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RECURRENCE FORMULAE FOR THE
COEFFICIENTS OF MODULAR FORMS

TORLEIV KLOVE

1.
Let I'(1) denote the full modular group, that is, the group of matrices

ab
(c d)’ ad—bc =1,

where a, b, ¢, d are integers, and let I'y(m) denote the subgroup defined
by ¢=0 (modm). A multiplier system v=9(I", —r) of dimension —r for
a group I'cI'(1) is a complex valued function v(M) defined on M eI’
such that

(L.1) ()| = 1,

(1.2) O(MN)(cynT+8yn)" = o(M)(cy N v+dy) v(NV)(exyT+dy)" ,

for M,N e I', where

M = (aM bM) ete.
ey Ay

A modular form on I" of dimension —r and multiplier system v =v(I", —r)
is a function F(t), meromorphic in the fundamental domain A(I") of I,
which satisfies

(1.3) F(Mz) = v(M)(cp v+ dy) F(7)

for all M eI (see Lehner [3]). The set of all such modular forms is a
vector space over the complex numbers, we denote it by (I, —r,v). We
denote by C+(I', —r,v) the subspace consisting of all regular forms, that
is, modular forms which are regular in A4(I"). We denote by C°(I', —r,v)
the subspace consisting of all cuspforms, that is, regular forms which
are zero at the cusps of A(I).

In the case of integral dimension and multiplier system identically 1,
Hecke introduced an operator 7'(n) which maps C° onto itself. He
showed for some C° that they have a basis of forms which are simul-
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taneous eigenforms for all 7'(n). Petersson introduced a scalar product
in C° and by means of it he proved that C° always has such a basis of
forms.

The Hecke theory of modular forms of integral dimension was later
studied extensively (for a summary see Rankin [6]). In principle it has
been known for some time that there exists a Hecke theory for cusp-
forms of half integral dimension. The purpose of this paper is to work
out the details of this theory for cuspforms of all multiplier systems on
the full group I'(1). We define an operator 7'(p?) and show that this
operator maps C° onto itself. Using this fact we show our Theorem 1:
The coefficients of every cuspform satisfy a recurrence relation with
integral coefficients. Further we use Petersson’s scalar product to prove
our main result, Theorem 2: There exists a basis for C°(I'(1), — }k,v),
k odd, such that all the basis forms are simultaneous eigenforms for all
T(p?) with real algebraic integers as eigenvalues.

Let o
7(t) = e(37) H(l—e(rr) Imz>0,
where e(t)=exp(2nit). It is known that #n(7) is a cuspform on I'(1) of
dimension —3}. Newman [5] and van Lint [4] have found recurrence
relations for the coefficients of #(7)*, 0 <k <24. Newman [5] proved the
existence of recurrence relations for 7(7)* for all £> 0.

The multiplier system v, of 5(z) is given by (2.1)-(2.4) below (see
Weber [7]). For Im 7> 0 we have

(2.1) vy <(Z 3)) = (%) e(F(c(a+d) +bd(1 — c?) — 3c))

when ¢ is positive and odd, d =0, where Im (ct+d)*> 0;

(2.2) vy ((: 3)) = (2) e((d(b —¢) + ac(1 — d?) + 3d — 3))

when d is positive and odd, ¢+ 0, where Re(ct+d)}>0;

(2.3) Vo (((l) _(l))) = e(—43), where Imzt > 0;

(2.4 v((f) '1’)) = ed);



RECURRENCE FORMULAE FOR THE COEFFICIENTS OF MODULAR FORMS 223

where (%) etc. are Jacobi’s symbol. We also add a general formula valid
for all multiplier systems v=v(I", —r),

(2.5) v((_(l) _(1))) = e(}r).

Throughout this paper p and g denote odd primes, k an odd integer > 0.
The group I'y(p?) is a subgroup of I'(1) of index p(p+1). A set of
right coset representatives for I'(p?) in I'(1) is given by

(2.6) {R*(x=0,1,...,p2=1), RPT(8=0,1,...,p—1)},
where

O ]

(2.8) R+ = (_; (1))’ ROPT = (‘1) ;;)

Let f(z)eC°(I'(1), — }k,v). Define T(p?) by

S(PR;7)
R;) (c; r+d)

_ p* 0 _(aibi>
P—<0 1)’ B = ¢ 4/’

and R, runs through the set (2.6) of right coset representatives.
We use the notation

J(@)IT(p? ’“Z

where

d(x) = 1 if z is integral ,
0 otherwise .

