ON HOMOTOPY INVARIANCE OF THE TANGENT BUNDLE II

JOHAN L. DUPONT

1. Introduction.

This paper is a subsequence of the paper [5], in which the following problem is considered.

Let M and M' be oriented compact, differentiable manifolds, let $f \colon M \to M'$ be a homotopy equivalence preserving orientation, and denote the tangent sphere bundles τ and τ' respectively. Is it true then, that τ and $f^*\tau'$ are fibre homotopy equivalent?

This is actually shown by R. Benlian and J. Wagoner [3]; but here we will prove it by the simple method developed in [5]. As kindly pointed out to me by C. T. C. Wall, this method also applies to define the unstable tangent sphere fibration for a Poincaré complex which is necessary for developing a theory for embedding and surgery of Poincaré complexes.

Finally I also want to thank M. F. Atiyah, W. Browder and W. Sutherland for interesting remarks on the note [5] which made this paper possible.

2. Sphere fibrations.

In this section we will study more closely the "action" defined in [5, § 2]. The results of this section are closely related to the work of James and Thomas [7], Rutter [8] and Barcus and Barratt [2]. In particular our Corollary 2.3 and Proposition 2.7 are reformulations of Theorem 1.8 in James and Thomas [7]. (Compare the remark following our Definition 4.6.)

As usual H(n) denotes the space of homotopy equivalences of S^{n-1} , SH(n) denotes the component of H(n) consisting of maps of degree +1, and F(n) denotes the subspace of SH(n+1) consisting of basepoint preserving maps. There is a natural inclusion of SH(n) in F(n) by means of unreduced suspension.

Received January 31, 1969.

A Hurewicz fibration with fibre a homotopy n-1 sphere is called a n-1 sphere fibration. According to J. Stasheff [12] there is a space $B_n = BSH(n)$ classifying oriented n-1 sphere fibrations over CW-complexes, such that homotopy classes of the classifying maps are in one-to-one correspondence with equivalence classes of sphere fibrations under orientation preserving fibre homotopy equivalence.

If ξ_1 and ξ_2 are sphere fibrations over a space X, $\xi_1 + \xi_2$ denotes the fibrewise join of ξ_1 and ξ_2 . If ξ_1 and ξ_2 are sphere fibrations over X_1 and X_2 respectively and $p_i \colon X_1 \times X_2 \to X_i$ are the projections, we put

$$\xi_1 \times \xi_2 = (p_1^* \xi_1) + (p_2^* \xi_2)$$
.

The trivial k-1 sphere fibration is simply denoted by k.

Analogously there are spaces BF(n) classifying pairs (ξ, s) consisting of an oriented n sphere fibration ξ and a section s. Homotopy classes of the classifying maps are in one-to-one correspondence with equivalence classes of pairs under section and orientation preserving fibre homotopy.

If ξ is an oriented sphere fibration and s and s' are homotopic sections, then the pairs (ξ, s) and (ξ, s') are clearly equivalent.

For any CW-complex X the natural map

$$[X, BF(n)] \rightarrow [X, BSH(n+1)]$$

corresponds to forgetting the section, and the map

$$[X,BSH(n)] \to [X,BF(n)]$$

corresponds to the map sending ξ to the pair $(\xi + 1, s_1)$, where s_1 is the section which is constantly 1.

Lemma 2.1. Let ξ be a q sphere fibration over a q-dimensional finite CW-complex X.

Any section s of ξ gives rise to a q-1 sphere fibration ξ' , such that $(\xi'+1,s_1)$ and (ξ,s) are equivalent pairs. The equivalence class of ξ' only depends on the homotopy class of s.

PROOF. According to James [6], the map

$$j_*\colon\thinspace \pi_i\big(SH(q)\big)\to \pi_i\big(F(q)\big)$$

is an isomorphism for i < 2(q-2) and an epimorphism for i = 2(q-2). This, together with an easy calculation for q = 2, 3, implies that j_* is an isomorphism for $i \le q-1$. Hence the map

$$[X, BSH(q)] \rightarrow [X, BF(q)]$$

is bijective for X at most q-dimensional. This proves the lemma.

