ON FINITELY GENERATED FLAT MODULES

S. JØNDRUP

0. Introduction.

In this note we shall consider rings \(A \) with the property that any flat and finitely generated \(A \)-module is projective, and we will prove that this class of rings is rather big. If we require that any flat left \(A \)-module is projective, we get the class of left perfect rings (cf. [1]), which is a small class of rings. For instance, a (commutative) integral domain \(D \) is left perfect if and only if \(D \) is a field, but any finitely generated flat module over an integral domain is projective (cf. [5]).

1. General remarks.

In this section \(A \) denotes a ring with an identity, and all modules considered are unitary left modules.

Definition. We say that a ring \(A \) has property \(P \) (we write \(A \in P \)), if every finitely generated flat \(A \)-module is projective.

A very useful tool in the study of flat modules is the following lemma.

Lemma 1.1. Let

\[
0 \to K \to F \to M \to 0
\]

be an exact sequence of \(A \)-modules, where \(F \) is \(A \)-free, then the following statements are equivalent:

i) \(M \) is \(A \)-flat.

ii) Given any \(k \in K \), there exists a homomorphism \(u_k : F \to K \), such that \(u_k(k) = k \).

iii) Given any \((k_i)_{1 \leq i \leq n} \), there exists a homomorphism \(u_k : F \to K \), such that \(u_k(k_i) = k_i \) for every \(i \), \(1 \leq i \leq n \).

Proof. See S. U. Chase [3, prop. 2.2].

As applications of this lemma we get the following two propositions.

Received March 5, 1969.
Proposition 1.2. Let \(A \) and \(B \) be any two rings, and let \(\varphi : A \to B \) \((\varphi(1_A) = 1_B)\) be a ring-homomorphism. If \(B \) viewed as a left \(A \)-module is flat and finitely generated, then \(A \in P \) implies \(B \in P \).

Proof. If \(N \) is any flat and finitely generated \(B \)-module, we have to prove that \(N \) is \(B \)-projective. If we consider \(N \) as an \(A \)-module, \(N \) is finitely generated and flat (cf. N. Bourbaki [2, Chap. 1, § 2, no. 7, prop. 8, cor. 3]), and hence \(N \) is \(A \)-projective.

We have an exact sequence
\[
0 \to L \to B^r \to N \to 0
\]
(1)

of \(B \)-modules, which is also an exact sequence of \(A \)-modules, and therefore it is split exact over the ring \(A \). Since \(B^r \) is a finitely generated \(A \)-module, \(L \) is a finitely generated \(A \)-module too, in particular finitely generated as a \(B \)-module. From this we get that (1) is split exact over \(B \) (lemma 1.1). Hence \(N \) is \(B \)-projective.

Corollary 1.3. If \(A \in P \) and \(G \) is a finite group, then the group ring \(A[G] \in P \).

Proposition 1.4. Let \(A \) and \(B \) be rings and \(\varphi : A \to B \) a ring-homomorphism. If \(B \in P \) and \(B \) is a faithfully flat right \(A \)-module, then \(A \in P \).

Proof. Let \(M \) be any flat and finitely generated \(A \)-module, and let
\[
0 \to K \to F \to M \to 0
\]
(2)

be an exact sequence, where \(F \) is free and finitely generated. From (2) we derive the exact sequence
\[
0 = \text{Tor}_1^A(B, M) \to B \otimes_A K \to B \otimes_A F \to B \otimes_A M \to 0
\]
(3)

of \(B \)-modules. \(B \otimes_A M \) is \(B \)-flat [2, Chap. 1, § 2, no. 7, prop. 8, cor. 2] and \(B \)-finitely generated. Hence \(B \otimes_A M \) is \(B \)-projective, and we get that \(B \otimes_A K \) is a finitely generated \(B \)-module. Since \(B \) is faithfully flat, it is readily checked that \(K \) is a finitely generated \(A \)-module, and proposition 1.4 follows from lemma 1.1

Corollary 1.5. If \(A \) is a semilocal (commutative) ring, then \(A \in P \).

