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ON FINITELY GENERATED FLAT MODULES

S. JONDRUP

0. Introduction.

In this note we shall consider rings A with the property that any flat
and finitely generated 4-module is projective, and we will prove that
this class of rings is rather big. If we require that any flat left A-module
is projective, we get the class of left perfect rings (cf. [1]), which is a
small class of rings. For instance, a (commutative) integral domain D
is left perfect if and only if D is a field, but any finitely generated flat
module over an integral domain is projective (cf. [5]).

1. General remarks.

In this section 4 denotes a ring with an identity, and all modules
considered are unitary left modules.

DeriniTION. We say that a ring 4 has property P (we write 4 € P),
if every finitely generated flat 4-module is projective.

A very useful tool in the study of flat modules is the following lemma.

LEmMA 1.1. Let
0O->-K—+>F->M-—->0

be an exact sequence of A-modules, where F is A-free, then the following
statements are equivalent:
i) M is A-flat.
il) Given any ke K, there exists a homomorphism wu,: F — K, such
that w,(k)=k.
iii) Given any (k;)i<i<n, there exists a homomorphism w,: F — K, such
that w,(k;)=k; for every ¢, 1Li<n.

Proor. See S. U. Chase [3, prop. 2.2].

As applications of this lemma we get the following two propositions.
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ProrositioN 1.2. Let A and B be any two rings, and let ¢: 4 -~ B
(p(14)=1p) be a ring-homomorphism. If B viewed as a left A-module s
Sflat and finitely generated, then A € P tvmplies B € P.

Proor. If N is any flat and finitely generated B-module, we have to
prove that N is B-projective. If we consider N as an A-module, N is
finitely generated and flat (cf. N. Bourbaki [2, Chap. 1, § 2, no. 7, prop. 8,
cor. 3]), and hence N is A-projective.

We have an exact sequence

(1) 0—->L->B"—>N-(0)

of B-modules, which is also an exact sequence of 4-modules, and there-
fore it is split exact over the ring 4. Since Br is a finitely generated
A-module, L is a finitely generated 4-module too, in particular finitely
generated as a B-module. From this we get that (1) is split exact over B
(lemma 1.1). Hence N is B-projective.

CoroLLARY 1.3. If A € P and G is a finite group, then the group ring
A[@] e P.

ProprosiTioN 1.4. Let A and B be rings and ¢: A - B a ring-homo-
morphism. If B e P and B is a faithfully flat right A-module, then A € P.

Proor. Let M be any flat and finitely generated 4-module, and let
(2) O-K—>F->M->0

be an exact sequence, where F is free and finitely generated. From (2)
we derive the exact sequence

(3) 0 = Tord(B,M) > B, K >BR,F>B®,M— (0)

of B-modules. B® ,M is B-flat [2, Chap. 1, § 2, no. 7, prop. 8, cor. 2]
and B-finitely generated. Hence B ® M is B-projective, and we get
that B® 4K is a finitely generated B-module. Since B is faithfully flat,
it is readily checked that K is a finitely generated 4-module, and propo-
sition 1.4 follows from lemma 1.1

CoroLLARY 1.5. If 4 is a semilocal (commutative) ring, then A € P.
Proor. If B is a quasilocal ring (that is, a commutative ring with a

unique maximal ideal), then B € P. This follows from [2, Chap. 1, § 2,
exerc. 23] or from [5]. If 4 is semilocal, then I],.,4,,€P (see [2,
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Chap. 2, § 3, no. 3] for notation). The corollary follows now from pro-
position 1.4. and [2, Chap. 2, § 3, no. 3, prop. 10].

Corollary 1.5. is well known (cf. S. Endo [5]).

CoroLLARY 1.6. Let A be any ring and G any group. If the group ring
A[Gl e P, then A € P.

TaEOREM 1.7. Let A be any ring. Then A € P if and only if A[[x]] € P.

Proor. We need the following ideas.

i) Let B be any ring and z a central non-unit non-zero-divisor in B.
If the B-module M is B-flat, then M/xM is BJxB-flat.
For a proof see [2, Chap. 1, § 2, prop. 8].

ii) Let M be any B-modul, then there exists a natural B-isomorphism
between B[[x]] @M [2([[*]] R M) and M.
The proof is trivial.

iii) Let M be any finitely generated flat B[[x]]-module. If M/[xM is
B-free, then M is B[[x]]-free.

(This might be well known, but I have not been able to find a complete
proof in the literature.)

