k}^{p,n+kp}(\mathbb{R}^n))_{\alpha/k, \infty}$$

with $\alpha = (\lambda - n)/p$ and $0 < \alpha/k < 1$. Let I be the identity mapping. We will show that

(3.1) $I: C^0(\mathbb{R}^n) \to \mathcal{L}_{0}^{p,n}(\mathbb{R}^n)$

(3.2) $I: C^k(\mathbb{R}^n) \to \mathcal{L}_{k}^{p,n+kp}(\mathbb{R}^n)$

To prove (3.1) let us take $f \in C^0(\mathbb{R}^n)$. Then

$$\left(\int_{|x-x_0| \leq r} |f(x)|^p \, dx \right)^{1/p} \leq |f|_{C^0(\mathbb{R}^n)} \left(\int_{|x-x_0| \leq r} 1 \, dx \right)^{1/p} = |f|_{C(\mathbb{R}^n)}^p C,$$

which means $f \in \mathcal{L}_{0}^{p,n}(\mathbb{R}^n)$. Next we prove (3.2). Let us take $f \in C^k(\mathbb{R}^n)$. Then from Taylor's formula we get

$$f(x) - (\text{polynomial of degree } < k) = (k!)^{-1} \Sigma_{|l| = k} (D^l f)(x_0 + \theta(x-x_0))(x-x_0)^l,$$

where

$$(x-x_0)^l = (x_1-x_{01})^{l_1} \ldots (x_n-x_{0n})^{l_n}.$$

It follows immediately that

$$|f(x) - q_k(x)| \leq C \sup_{|l| = k} |(x-x_0)^l(D^l f)(x_0 + \theta(x-x_0))|.$$

From this we get

$$\left(\int_{|x-x_0| \leq r} |f(x) - q_k(x)|^p \, dx \right)^{1/p} \leq C r^k \sup_{|l| = k} |D^l f| \left(\int_{|x-x_0| \leq r} 1 \, dx \right)^{1/p} \leq C r^{(n+p k)/p} |f|_{C^k(\mathbb{R}^n)}.$$

The desired norm inequalities also follow from the above.

By means of (3.1) and (3.2) we conclude, using also theorem 1.1., that

$$I: B^\alpha(\mathbb{R}^n) = (C^0(\mathbb{R}^n), C^k(\mathbb{R}^n))_{\alpha/k, \infty} \to (\mathcal{L}_{0}^{p,n}(\mathbb{R}^n), \mathcal{L}_{k}^{p,n+kp}(\mathbb{R}^n))_{\alpha/k, \infty}.$$

Now we show that $\mathcal{L}_{p,\lambda}^{r}(\mathbb{R}^n) \subset B^{0}(\mathbb{R}^n)$, $\alpha = (\lambda - n)/p$, by proving that $f \in \mathcal{L}_{p,\lambda}^{r}(\mathbb{R}^n)$ implies (see (2.2))
\[|f_{*}f|_{L^{\infty}} \leq C 2^{r_{\alpha}}. \]
We take a function $X \in C_{0}^{\infty}(\mathbb{R}^n)$ with support in a neighbourhood of the origin and such that
\[\int q_{k}(x) X(x) \, dx = 0 \]
for any polynomial q_{k} of degree $< k$ and
\[\hat{X}(\xi) \neq 0 \quad \text{for } \frac{1}{2} < |\xi| < 2. \]
Let $X_{*}(x) = 2^{-m} X(2^{-m} x)$. Such a function X exists, see lemma 3.1 below. Using Hölder’s inequality we get
\[|X_{*}f(x)|_{L^{\infty}} = \left| \int X_{*}(x-y) f(y) \, dy \right|_{L^{\infty}} \]
\[= \left| \int_{|x-y| \leq C 2^{\rho}} X_{*}(x-y)(f(y) - q_{k}(y)) \, dy \right|_{L^{\infty}} \]
\[\leq |X_{*}|_{L^{p'}} |f - q_{k}|_{L^{p}(I_{x, C 2^{\rho}})} \leq C |X_{*}|_{L^{p'}} (2^{r})^{1/p}. \]
But
\[\left(\int |X_{*}(x)|^{p'} \, dx \right)^{1/p'} = \left(\int |X(x2^{-m})|^{p'} \, dx \right)^{1/p'} 2^{-m} \]
\[= \left(\int |X(x)|^{p'} \, dx \right)^{1/p'} 2^{m/p} 2^{-m} = 2^{-m/p} |X|_{L^{p'}}. \]
We get
\[|X_{*}f|_{L^{\infty}} \leq C |X|_{L^{p'}} (2^{r})^{(\lambda - n)/p}. \]
Now we take $\varphi \in S$ such that $\hat{\varphi}(\xi) / 0$ for $\frac{1}{2} < |\xi| < 2$
\[\text{and } \hat{X}(\xi) \neq 0 \text{ for } \frac{1}{2} < |\xi| < 2 \]
and X as above. Then we get
\[|\varphi_{*}X_{*}f|_{L^{\infty}} \leq |\varphi|_{L^{1}} |X_{*}f|_{L^{\infty}} \leq |\varphi|_{L^{1}} C 2^{r_{\alpha}} \leq \text{const.} 2^{r_{\alpha}}, \]
where $\alpha = (\lambda - n)/p$. But $\varphi = \psi \ast X \in S$ is a function such as φ in (2.2). So we have proved that f in the norm (2.2) is bounded.