Il

We shall prove

THEOREM 1. Let p be the dimension of C°=C°(I'(1), —}k,vs*), where
x=k (mod4), 0<x< 24, and v, is the multiplier system of n(t). Further
let

f(z) = Z,A(n) eds(k, 24)n7)

be any form in C°. If k(p®—1)=x(p?—1)=0 (mod24), then there exist
integers A,4,,...,4,, not all zero, depending on C° and p only, such that
4,=1and
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2 4.4 ..} = 4(A(m),

a=1
where
{...} = p*A@*n)+p**A(p~2*n)+
o 2u—2x —20
+ Y pH@Ee-2utDiitu-3),, (6(”1’ Uu-2) np-2 ) A(ptu-2a-2y) 4
u=1 Y4
a—1
+ 3 pla-wk(p2ug(npu-2a) _ pRu-1§(npu-2e+1)) 4 (plu-2en)
and “
y = (- 1)¥e-16-1 (3_/@’_3_)) .
p

THEOREM 2. Let C° be the same vector space as in Theorem 1. Then
there exists a basis
{f(7); v=1,2,...,u}

for C° such that all f(7) are eigenforms with real eigenvalues for all T(p?),
p>3, and for T(3%) if k=0 (mod3) and x=k (mod 12). That is, there exist
real algebraic integers o(v,p) such that

LD IT@?) = o) f(7) .

CororrarY. If
f,(r) = ZnAv(n)e(ﬁ(k’ 24)’"’1”) ’

(32)

then
p? Av(pzn)_l_p}(kﬂ) (- 1)i<p—1)(x_1) A,(n) + pF A,(p‘zn)

= e(v,p)4,(n) .
For the value of u, see Lemma 1 below.

3.
In this section we shall prove Theorem 1.
Let o(I'(1), — }k)) =v,* be a multiplier system, v, are given by (2.1)-
(2.4). Let 11
U= ( . 1).
Then

v(U) = e(dgx) .
Hence (see Lehner [3, p. 347])
6-4x — 1k

is an integer, and we have =%k (mod4), which gives 6 possible values
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of %, 0<x<24. In the following we always assume x=k (mod4) and
0<x<24. All these values of » give modular forms, e.g.

7%, Q Rqpk-%8, Quk-8
Ryk-12,  Q2yk-18, QRyk-20,

where
Q) =1 + 240§ ay(n)e(nt) ,
n=1
R(r)y=1 - 504§as(n)e(nt) )
n=1
oyn) = Zd]nds .
Let

f(x) € Co(I'(1), — 3k, vg%),
where ¥=k (mod24). Then
f(@n ™) e (I'1),0,1),

and it is regular inside D=A(I'(1)). At r=1cc (which we may choose as
the only cusp of D) the local uniformizing variable is z=e(t). Hence
f(¥)n~*(7) is regular or has a pole of order <&k at r=100. Therefore,

F@)n™(z) = Pol,(j(v)),

a polynomial of degree & < [4(k—1)] in j(z), where
J(z) = 128 Q3/(@*— B?)

is Klein’s Hauptmodul of I'(1). This yields
f(z) = 7*(z) Pol,(j(v)) .

7¥(1)j%(z), B =0,1,...,[(k—1)],

span C°(I'(1), — }k,vy*). Since they are linearly independent, C° has
dimension

Hence

p= k-] + 1.
Treating the other cases similarly we obtain
LeEmMA 1. Let x=k—a (mod24). Let u=u(k,a) be the dimension of
C(I'(1), — ¥k,vy*). Then

ulk,a) = [hk—a—1)] + 1 if atd,
and

Math. Scand. 26 — 15
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uik,4) = [Z(k=5)]  if k>3,
=0 if k=1 or k=3.

CoroLLARY. The dimension yu 18 finite.

Let f(r)e(I,0,1) where I'<I'(1) and let M ={R;} be a set of right
coset representatives for I" in I'(1). If V e I'(1), then R,V =GR;, where
Gel and R;e M, and R; runs through M when R; does so. Hence
we get

Lemwma 2. If f(7) € (I,0,1) where I' is a subgroup of I'(1), then
> f(B) € (I'(1),0,1),

where the sum is over a set of right coset representatives for I' in I'(1).

Let l=(24,p2—1). Then l=24 when p>3, and /=8 when p=3.
Applying (2.1)—(2.4) we obtain
Lemma 3. If f(v)e(I'(1), — 3k,vy*) and k=x=0 (mod 24/l), then
F(Pr)f () € (Io(p?),0,1).