Proof. If \(B \) is a quasilocal ring (that is, a commutative ring with a unique maximal ideal), then \(B \in P \). This follows from [2, Chap. 1, § 2, exerc. 23] or from [5]. If \(A \) is semilocal, then \(\prod_{m \in \mathcal{D}} A_m \in P \) (see [2,
Chap. 2, § 3, no. 3) for notation). The corollary follows now from proposition 1.4. and [2, Chap. 2, § 3, no. 3, prop. 10].

Corollary 1.5. is well known (cf. S. Endo [5]).

Corollary 1.6. Let A be any ring and G any group. If the group ring $A[G] \in P$, then $A \in P$.

Theorem 1.7. Let A be any ring. Then $A \in P$ if and only if $A[[x]] \in P$.

Proof. We need the following ideas.

i) Let B be any ring and x a central non-unit non-zero-divisor in B. If the B-module M is B-flat, then M/xM is B/xB-flat.

For a proof see [2, Chap. 1, § 2, prop. 8].

ii) Let M be any B-modul, then there exists a natural B-isomorphism between $B[[x]] \otimes_B M/x[[x]] \otimes_B M$ and M.

The proof is trivial.

iii) Let M be any finitely generated flat $B[[x]]$-module. If M/xM is B-free, then M is $B[[x]]$-free.

(This might be well known, but I have not been able to find a complete proof in the literature.)

The statement may be proved as follows. If $(\bar{m}_i)_{i \in I}$ is a finite base for the B-module M/xM, and m_i denotes a representative in M for \bar{m}_i, then $(m_i)_{i \in I}$ generate the $B[[x]]$-module M [2, Chap. 2, § 3, no. 2, prop. 4, cor. 2].

From the exact sequence

$$0 \to K \to F \xrightarrow{\varphi} M \to 0$$

of $B[[x]]$-modules, where F is free with base $(e_i)_{i \in I}$ and $\varphi(e_i) = m_i$ for every i, we derive the exact sequence of B-modules

$$0 = \text{Tor}_1^B[[x]](B[[x]], M) \to K/xK \to F/xF \xrightarrow{\varphi} M/xM \to 0.$$

φ is a B-isomorphism so $K = xK$, and hence $K = 0$, that is, M is $B[[x]]$-free.

Let us return to the proof of theorem 1.8. We assume $A \in P$ and have to prove that $A[[x]] \in P$. Let M be any flat and finitely generated $A[[x]]$-module, then M/xM is finitely generated and flat (cf. i)) viewed as an A-module, hence there exists a finitely generated projective A-
module N such that $M/xM \oplus N$ is A-free with a finite base. Since $A[[x]] \otimes_A N$ is a finitely generated projective $A[[x]]$-module, $(A[[x]] \otimes_A N) \oplus M$ is a finitely generated flat $A[[x]]$-module. From the isomorphisms

$$(A[[x]] \otimes_A N) \oplus M/x(A[[x]] \otimes_A N) \oplus M) \approx A[[x]] \otimes_A N/x[[x]] \otimes_A N) \oplus M/xM \approx N \oplus M/xM$$

(cf. ii)) we infer that $(A[[x]] \otimes_A N) \oplus M$ is $A[[x]]$-free (cf. iii)), and hence M is $A[[x]]$-projective.

Conversely, assume that $A[[x]] \in P$. If M is any flat and finitely generated A-module, then $A[[x]] \otimes_A M$ is a flat and finitely generated $A[[x]]$-module [2, Chap. 1, § 2, no. 7, prop. 8, cor. 2], so $A[[x]] \otimes_A M$ is $A[[x]]$-projective. If N is any $A[[x]]$-module, and x is a non-zero-divisor in N, then it is well known that $\hld_A N/xN \leq \hld_A[x] N$. From this remark we infer that $A[[x]] \otimes_A M/x(A[[x]] \otimes_A M)$ is A-projective, hence M is A-projective (cf. ii)).

For later purposes we need the following proposition, which is due to I. I. Sahaev.

PROPOSITION 1.8. If every cyclic flat left A-module is projective, then A has no infinite set of orthogonal idempotents.

A proof may be found in [9].

For a commutative ring A proposition 1.8. is due to Endo [6].