Especially consider $X = L \cup e^q$, where L is a (q-1)-dimensional complex (according to Wall [15] this is the case for a q-dimensional Poincaré complex), and let $\xi = \xi_0 + 1$, where ξ_0 is a q-1 sphere fibration.

By obstruction theory any section s of ξ is homotopic over L to the trivial section s_1 which is constantly 1. Extending this homotopy to X (Strøm [13]) we conclude that any homotopy class of sections of $\xi_0 + 1$ is representable by a section which is trivial over L. Trivializing ξ_0 over e^q , s defines a map

$$(e^q, S^{q-1}) \rightarrow (S^q, *)$$

of a certain degree d(s).

Later in this section we will see that for ξ_0 oriented, d(s) depends only on the homotopy class of s, and thus d(s) determines this uniquely. (For ξ_0 non-orientable the homotopy class of s is determined by the mod 2 degree.)

For any integer d let g_d denote the composite map

$$X \xrightarrow{c} X \vee S^q \xrightarrow{1 \vee f_d} X \vee S^q$$

where c is the pinching map and $f_d: S^q \to S^q$ is of degree d. Further let ξ_d denote the fibration

$$\xi_d = g_d^*(\xi_0 \vee \tau_q)$$
,

where τ_q is the tangent sphere bundle of S^q . If $v_0: X \to B_q$ is classifying for ξ_0 and $\mu_0: S^q \to B_q$ is classifying for τ_q , then in the notation of [5, Section 2] $v_0^{d\mu_0}$ is classifying for ξ_d . Clearly there is a natural equivalence

$$\xi_d + 1 = g_d^*((\xi_0 + 1) \vee (\tau_q + 1)) \cong g_d^*((\xi_0 + 1) \vee (q + 1)) \cong \xi_0 + 1$$

which we denote by γ_d . Under this the constant section of $\xi_d + 1$ defines a section $\sigma(d)$ of $\xi_0 + 1$ of degree d. In fact the constant section of $\tau_q + 1$ over S^q has degree one with respect to the obvious trivialization.

Using Lemma 2.1 we clearly have

Proposition 2.2. For any section s of $\xi_0 + 1$,

$$\xi' = \xi_{d(s)} = g_{d(s)}^*(\xi_0 \vee \tau_q)$$

is the unique fibration such that

$$(\xi'+1,s_1)$$
 and (ξ_0+1,s)

are equivalent pairs.

PROOF. In fact $\sigma(d(s))$ and s are homotopic sections of $\xi_0 + 1$.

An equivalence α of a fibration ξ with itself is called an *automorphism* of ξ . For any automorphism α of the fibration $\xi_0 + 1$, where ξ_0 is a sphere fibration over an arbitrary space X, we define the section $s_{\alpha} = \alpha \circ s_1$ of $\xi_0 + 1$. Here again s_1 denotes the trivial section, and clearly $s_{id} = s_1$.

We now obtain in the special case of $X = L \cup e^q$:

COROLLARY 2.3. For q odd, we have $v_0^{\mu_0} = v_0$ iff there is an automorphism α of $\xi_0 + 1$ such that $d(s_\alpha)$ is odd.

PROOF. According to [5, Proposition 2.2], we have $v_0^{\mu_0} = v_0^{d\mu_0}$ for d odd. Hence $v_0 = v_0^{\mu_0}$ iff $v_0 = v_0^{d\mu_0}$ or equivalently $\xi_0 \cong \xi_d$ for some odd integer d.

If $\beta: \xi_0 \to \xi_d$ is an equivalence, then the composite equivalence

$$\gamma_d \circ (\beta + 1) \colon \xi_0 + 1 \to \xi_0 + 1$$

defines the section $s_{\gamma_d,(\beta+1)} = \sigma(d)$ of degree d.

Conversely, if $\alpha: \xi_0 + 1 \to \xi_0 + 1$ has $d(s_{\alpha}) = d$, then $(\xi_0 + 1, s_1)$ and $(\xi_0 + 1, s_{\alpha})$ are equivalent pairs, and hence we conclude from Proposition 2.2 that

$$\xi_0 \cong \xi_{d(s_\alpha)} = \xi_d$$
.