Combining Lemmas 2 and 3 we obtain

f(PR;7)
zz' v(B;) (c;T+dy)¥f(7)

€ (I'(1),0,1) .
This yields
Lemma 4. If f(1)e(I'(1), — 3k,vy) and k=»=0 (mod24/l), then
F@IT(p?) € (I'(1), —3k,v5%) -

From (2.8) we obtain

e et = (1 50 = (3 ) (o 32)
32 P = (i (1)) = (fjx (1+;zl§)/p2) (<1> ;(Z)’
33 prw = (—p:p (1)) = (—poc (1 +_alzg)/p> (f,’ l;:)
Let

D, = (B-W)p,

where §—16=0 (modp), 06<p;
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D, = (1+ald)/p?,
where p{ &« and 14+ «ld=0 (modp?), 0<d< p?;

Dy = (1+ald)/p,
where p{ o« and 14+ «ld=0 (modp), 0<d<p. Then

D, = p*D, = pf (modl) .
Hence
D, = xpf (mod24) .
Similarly
#Dy = x (mod24), xD; = xp (mod24).

Putting n=¢e2n,, where e= +1, 20, n,>0, and n, odd, we obtain

i) = (i) ) e (222
1+Imn 1+imn/ \1+Imn n

since 8|l. Now, from (3.1)—(3.3) and the remarks we have made, we ob-
tain, by (2.1)-(2.4),

e () o) ("5 )" (1)

REOT dye
rEered (22) ettt —3) e+ o
 eefTHIPO
- P4(55)
If p 1 «, then
f(PR=7)
v(R*) (ct +d)i*

(";)f) e(3pd( Dy — 18) — ap®(1 — Dg?) + 3(D, — 1)) ( —* t;la i Dz)*kf(t;:é)

<—_—3‘) e(gxx)(— oz + 1)tk

1
T+ 106
p"‘f( po )
since
- —x Ranls. 4
(Dz) (pﬁbz) (1+al6) and #(D,—1) = 0 (mod24)
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If p 1 «, then

f(PR»7)
v(R*P) (ct +d)t*

(%—:) e(f(Dy(ox —18) — p(1 — Dg?) + 3D, — 3)) ( _“ZZ;-_Z_(S N Da)ikf(pt;-l&)

(52) etdonosp) (— ape-+ 1y

B (%ﬁ) pHe(gn-3(p— 1))f(pt+@) .

3

Since —ald=1 (modp), we have

(3)- () - G - () - &)

Lemma 5. If f(7) € (I'(1), — }k,v5%) and k=x=0 (mod 24/l), then

P21 rp 1
f@IT(@) = gof(—pz—) + Prf(p) +

o (B v (7).

é=1

In [4] van Lint considered the case x=%k (mod24). He defined 7'(p?)
differently ; however, he obtained the form given in Lemma 5.

From Lemma 5 we obtain (as in Klgve [2])

LemMA 6. If k=x=0 (mod24/l),

o f(r) = 3, A(n)e(&(k,24)n7) € (I'(1), — }k,v¢%) ,
a

F(2)|T(p?) = 3, 4%(n)e(3(k,24)n7) ,
then

A*(n) = pA(p*n)+ p*A(p—2n) + pt+d(— 1)&(10—1)(u-1) (_?iﬂgcifl) A(n) .

Lemmas 5 and 6 yields
Lemma 7. If k=x=0 (mod 24/l) and
f(r) € C°(I'(1), — k,vy¥) ,
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then
F()IT @) e C(I'(1), — 4k, vy¥) .

For convenience we write f(z)| T (m)|T(n)=f(z)|T(m)T(n) in the fol-
lowing. As in van Lint [4] we may define 7'(p?*) by

S )
rITEr) =3 f(’+

) + pf(pe) +

251 pt—1 b 2a-v7 4 Ib
+ 33 et -1) () preos ().
v=1 b=0
This yields
(3.4) T(pY = TEHT(P*) - p*+(p+1),
T(p*) = ()T - P27 (p=~)  when a>2.
For k—»=0, 4, 8, 12, 16, 20 (mod 24), respectively, let 4=1, @Q*R, @,
R, @2, QR. Then
(3.5) {fr=Ane-D 48, £=0,1,...,u—1}

is a basis for C°(I'(1), — }k,v,*). When expanded in powers of e(f7),
each of the forms in (3.5) has integral Fourier coefficients of which the
first non-zero equals 1. Using the basis (3.5) of C° we associate with
T(p?) a matrix H=H(p) such that

(Sh2vapf) H = (Z52hasfp) | T(0?) -
It is clear that H has integral elements. Let
(3.6) 2iobidhs  bu=(=1),

be the characteristic polynomial of H. Then all b, are integers since H
has integral elements. By Cayley—Hamilton’s theorem we get

2B T (p?) = 0
for all f in C°. Hence, by (3.4)

(3.7) J125-04.T(P*) = 0,

where 4,=1 and all 4, are integers. Translating to terms of the Fourier
coefficients 4(n) we obtain Theorem 1 as in Klgve [2]. There we used
modular functions rather than forms, and we treated only the case
f(z)=n¥(t); the general case, however, is quite similar.