2. On a generalization of a theorem of S. Endo.

In this section A denotes a commutative ring with an identity.

The following theorem which might be known is essential for this section.

THEOREM 2.1. For a commutative ring A the following properties are equivalent:

i) Every cyclic flat A-module is projective.

ii) $A \in P$.

PROOF. D. Lazard has proved that i) implies that every D-closed subset of $X = \text{Spec}(A)$ is open (cf. [8] for a proof and definitions), and if this condition is satisfied, then $A \in P$. The last statement follows immediately from [8, corollary 5.2] and [2, Chap. 2, § 5, no. 2, théorème 1].
Non-commutative rings for which condition i) or condition ii) holds have been studied by I. I. Sahaev [9].

Theorem 2.2. Let A be a subring of B (B not necessarily commutative), and suppose A is contained in the center of B. If $B \in P$, then $A \in P$.

Proof. Let A/a be a flat A-module. Consider the exact sequence

$$(0) \to a \to A \to A/a \to (0)$$

of A-modules, and we have to prove that a is finitely generated. From (5) we derive the exact sequence

$$(0) \to Ba \to B \to B/Ba \to (0)$$

of B-modules. B/Ba is B-flat [2, Chap. 1, § 2, no. 7, prop. 8, cor. 2]. Since $B \in P$, we have $Ba=Be$, where e is an idempotent in B. Let $e=b_1a_1 + \ldots + b_sa_s$. Since A/a is flat, there exists an element $a' \in a$ such that $a_ia' = a_i$ for every $i \in \{1, \ldots, s\}$, so we conclude that

$$(6) \hspace{1cm} ea' = b_1a_1 + \ldots + b_s a_s = e.$$

Since $a' \in a$, we have $a' = be$ for a suitable $b \in B$, and therefore $a'e = a'$. This together with (6) implies that $e = a'$, that is, $e \in a$. For any $a \in a$, we have $a = ae$, hence $a = Ae$ and (5) must be split exact, that is, A/a is A-projective.

Corollary 2.3. (cf. [6]). A finitely generated flat module over an integral domain is projective.

Corollary 2.4. (S. Endo, cf. [6]). Let A be any commutative ring for which there exists a multiplicatively closed set S consisting of non-zero divisors, such that A_S is semilocal or $A_S \in P$. Then $A \in P$.

Corollary 2.5. $A \in P$ if and only if $A[x] \in P$.

Proof. Assume $A \in P$, then $A[[x]] \in P$ (theorem 1.7), so $A[x] \in P$ (theorem 2.2).

Conversely, if $A[x] \in P$, proposition 1.4 implies that $A \in P$.

3. **Examples and some remarks.**

Lemma 3.1. The ring A has property P if and only if any flat, countably related, finitely generated left A-module is projective.
PROOF. "only if" is obvious.

"if". Suppose $A \notin P$, and let M be a finitely generated, not finitely related flat left A-module. Consider the exact sequence

$$0 \rightarrow K \rightarrow F \rightarrow M \rightarrow 0,$$

where F is a free left A-module with base (e_1, \ldots, e_n), and $K = \ker \varphi$. If $(k_{ij}^0)_{1 \leq i \leq n}$ is any set of n elements of K, then $\sum_{1 \leq i \leq n} Ak_{ij}^0 = K_0 \subset K$.

(Here \subset means "is a proper subset of"). Choose $k_0 \in K$, $k_0 \notin K_0$ and $\theta_1 : F \rightarrow K$ such that $\theta_1(k_{ij}^0) = k_{ij}^0$, $1 \leq j \leq n$, $\theta_1(k_0) = k_0$ (cf. lemma 1.1). If $\theta_1(e_j) = k_{ij}^1$, $1 \leq j \leq n$, then $K_0 \subset \sum_{1 \leq j \leq n} k_{ij}^1 \subset K$. If we continue this process, we get modules $(K_i)_{i \in \mathbb{N}_0}$ such that

$$K_0 \subset K_1 \subset \ldots \subset K_n \subset \ldots .$$

Let K^* be equal to $\bigcup_{i=1}^\infty K_i$. Then F/K^* is flat (lemma 1.1), countably related, but not finitely related, and the lemma is proved.