Lemma 3.1. There exists a function $X \in C_{0}^{\infty}(\mathbb{R}^n)$ with support in a neighbourhood of the origin, $\int q_{k}(x) X(x) \, dx = 0$ for all polynomials q_{k} of degree $< k$ and $\hat{X}(\xi) / 0$ for $\frac{1}{2} < |\xi| < 2$.

Proof. We take a function $\theta(x) \in C_0^\infty(\mathbb{R})$ with support in $|x| \leq C$. Let $g(x) = D^k \theta(x)$. Then $g(x) \in C_0^\infty(\mathbb{R})$ with support in $|x| \leq C$. Of course we have

$$\int g(x) \, dx = 0, \quad \int x g(x) \, dx = 0, \ldots, \quad \int x^{k-1} g(x) \, dx = 0.$$

Further let $\psi(x) = g(x_1)g(x_2)\ldots g(x_n)$. Obviously $\psi(x) \in C_0^\infty(\mathbb{R}^n)$ and $\int q_k(x) \psi(x) \, dx = 0$ for all polynomials q_k of degree $< k$. We have $\hat{\psi}(\xi) \in S$ and $\hat{\psi}(\xi)$ must be ± 0 in some point ξ_0. Let us suppose that $|\xi_0| = 1$ (otherwise we can make a homothetic transformation that does not change the properties above of ψ). We may suppose that $\hat{\psi}(\xi) \geq 0$. Then $\hat{\psi}(\xi) > 0$ in a neighbourhood of ξ_0.

Consider $\{\hat{\psi}_B(\xi)\}$, where $\hat{\psi}_B(\xi) = \hat{\psi}(B^{-1}\xi)$ and B an orthogonal matrix. $D^i \hat{\psi}_B(0) = 0$ because $D^i \hat{\psi}(0) = 0$. Further $\hat{\psi}_B(\xi) = \pm 0$ in $\xi_B = B\xi_0$. We have a set of functions $\{\hat{\psi}_B(\xi)\}$ such that $\hat{\psi}_B(\xi) > 0$ in a neighbourhood of a point on the unit sphere. Now we cover the unit sphere by a finite subset of such neighbourhoods corresponding to $\hat{\psi}_{B_1}, \hat{\psi}_{B_2}, \ldots, \hat{\psi}_{B_N}$. We get

$$\hat{\psi}_B(\xi) = \sum_{r=1}^N \hat{\psi}_{B_r}(\xi) \neq 0 \quad \text{on } |\xi| = 1$$

and in a neighbourhood of this set. We may suppose that this neighbourhood is $\frac{1}{2} < |\xi| < 2$ (otherwise we can repeat the covering argument above, now with $\hat{\psi}_B(\xi) = \hat{\psi}(t\xi)$, t constant). The function $X(x)$ has the desired properties.

4. The case bounded $\Omega \subset \mathbb{R}^n$.

We shall say that the open, bounded set $\Omega \subset \mathbb{R}^n$ satisfies assumption (H), if it has

1) the lifting property,
2) the cone property,

which properties we now define.

Definition 3.1. The set $\Omega \subset \mathbb{R}^n$ has the lifting property if there is a linear continuous mapping L such that

$$L: C^j(\Omega) \rightarrow C^j(\mathbb{R}^n) \quad \text{for } j = 0, k$$

and $R \circ L$ is the identity mapping on $C^j(\Omega)$ if R is the restriction to $\overline{\Omega}$ of a function defined in \mathbb{R}^n.

Definition 3.2. The set $\Omega \subset \mathbb{R}^n$ has the cone property if to every point x in $\overline{\Omega}$ there exists a neighbourhood O_x of x and a corresponding bounded
cone \(C_x \) with vertex at the origin and the property \(y + C_x \subseteq \Omega \) for \(y \in \Omega \cap O_x \).

Remark 4.1. \(\Omega \) has the lifting property if the boundary of \(\Omega \) is of class \(C^k \). See S. Agmon [1, p. 128] and J. Peetre [8].