The statement may be proved as follows. If (#,);.; is a finite base
for the B-module M/xM, and m; denotes a representative in M for m;,
then (m;);.; generate the B[[x]]-module M [2, Chap. 2, § 3, no. 2, prop. 4,
cor. 2].

From the exact sequence

0>K—>F-% M0

of B[[«z]]-modules, where F is free with base (e;);.; and ¢(e,) = m, for every
i, we derive the exact sequence of B-modules

0 = TorP=N(B[[x]]| (x), M) - K[xK - F|xF —*> M[xM — (0) .

@ is a B-isomorphism so K =xzK, and hence K =0, that is, M is B[[x]]-
free.

Let us return to the proof of theorem 1.8. We assume A € P and
have to prove that A[[x]] € P. Let M be any flat and finitely generated
A[[x]]-module, then M/xM is finitely generated and flat (cf. i)) viewed
as an A-module, hence there exists a finitely generated projective A4-
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module N such that M[xM@N is A-free with a finite base. Since
A[x]]® 4N is a finitely generated projective A[[z]]-module,
(Al[x]] @ 4 N)D M is a finitely generated flat A[[x]}-module. From the
isomorphisms

(A[[=]1 @ 4 N)D M [2(A[[z]] ® 4 N)D M)
~ A[[x]] @ 4N/x([[x]] ® 4 N)D M|z M
~ NOM[zM

(cf. ii)) we infer that (A[[x]] @ 4N)P M is A[[x]]-free (cf. iii)), and hence
M is A[[x]]-projective.

Conversely, assume that A[[x]]e P. If M is any flat and finitely
generated A-module, then A[[x]]® M is a flat and finitely generated
A[[x]]-module [2, Chap. 1, § 2, no. 7, prop. 8, cor. 2], so A[[z]]Q4M
is A[[z]]-projective. If N is any A[[x]]-module, and z is a non-zero-
divisor in N, then it is well known that lhd ,N/xN <lhd 4 N. From
this remark we infer that A[[x]] ® 4 M[x(A[[x]]® M) is A-projective,
hence M is A-projective (cf. ii)).

For later purposes we need the following proposition, which is due to
I. 1. Sahaev.

ProrosrTioN 1.8. If every cyclic flat left A-module is projective, then A
has no infinite set of orthogonal idempotents.

A proof may be found in [9].
For a commutative ring 4 proposition 1.8. is due to Endo [6].

2. On a generalization of a theorem of S. Endo.

In this section 4 denotes a commutative ring with an identity.
The following theorem which might be known is essential for this
section.

THEOREM 2.1. For a commutative ring A the following properties are
equivalent :

i) Every cyclic flat A-module is projective.

ii) 4 € P.

Proor. D. Lazard has proved that i) implies that every .D-closed sub-
set of X =Spec(4) is open (cf. [8] for a proof and definitions), and if this
condition is satisfied, then 4 € P. The last statement follows imme-
diately from [8, corollary 5.2] and [2, Chap. 2, § 5, no. 2, théoréme 1].
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Non-commutative rings for which condition i) or condition ii) holds
have been studied by I. I. Sahaev [9].

THEOREM 2.2. Let A be a subring of B (B not necessarily commutative),
and suppose A is contained in the center of B. If Be P, then A € P.

Proor. Let A/a be a flat A-module. Consider the exact sequence
(5) (0 >a—>4 - Ala— (0)

of A-modules, and we have to prove that a is finitely generated. From
(5) we derive the exact sequence

(0) > Ba -~ B - B[Ba — (0)

of B-modules. B/Ba is B-flat [2, Chap. 1, § 2, no. 7, prop. 8, cor. 2].
Since B € P, we have Ba=Be, where ¢ is an idempotent in B. Let e=
ba;+ ... +ba,. Since A/a is flat, there exists an element a’ € a such
that a,0’ =a, for every 7 € {1,. . .,s}, so we conclude that

(6) ea’ = ba,+...+ba, =ce.

Since a' € a, we have a’ =be for a suitable b € B, and therefore a’'e=a’'.
This together with (6) implies that e=a’, that is, e € a. For any a €q,
we have a=ae, hence a=Ae and (5) must be split exact, that is, 4/a
is A-projective.

CorOLLARY 2.3. (cf. [6]). A finitely generated flat module over an inte-
gral domain is projective.

CoroLLARY 2.4. (S. Endo, cf. [6]). Let 4 be any commutative ring for
which there exists a multiplicatively closed set S consisting of mon-zero
divisors, such that Ag is semilocal or Age P. Then 4 € P.

CorOLLARY 2.5. A € P if and only if A[x] € P.