Turning to the general case of a q-1 sphere fibration ξ_0 over an arbitrary space X, we consider the Thom complex $T(\xi_0)$. This is defined as the mapping cone on the projection map, and it is easily seen to be homeomorphic to the space $\xi_0 + 1/s_1(X)$, in such a way that the inclusion $X \to T(\xi_0)$ in the mapping cone corresponds to the section s_{-1} of $\xi_0 + 1$ which is constantly -1.

When ξ_0 is oriented, the Thom class

$$U_{\xi_0} \in H^q(\xi_0+1,\mathsf{Z})$$

is the unique class which restricted to the fibre is the generator and which satisfies $s_1 * U_{\varepsilon_0} = 0$.

DEFINITION 2.4. For any section s of $\xi_0 + 1$, put

$$d(s)\,=\,s^{\textstyle \textstyle *\,} U_{\xi_0}\in H^q(X,{\sf Z})$$

and for α an automorphism, put

$$\chi(\alpha) = d(s_{\alpha}) \in H^q(X, \mathbb{Z})$$
.

As an example the equivalence α induced by multiplication by -1 in the trivial part 1 of $\xi_0 + 1$, has $\chi(\alpha) = e(\xi_0)$, the Euler class of ξ_0 .

PROPOSITION 2.5. For orientation preserving automorphisms α and β of $\xi_0 + 1$ we have

$$\chi(\alpha \circ \beta) = \chi(\alpha) + \chi(\beta) .$$

PROOF. Put $u = U_{\xi_0}$ for short and denote the projection for $\xi_0 + 1$ by p. Obviously

$$\alpha^* u = u + p^*(d(s_\alpha)).$$

Hence

$$s_{\alpha \circ \beta}^* u = (\alpha \circ s_{\beta})^* u = s_{\beta}^* u + s_{\beta}^* p^* (d(s_{\alpha}))$$

= $d(s_{\beta}) + d(s_{\alpha})$.

For X a q-dimensional Poincaré complex Definition 2.4 agrees with the previously defined degree. In fact for any integer d, the degree of $\sigma(d)$ is d.

Notice that we could also have defined d and $\chi \mod 2$ for any sphere fibration. Then Proposition 2.5 is valid for all automorphisms.

In view of Corollary 2.3 only the mod 2 degree is essential for our purpose. We will thus restrict to Z_2 coefficients in all cohomology groups for the rest of this paper, unless otherwise specified.

DEFINITION 2.6. Let ξ be a sphere fibration over a space X with base point x_0 , and consider an automorphism α of ξ . Denoting the unit interval by I, consider $\xi \times I$ with the identifications

$$(x,1) \sim (\alpha x,0)$$
 for $x \in \xi$,
 $(x,t) \sim (x,t')$ for $x \in \xi_{x_0}$ and $t,t' \in I$.

This defines a fibration denoted ξ_{α} over $X \times S^1/x_0 \times S^1$.

Denote the Euler class by e, the suspension of X by ΣX , the suspension homomorphism by Σ , and the natural map of $X \times S^1/x_0 \times S^1$ onto ΣX by j. We then have

PROPOSITION 2.7. For any automorphism α of $\xi = \xi_0 + 1$, where ξ_0 is a q-1 sphere fibration, we have

$$e(\xi_{\alpha}) = j^* \Sigma(\chi(\alpha))$$
.

PROOF. The Euler class of ξ_{α} is the image under the transgression of the generator of $H^{q}(S^{q}, +)$. The transgression is the additive relation

$$H^q(S^q,+) \xrightarrow{\delta} H^{q+1}(\xi_{\alpha},S^q) \xleftarrow{p^*} H^{q+1}(X \times S^1,x_0 \times S^1)$$
,

where p is the projection.