Further, the eigenvalues of 7'(p?) are algebraic integers by (3.6).
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4.
If p+q, then Lemma 6 yields

F@|T(@*)T(q?) = 3, B(n)e(3(k,24)n7) ,
where

B(n) = (pq)*A(p*q*n) + (pg)* A(p~2q-2n)+
+ ¥ A(p~2¢*n) + ¢¥p2 A(q~2p*n) +

+ pHle+D (— 1)ie-D6-D) (?_n/_;’g_?g) (124(g*n) +q* A(g2n)) +

+ gD (— a0 (3—’”g°—3’) (P*A(@*n) +p* A(p-*m)) +

3n/(k,3)

+ (pg)t+D (- 1)iw+a-2(-1) (
»

) A().
This is symmetric in p and q. Hence

LemMA 8. We have
FOIT@)T(@?) = f(0)| T(®)T(p?) .

Petersson defines

(£.9) = [ [ f0g@y= dudy,

A

where t=x+1y, f(t),9(r)eCHI, —r,v) and at least one of f and g be-
longs to C°(I', —r,v); I' is a subgroup of I'(1) and 4=A4(I") is a funda-
mental domain for I. The integral is independent of the choice of a
fundamental domain, and it converges under the conditions stated.

Again, let I" be a subgroup of I'(1), {R;} a set of right coset represen-
tatives for I" 4n I'(1), and 4 a fundamental domain for I'(1). Let v be in
the upper half plane. Then v=(+ M)z, where 7, 4 and M € I'(1), and the
representation is unique. Further M =N R, where N € I', again the rep-
resentation is unique. Hence 7= (+ N)R;7,, and we obtain

LeEMMA 9. Let A be a fundamental domain for I'(1) and {R;} a set of
right coset representatives for I' in I'(1) where I is a subgroup of I'(1). Then

U,R;4
18 a fundamental domain for I
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Let f(z),9(z) € C°(I'(1), — }k,v*) =C°(I'(1), —r,v). Then

S(PR;7)

e Tene@) = | (fl))g TR

a?)y’—z dzdy .

Let v'=R,t=2"+1y’, where
_ (% b 1 (a—i b——i)
B = (Ci di) - B = ey d_y/’
Then
Y =yleg+d]? (y)Pda'dy’ = y2dady.

Further (1.1) yields
v(R) = v(R,),
(1.2) yields
(B ) (et +d_)) v(R) (c;t+dy)" = 1,
and (1.3) yields

g(r) = g(B;717") = v(B;Y) (e, v +d_;)"g(7') .
Hence
f(PR;7) — o
U(Ri)(cir'!'dii; 9e)yr dudy
_ u(R)f(PT)
C (Hdy)

— J(PT)g( )y "2 d'dy’ .
This yields

(@IT@9) = 3 [[ f(Pog@y—2 dudy .
* RA(T()

o(Ry ) (oo ¥ +d_) g(7) legT+dy|2ry'm=2 da’ dy’

Hence, by Lemma 9 we obtain

LeMMA 10. If k=x%=0 (mod24/l) and

f(2),9(7) € C(I(1), - }k,v%) ,
then

(F@ITw)9m) = #* [[ FPoamy -2 dudy .
A(Lo(p?))

0 —1
W=(p2 0)’

Let



232 TORLEIV KLOVE

W is in the normalizer for I'y(p?). Hence, if 4 is a fundamental domain
for I'y(p?), then so is WA. Let v"=W<z. Then

f(@)g(P )y 2 da’dy’ = f(—p2rt)g(—772) y™2p~2"|7| -2 dxdy
o(T) (P2 0)"f (p20)o(T) 7 g(x) y™~2p~*" || 2 dady

f(Pv)g(v)y™2 dady .

Hence

(f() 1T (p%,9(7))

v [ f@gPry- dudy
WA(To(p?)

il

i f f 9(Pv)f(v)y"-2 dady
A(T'o(p2))

1= (9() [ T(P).£(7)) = (£(2),9()| T(p?)) -

Aomazz i e~

Lemma 11, If k=x%=0 (mod 24/l) and
f(),9(x) € CU(L(1), —§k,v¢%) ,

(f()IT(p?), 9(7) = (f(2), 9(2) | T(p?)) -

o

then

Theorem 2 now follows from Lemmas 1, 7, 8 and 11 (see e.g. Gunning
[1]). The corollary follows from Theorem 2 and Lemma 6.
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