Proor. Assume A4 € P, then A[[x]]€ P (theorem 1.7), so A[x]e P
(theorem 2.2).
Conversely, if 4[x] € P, proposition 1.4 implies that 4 € P.

3. Examples and some remarks.

LemMma 3.1. The ring A has property P if and only if any flat, countably
related, finitely generated left A-module is projective.
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Proor. “‘only if”’ is obvious.
“if”’. Suppose 4 ¢ P, and let M be a finitely generated, not finitely
related flat left A-module. Consider the exact sequence

0—>K—>F—¢->M—>O,

where F is a free left A-module with base (e,,...,e,), and K=Xkerg.
If (k)1<j<n is any set of n elements of K, then 3,_;_,4k'=K,<K.
(Here = means “is a proper subset of”’.) Choose k, € K, k, ¢ K, and
0,: F - K such that 0,(k;°)=kS, 1<j=<n, 0,(k,)=ky (cf. lemma 1.1). If
0,(e;)=Fk;t, 1<j<n, then K,<3,_; .k *<K. If we continue this pro-
cess, we get modules (K,); 0, Such that

KycK,c...cK,<....

Let K* be equal to U2, K;. Then F/K* is flat (lemma 1.1), countably
related, but not finitely related, and the lemma is proved.

CoroLLARY 3.2. If fPD(A)=0, then A € P.

Proor. Let M be any finitely generated, countably related flat
A-module. We conclude that lhd M <1 (cf. C. U. Jensen [7, lemma 2]),
hence M is A-projective.

REMARK 1. In the special case 1IFPD(A4)=0, 4 is left perfect (cf.
H. Bass [1, theorem 6.3]), and the corollary follows from [1, theorem P].

From corollary 3.2 and section 1 (remark) we infer that if 1fPD(4)=0,
then 4 has no infinite set of orthogonal idempotents, so we have proved
the following (cf. [1, theorems P and 6.3]:

ProposiTioN 3.3. If 1fPD(A4)=0 and every nonzero right A-module has
nonzero Socle, then IFPD(4)=0.

In general, 1fPD(A4) =0 does not imply that IFPD(4)=0. Example:
F[z,y1]/(x? xy), where F is commutative field.

ExampLE 1. Let T be any infinite connected normal topological space
(i.e. T satisfies (7',) and (7',)), then 4 =C(T, +, -, R) (the ring of continu-
ous real-valued functions on 7') is an example of a commutative inde-
composable ring not having property P.

Proor. An application of Urysohn’s lemma enables us to construct
functions (f;);<;<. Such that f; € 4, f;f;,1=f; and Af;<Af,,,. Let a be
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the ideal generated by the f;’s. A/a is A-flat (lemma 1.1), but 4/a is
not A-projective. This example is due to C. U. Jensen.

ExampLE 2. The ring 4 defined below is indecomposable, commuta-
tive, and coherent, but 4 ¢ P.

Let 4 be the subring of C(R, +,+,R) consisting of the functions f(x)
of the form

g%, x < -k, kseN,

f@) = zg; xveli,i+1], ie{~k,... k—1},
p(x)
5(.';)’ g kf’

where p(x), g(x), pi(x), gi(x) e R[x] for every i€ {—k;,...,k,—1} and
¢:(x) £ 0 for every x € [i,5+ 1], g(x) 0 for x< —k;, g(x)+0 for x = k,.

By a straight-forward, but tedious computation, it can be proved that
this ring 4 has the required properties.

If A satisfies a certain extra condition, then 4 € P.

THEOREM. Let A be a commutative ring. If A has no infinite set of
orthogonal idempotents, A is coherent and whd 4(Aa) < oo for every ac A,
then A € P.

Proor. 4 is a finite direct sum of integral domains (cf. L. W. Small
[10]), hence 4 € P.

REMARK 2. Professor P. M. Cohn has communicated to me an example
of a non-commutative ring 4, which is an integral domain, and for which
A&P.

Let A be the K-algebra on the generators ag;), 1,j=1,2, v=1,2,...,
and defining relations

(7) S0y = 6,,a.

A is 1-fir (cf. P. M. Cohn [4]), thus 4 is an integral domain, hence any
cyclic flat left 4-module is A-projective. The existence of the relations
(7) implies that 4, ¢ P. From the Morita-equivalens between 4 and 4,
we get that 4 € P if and only if 4, € P for every n. Therefore 4 ¢ P.
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Thus the commutativity of the ring A is essential for the validity of
theorem 2.1.

The author wishes to thank C. U. Jensen for his helpful comments
during the preparation of this paper.
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