Obviously $e(\xi_0+1)=0$, so $e(\xi_\alpha)$ is in the image of j^* . Consider the commutative diagram with exact columns:

It is easy to see that the lower p^* is an isomorphism, and hence $\delta' = 0$. By definition $i^*U_{\xi_0}$ is the generator of $H^q(S^q, +)$. Hence $(j^*)^{-1}e(\xi_\alpha)$ is the image of U_{ξ_0} under the additive relation on the middle row. Now

$$p: \xi_{\alpha}/(\xi_0+1) \times 0 \to \Sigma X$$

has a right inverse s_0 defined by

$$s_1 \times id: X \times I \rightarrow (\xi_0 + 1) \times I$$
.

That is, $(j^*)^{-1}e(\xi_{\alpha})$ is the image of U_{ξ_0} under the map

$$H^q((\xi_0+1)\times 0,\, s_1(X)\times 0)\to H^{q+1}(\xi_\alpha/(\xi_0+1)\times 0)\stackrel{s_0^*}{\longrightarrow} H^{q+1}(\Sigma X)\;.$$

Define a space F as the quotient space of $(X \times I) \cup (\xi_0 + 1)$ with the identifications

$$(x,1) \sim s_{\alpha}(x)$$
 for $x \in X$.

There is a map of triples

$$(F,(\xi_0+1)\cup X\times 0,X\times 0)\rightarrow (\xi_\alpha,(\xi_0+1)\times 0,s_1(X)\times 0)$$

defined by sending (x,t) to (s_1x,t) . Hence we have the commutative diagram

$$\begin{array}{ccc} H^q\!\big(\xi_0+1,s_1\!(X)\big) & \stackrel{\delta}{\longrightarrow} & H^{q+1}\!\big(\xi_\alpha,(\xi_0+1)\times 0\big) \\ & & & & \downarrow s_0 ^* \\ & & & & \downarrow H^q\!(\xi_0+1) & \stackrel{\delta}{\longrightarrow} & H^{q+1}\!(\varSigma X) \ . \end{array}$$

Here the lower δ is the connecting homomorphism for the pair $(C_{s_{\alpha}}, \xi_{0}+1)$, where $C_{s_{\alpha}}=F/X\times 0$ is the mapping cone on s_{α} . This proves Proposition 2.7.

We conclude this section with a lemma concerning homotopy of automorphisms. If ξ is a n-1 sphere fibration over X with base point x_0 and α is an automorphism of ξ , we have defined the fibration ξ_{α} over $X \times S^1/x_0 \times S^1$, the restriction of which to $X \times 0$ is ξ . Hence fibre homotopy classes of automorphisms of ξ are in one-to-one correspondence with homotopy classes of maps

$$X \times S^1/x_0 \times S^1 \rightarrow BH(n)$$

the restriction of which to $X \times 0$ is the classifying map for ξ .

LEMMA 2.8. Let ξ be a q sphere fibration over a finite q-dimensional CW-complex, and α an automorphism of $\xi + k$, k > 0.

Then α is homotopic to an automorphism of the form $\alpha' + id$, where α' is an automorphism of ξ .

PROOF. The map $BH(q+1) \to BH(q+k+1)$ is a q+1 equivalence according to James [6]. Hence the lemma follows from Spanier [9, Chapter 7, § 6, Theorem 22].

3. S-duality.

We shall need some simple lemmas concerning S-duality of Thom complexes. We refer to the papers of Atiyah [1], Spivak [11] and Wall [15] for the following fact:

Let M denote a q-dimensional Poincaré complex, with (k-1)-dimensional normal sphere fibration ν . If ξ and η are n-1 and m-1 sphere fibrations over M such that $\xi + \eta$ is trivial, then the diagonal $\Delta: M \to M \times M$ induces a map of Thom complexes

$$T(\nu+n+m) \to T(\nu+\eta) \wedge T(\xi)$$
.

The composite with a Thom map

$$S^{q+k+n+m} o T(\nu+n+m) o T(\nu+\eta)$$
 a $T(\xi)$

is a S-duality for $T(\nu + \eta)$ and $T(\xi)$.

PROPOSITION 3.1. Let $i: M_1 \hookrightarrow M_2$ be an embedding of a closed manifold in another. Denote the normal bundle of M_1 and M_2 by v_1 and v_2 respectively, and the normal bundle of i by v_0 . Then the dual map of

$$T(i*\nu_2) \to T(\nu_2)$$

is the map

$$(M_2)_+ \rightarrow T(\nu_0)$$

which collapses everything outside a tubular neighbourhood of M_1 in M_2 .