If \(\Omega \) is of class \(C^k \) it has the cone property. See Agmon [1, p. 129]. A convex set has the cone property.

Theorem 4.1. If \(\Omega \) satisfies the above assumption (H), then \(\mathcal{L}_k^{p,\lambda}(\Omega) = B^\alpha(\Omega) \) for \(0 < \alpha = (\lambda - n)/p < k \).

Proof. We carry out the proof by showing that

\[
\mathcal{L}_k^{p,\lambda}(\Omega) \longrightarrow (C^0(\Omega), C^k(\Omega))_{a/k,\infty} \overset{L}{\longrightarrow} (C^0(\mathbb{R}^n), C^k(\mathbb{R}^n))_{a/k,\infty} \longrightarrow \mathcal{L}_k^{p,\lambda}(\mathbb{R}^n) \overset{R}{\longrightarrow} \mathcal{L}_k^{p,\lambda}(\Omega).
\]

Here steps two and four are immediate. Step three follows from section 1. Therefore only step one remains to be proved.

Choose a finite, open covering \(\{O_i\}_{i=1}^\infty \) of \(\overline{\Omega} \), such that to each \(O_i \) we can find a bounded cone \(C_i \) and \(x + C_i \subseteq \Omega \) for \(x \in \Omega \cap O_i \). This is possible, because \(\Omega \) is bounded and has the cone property (use the Heine–Borel theorem). Now take \(f \in \mathcal{L}_k^{p,\lambda}(\Omega) \). We shall consider \(\Omega \cap O_i \) and prove that \(f \in B^\alpha(\Omega \cap O_i) \). Let \(C_i \) be the cone corresponding to \(O_i \).

Choose a function \(X \in C_0^\infty(\mathbb{R}^n) \) with

a) the support in \(-C_i = \{y; -y \in C_i\} \) and
b) \(\int X(x) \, dx = 1 \) and
c) \(\int g(x)X(x) \, dx = 0 \) for all polynomials \(g \) of degree less than \(k \) and with no constant term.

Lemma 4.1. There exists a function \(X \in C_0^\infty(\mathbb{R}^n) \) with the properties a), b) and c) above.

Proof. Let us take \(\theta(x) \in C_0^\infty(\mathbb{R}) \) with the support in \([a, b]\) such that

\[
\int \frac{\theta(x)}{x^k} \, dx = \frac{1}{(k-1)!}.
\]

Then we have

\[
\int \frac{D^{k-1}\theta(x)}{x} \, dx = \ldots = (k-1)! \int \frac{\theta(x)}{x^k} \, dx = 1
\]

and
\[
\int x^{D^{k-1} \theta(x)} dx = 0, \quad \ldots, \quad \int x^{k-1} \frac{D^{k-1} \theta(x)}{x} dx = 0.
\]

Now set \(\Phi(x) = x^{-1} D^{k-1} \theta(x) \).

We want the support of \(X \) to be in \(-C_\varepsilon\). Choose a "cube" in \(-C_\varepsilon\) and construct \(X \) as a product of \(n \) functions \(\Phi(x) \) with their supports in the desired intervals. This completes the proof of the lemma.

Now let \(\psi_\varepsilon(x) = X(2^{\nu+1}x) 2^{(\nu+1)n} - X(2^\nu x) 2^n \). For \(\nu \geq 0 \), \(\psi_\varepsilon(x) \) has support in \(-C_\varepsilon\). Then we get

\[
\sum_{\nu=0}^{\infty} \psi_\varepsilon(x) + X(x) = \delta_0,
\]

for if \(g \in C_0^\infty(\mathbb{R}^n) \) we have, if \(N > N_0 \),

\[
\left| \int \left(\sum_{\nu=0}^{N} \psi_\varepsilon(x) + X(x) \right) g(x) dx - g(0) \right| = \left| \int X(2^{N+1}x) 2^{(N+1)n} g(x) dx - g(0) \right|
\]

\[
= \left| \int X(y) \left(g \left(\frac{y}{2^{(N+1)n}} \right) - g(0) \right) dy \right|
\]

\[
\leq \int |X(y)| \left| g \left(\frac{y}{2^{(N+1)n}} \right) - g(0) \right| dy < \varepsilon.
\]

Thus

\[
f(x) = \sum_{\nu=0}^{\infty} \psi_\varepsilon f(x) + X f(x) \quad \text{for} \quad x \in \overline{\Omega} \cap \Omega_\varepsilon.
\]

Note that the terms on the right side are well defined functions and they are continuously differentiable up to the order we want.