COROLLARY 3.2. If $1fPD(A) = 0$, then $A \in P$.

PROOF. Let M be any finitely generated, countably related flat A-module. We conclude that $1hd_A M \leq 1$ (cf. C. U. Jensen [7, lemma 2]), hence M is A-projective.

REMARK 1. In the special case $1fPD(A) = 0$, A is left perfect (cf. H. Bass [1, theorem 6.3]), and the corollary follows from [1, theorem P].

From corollary 3.2 and section 1 (remark) we infer that if $1fPD(A) = 0$, then A has no infinite set of orthogonal idempotents, so we have proved the following (cf. [1, theorems P and 6.3]):

PROPOSITION 3.3. If $1fPD(A) = 0$ and every nonzero right A-module has nonzero socle, then $1fPD(A) = 0$.

In general, $1fPD(A) = 0$ does not imply that $1fPD(A) = 0$. Example: $F[[x,y]]/(x^2, xy)$, where F is commutative field.

EXAMPLE 1. Let T be any infinite connected normal topological space (i.e. T satisfies (T_2) and (T_4)), then $A = C(T, +, \cdot, R)$ (the ring of continuous real-valued functions on T) is an example of a commutative indecomposable ring not having property P.

PROOF. An application of Urysohn’s lemma enables us to construct functions $(f_i)_{1 \leq i < \infty}$ such that $f_i \in A$, $f_i f_{i+1} = f_i$ and $Af_i \subset Af_{i+1}$. Let a be
the ideal generated by the f_i's. A/a is A-flat (lemma 1.1), but A/a is not A-projective. This example is due to C. U. Jensen.

Example 2. The ring A defined below is indecomposable, commutative, and coherent, but $A \notin P$.

Let A be the subring of $C(R, +, \cdot, R)$ consisting of the functions $f(x)$ of the form

$$f(x) = \begin{cases} \frac{p_i(x)}{q_i(x)}, & x \leq -k_f, \ k_f \in \mathbb{N}, \\ \frac{p_i(x)}{q_i(x)}, & x \in [i, i+1], \ i \in \{-k_f, \ldots, k_f-1\}, \\ \frac{p(x)}{q(x)}, & x \geq k_f, \end{cases}$$

where $\bar{p}(x)$, $\bar{q}(x)$, $p_i(x)$, $q_i(x) \in R[x]$ for every $i \in \{-k_f, \ldots, k_f-1\}$ and $q_i(x) \neq 0$ for every $x \in [i, i+1]$, $\bar{q}(x) \neq 0$ for $x \leq -k_f$, $\bar{q}(x) \neq 0$ for $x \geq k_f$.

By a straight-forward, but tedious computation, it can be proved that this ring A has the required properties.

If A satisfies a certain extra condition, then $A \in P$.

Theorem. Let A be a commutative ring. If A has no infinite set of orthogonal idempotents, A is coherent and $\text{whd}_A(Aa) < \infty$ for every $a \in A$, then $A \in P$.

Proof. A is a finite direct sum of integral domains (cf. L. W. Small [10]), hence $A \in P$.

Remark 2. Professor P. M. Cohn has communicated to me an example of a non-commutative ring A, which is an integral domain, and for which $A \notin P$.

Let A be the K-algebra on the generators $a_{ij}^{(\nu)}$, $i, j = 1, 2, \nu = 1, 2, \ldots$, and defining relations

$$\sum_j a_{ij}^{(\nu)} a_{jk}^{(\nu)} = \delta_{i, \nu} a_{ik}^{(\nu)}.$$ \hspace{1cm} (7)

A is 1-fir (cf. P. M. Cohn [4]), thus A is an integral domain, hence any cyclic flat left A-module is A-projective. The existence of the relations (7) implies that $A_2 \notin P$. From the Morita-equivalens between A and A_n we get that $A \in P$ if and only if $A_n \in P$ for every n. Therefore $A \notin P$.

Thus the commutativity of the ring A is essential for the validity of theorem 2.1.

The author wishes to thank C. U. Jensen for his helpful comments during the preparation of this paper.

REFERENCES

UNIVERSITY OF COPENHAGEN, DENMARK