COROLLARY 3.2. Let M be a closed manifold with normal bundle v and angent bundle τ . Then the map

$$T(\nu + \nu) \rightarrow T(\nu \times \nu)$$

induced by the diagonal $M \to M \times M$ is the dual of the map

$$(M \times M)_+ \to T(\tau)$$

which collapses everything outside a tubular neighbourhood of the diagonal.

PROOF OF PROPOSITION 3.1. Let N be a tubular neighbourhood of M_1 in M_2 with boundary \dot{N} . Clearly

$$T(\nu_1) \, = \, T(\nu_{2|N}) \big/ T(\nu_{2|\dot{N}}) \ .$$

Embedding M_2 in S^n , for n large, the proposition follows from the commutative diagram

$$\begin{array}{c|c} & T(v_1) & \xrightarrow{f_1} & T(v_0) \land T(v_{2|M_1}) \\ & \parallel & & \downarrow \\ S^n \longrightarrow & T(v_{2|N})/T(v_{2|\dot{N}}) & \xrightarrow{f_2} & T(v_0) \land T(v_2) \\ & & \uparrow \\ & & T(v_2) & \xrightarrow{f_3} & \left((M_2)_+\right) \land T(v_2) \,. \end{array}$$

Here f_1 , f_2 and f_3 are induced by the diagonals $M_1 \to M_1 \times M_1$, $N \to N \times M_2$ and $M_2 \to M_2 \times M_2$ respectively.

Now let M denote an arbitrary Poincaré complex with normal sphere fibration ν , and let ξ and η be sphere fibrations such that $\xi + \eta$ is trivial.

LEMMA 3.3. If α and β are automorphisms of ξ and η respectively, such that the automorphism $\alpha + \beta$ of $\xi + \eta$ is fibre homotopic to the identity, then

$$T(1+\beta)$$
: $T(\nu+\eta) \to T(\nu+\eta)$

is the dual of

$$T(\alpha): T(\xi) \to T(\xi)$$
.

LEMMA 3.4. For any automorphism α of ξ , there is an automorphism α' of the trivial k-1 sphere fibration for some k>0, such that $\alpha+\mathrm{id}$ and $\mathrm{id}+\alpha'$ are fibre homotopic automorphisms of $\xi+k$.

Lemma 3.5. For any automorphism α of ξ there is an automorphism β of $\eta + k$, for some k, such that $\alpha + \beta$ is fibre homotopic to the identity.

Proofs. The proof of Lemma 3.3 is trivial. Adding η to ξ it suffices to prove Lemmas 3.4 and 3.5 for ξ trivial.

For ξ trivial the stable fibre homotopy class of α corresponds to a map $\Sigma M \to BH$, where $BH = \lim BH(n)$. Lemma 3.5 now follows by well-known arguments from the fact that $[\Sigma M, BH]$ is a group in one and only one way.

Finally 3.4 follows from 3.5.

For later reference we finally state without proof the following well-known fact.

LEMMA 3.6. For M an n-dimensional Poincaré complex with normal k-1 sphere fibration v, the composite map

$$H^i(M) \stackrel{D}{\longrightarrow} H_{n+k-i}(T(\nu)) \stackrel{\varphi}{\longrightarrow} H_{n-i}(M)$$

of the S-duality homomorphism D and the Thom isomorphism Φ equals the Poincaré duality homomorphism. That is, $\Phi \circ D$ is cap product with the orientation class [M].

4. Definition of $b(\xi)$.

We recall the notation of [5, \S 4]. Assume q odd. The map

$$v_{q+1} \colon B_n \to K(\mathbb{Z}_2, q+1)$$

represents the Wu class v_{q+1} . Consider the fibration

$$\pi \colon B_n \langle v_{q+1} \rangle \to B_n$$

induced by v_{q+1} from the path fibration over $K(\mathsf{Z}_2,q+1)$ with fibre $\Omega K(\mathsf{Z}_2,q+1)=K(\mathsf{Z}_2,q)$. Put $\bar{\gamma}_n=\pi^*\gamma_n$, where γ_n is the universal n-1 sphere fibration over B_n . Then $Y_n=T(\bar{\gamma}_n)$ defines a Wu spectrum in the sense of Browder [4]. $\{X_n\}$ is the dual Wu cospectrum.