Let \(f_\varepsilon(x) = \psi_\varepsilon f(x) \) for \(\nu \geq 0 \) and \(f_{-1}(x) = X f(x) \). We have \(f(x) = \sum_{\nu} f_\varepsilon(x) \) for \(x \in \Omega \cap \Omega_\varepsilon \). We shall prove that

\[
2^\nu J(2^{-\nu} f_\varepsilon) \leq C |f|_{\mathcal{L}^p(\Omega)}, \quad \text{for all} \quad \nu.
\]

For \(\nu \geq 0 \) we have, taking supremum over all \(x \in \overline{\Omega} \cap \Omega_\varepsilon \),

\[
|f_\varepsilon|_{\mathcal{O}(\Omega \cap \Omega_\varepsilon)} = \sup \left| \int \psi_\varepsilon(x-y) f(y) dy \right|
\]

\[
= \sup \left| \int \psi_\varepsilon(x-y) (f(y) - q_k(y)) dy \right|
\]

\[
= \sup \left| 2^\nu \int \psi_0((x-y) 2^\nu) (f(y) - q_k(y)) dy \right|
\]

\[
\leq \sup 2^\nu \left(\int |\psi_0((x-y) 2^\nu)|^p dy \right)^{1/p} \left(\int \left(\frac{1}{\text{supp } \psi_0} |f(y) - q_k(y)|^p dy \right)^{1/p}
\]
\[\leq \sup 2^n 2^{-n/p'} C \left(\int_{\Omega \cap I_{x,2^{-n}}} |f(y) - q_k(y)|^p \, dy \right)^{1/p} \]
\[\leq (2^r)^{n/p} C |f|_{L_k^{p,\lambda}(\Omega)} C 2^{-n/p} = C(2^{-r})^{(\lambda-n)/p} |f|_{L_k^{p,\lambda}(\Omega)} . \]

Further we get
\[|f|_{C_k(\Omega \cap O_i)} = \sup_{|\alpha| = k} |D^\alpha f|_{C_k(\Omega \cap O_i)} = \sup |D^\alpha \varphi_0 * f(x)| \]
\[= \sup \left| \int D^\alpha \varphi_0 ((x-y) 2^r) 2^n f(y) \, dy \right| \]
\[= \sup \left| 2^k \int \varphi_0 ((x-y) 2^r) 2^n f(y) \, dy \right| , \]

where the last three suprema are taken for \(x \in \overline{\Omega} \cap O_i \), \(|x| = k \). But \(\varphi_0 = D^\alpha \varphi_0 \) is a function with essentially the same properties as \(\varphi_0 \). Thus we can use the same estimate as above. We get
\[|f|_{C_k(\Omega \cap O_i)} \leq 2^k C(2^{-r})^{(\lambda-n)/p} |f|_{L_k^{p,\lambda}(\Omega)} . \]

With similar methods we can treat \(f_{-1}(x) = X \ast f(x) \) and get analogous estimates.

Then we have for all \(r \)
\[(2^k)^{\alpha/k} \max (|f|_{C_k(\Omega \cap O_i)}, 2^{-k} |f|_{C_k(\Omega \cap O_i)}) \leq C|f|_{L_k^{p,\lambda}(\Omega)} , \]
where \(\alpha = (\lambda-n)/p \), \(0 < \alpha < k \).

We have proved that \(f \in B^\alpha(\Omega \cap O_i) \) for \(\alpha = (\lambda-n)/p \) and for an arbitrary set \(O_i \) in the construction above.

Lemma 4.2. If \(f(x) \in B^\alpha(\Omega \cap O) \) and \(\eta(x) \in C^\infty(\mathbb{R}^n) \) and supp\(\eta \subset O \), we have \(\eta(x)f(x) \in B^\alpha(\Omega) \).

Proof. It suffices to notice that the mapping
\[F: f(x) \rightarrow \eta(x)f(x) \]
is such that
\[F: C^0(\Omega \cap O) \rightarrow C^0(\Omega), \quad F: C^k(\Omega \cap O) \rightarrow C^k(\Omega) . \]
The statement then follows by the interpolation theorem.

Now we can conclude the proof of theorem 4.1. In fact we choose to the finite, open covering \(\{O_i\}_{i=1}^r \) of \(\overline{\Omega} \) a partition of unity, that is, functions \(\{\eta_i\}_{i=1}^r \) such that
\(\eta_1 \) has support in \(O_1 \) and \(\sum_{i=1}^r \eta_i(x) = 1, \) when \(x \in \bar{\Omega}. \)

We have shown that \(\eta_1 f \in B^\alpha(\Omega) \) (lemma 4.2). Thus we have also \(\sum_{i=1}^r \eta_i f \in B^\alpha(\Omega). \) But \(\sum_{i=1}^r \eta_i(x)f(x) = f(x) \) when \(x \in \bar{\Omega}. \) Thereby theorem 4.1 is proved.

REFERENCES

UNIVERSITY OF LUND, SWEDEN