Now consider M a q-dimensional compact differentiable oriented manifold with normal bundle ν , and let ξ be any oriented q-1 sphere fibration over M. Choose a fibration η such that $\xi + \eta$ is trivial, and choose a lifting φ' through π of the classifying map φ for $\nu + \eta$.

Clearly $v + \eta = (\varphi')^*(\bar{\gamma}_n)$. This defines maps

$$T(\nu + \eta) \rightarrow Y_n$$

and thus dual maps

$$g_k \colon X_{-2a-k} \to \Sigma^k T(\xi)$$

for k large, such that

$$g_{k^{\pmb{\ast}}}\colon\thinspace H_{2q+k}(X_{-2q-k},\mathsf{Z})\to H_{2q+k}\big(\varSigma^kT(\xi),\mathsf{Z}\big)$$

is an isomorphism. We say that g_k has degree one.

A system $g = \{g_k\}$ of maps constructed in this way is called an X-orientation for ξ .

In the following all homology and cohomology have Z₂ coefficients.

DEFINITION 4.1. Let $U_{\xi} \in H^q(T(\xi))$ be the Thom class. For a fixed orientation g of ξ satisfying

$$g_{k^*}(\Sigma^k U_{\varepsilon}) = 0$$

define the composite map

$$\delta = \Sigma^k h \circ g_k,$$

where $h: T(\xi) \to K(\mathbf{Z}_2, q)$ represents U_{ξ} , and put

$$b_g(\xi) \, = \, Sq_{\delta}^{q+1}(\varSigma^k\iota) \, \in \, H^{2q+k}(X_{-2q-k}) \, = \, \mathsf{Z}_2 \; .$$

Here Sq_{δ}^{q+1} is the functionalized Sq^{q+1} on δ . As in Browder [4] it is clear that the indeterminacy is 0, and that $b_{\rho}(\xi)$ is independent of k.

LEMMA 4.2. Let ξ be stably equivalent to a SO sphere bundle. Then

$$g_k*(\varSigma^k U_\xi) \,=\, 0$$

if

$$w_{i_1}(\nu+\eta)\cup\ldots\cup w_{i_s}(\nu+\eta)=0$$
 for $i_1+\ldots+i_s=q$.

PROOF. Here w_i denotes the *i*th Stiefel-Whitney class. Since U_{ξ} is the bottom class of $T(\xi)$, by S-duality

$$g_k^*(\Sigma^k U_{\varepsilon}) = 0$$

iff

$$T(\varphi')_*: H_{q+n}(T(\nu+\eta)) \to H_{q+n}(T(\bar{\gamma}))$$

is zero. Now

$$\pi_{\bigstar}\colon\thinspace H_q(B_n\langle v_{q+1}\rangle)\to H_q(B_n)$$

is injective. Hence we only need to see that

$$\varphi_* \colon H_q(M) \to H_q(B_n)$$

is zero. When φ factors through BSO(n), this is clearly fulfilled when the Stiefel-Whitney numbers of $\nu + \eta$ are zero.

REMARK. The condition of 4.2 is fulfilled for q odd and ξ stably equivalent to τ , because $w_i(\nu+\nu) \neq 0$ only for i even.

A similar necessary and sufficient criterion in general needs the structure of $H^*(BSH, \mathbb{Z}_2)$. This is calculated by J. Milgram.

When ξ is X-orientable, the orientation depends on the following choices:

I a) ν and the Thom map for $T(\nu)$.

b) η and the trivialization of $\xi + \eta$.

II The lifting φ' of φ .

First let us examine the choices according to I:

If ν' is equivalent to ν and η' is equivalent to η , a choice of equivalences β_1 and β_2 respectively defines the S-duality

$$S^N \to T(\nu + \eta) \wedge T(\xi + k) \to T(\nu' + \eta') \wedge T(\xi + k)$$

where the last map is $T(\beta_1 + \beta_2)$ id. With respect to this S-duality an orientation $T(v' + \eta') \to T(\bar{\gamma}_n)$ defines the same X-orientation for $T(\xi + k)$ as the composite map

$$T(\nu+\eta) \xrightarrow{T(\beta_1+\beta_2)} T(\nu'+\eta') \to T(\bar{\gamma}_n)$$

does with respect to the original S-duality.

Another choice of ν' and η' thus amounts to a change of the S-duality

$$(4.1) S^N \to T(\nu + \eta + \xi + k) \to T(\nu + \eta) \land T(\xi + k)$$

by automorphisms of ν and η .

Also, fixing ν and η , another choice of trivialization of $\xi + \eta$ just changes the S-duality map (4.1) by an automorphism of $\eta + \xi$.

Finally, according to Theorem 3.5 in Wall [15], another choice of Thom map changes the S-duality map (4.1) by an automorphism of ν .

Hence in all cases, a different choice according to I just changes the S-duality map (4.1) by an automorphism of $\nu + \eta + \xi + k$. Choosing η of sufficiently large dimension, it follows from Lemma 3.4 that this automorphism can be assumed to be of the form $id + \beta + id$, where β is an automorphism of η only.

In this way we conclude from Lemma 3.3 that a different choice according to I is equivalent to

I' Replace the orientation

$$g_k \colon X_{-2g-k} \to T(\xi + k)$$

by the orientation

$$g_k' = T(\alpha) \circ g_k$$
,

where $T(\alpha)$: $T(\xi + k) \rightarrow T(\xi + k)$ is induced by an automorphism α of $\xi + k$.

Lemma 4.3. If $b_g(\xi)$ is independent of the choices I, it is also independent of the choices II, and hence independent of the choice of X-orientation for ξ .

PROOF. If $\varphi': M \to B_n \langle v_{q+1} \rangle$ is a lifting of φ , the other lifting is homotopic to the composite φ'' :

$$M \stackrel{c}{\longrightarrow} M \vee S^q \stackrel{\varphi' \vee \iota}{\longrightarrow} B_n \langle v_{q+1} \rangle \vee K(\mathsf{Z}_2,q) \stackrel{\triangledown}{\longrightarrow} B_n \langle v_{q+1} \rangle \; .$$

Here c is the pinching map, and ∇ the map folding $K(\mathsf{Z}_2,q)$ onto the fibre of π . Since $\nabla^*\bar{\gamma}_n$ is trivial over $K(\mathsf{Z}_2,q)$,

$$T(\nabla^* \bar{\gamma}_n) = T(\bar{\gamma}_n) \vee \Sigma^n(K(\mathbf{Z}_2,q))$$
.

Taking the dual it is clear that $\Sigma^n(K(Z_2,q))$ gives no contribution to the functionalized Sq^{q+1} .

We now consider the change of orientation originating from I'. According to Lemma 2.8, we can assume that the automorphism α of $\xi + k$ (ξ a q-1 sphere fibration) is of the form $\alpha' + \mathrm{id}$, where α' is an automorphism of $\xi + 1$.

Theorem 4.4. Let ξ_0 be an X-orientable q-1 sphere fibration over M^q , q odd, and let α be an automorphism of ξ_0+1 . Further choose an X-orientation g of ξ_0 and let g' denote the orientation defined by

$$g_{k}' = T(\alpha + \mathrm{id}) \circ g_{k}$$

for k large. Then

$$b_g(\xi_0) - b_{g'}(\xi_0) = \chi(\alpha) .$$

COROLLARY 4.5. The number $b_g(\xi_0)$ depends on the choice of X-orientation, iff every q-1 sphere fibration which is stably equivalent to ξ_0 , automatically is equivalent to ξ_0 .

PROOFS. Corollary 4.5 clearly follows from Theorem 4.4, Corollary 2.3 and Definition 2.4.

For the proof of Theorem 4.4 it suffices, according to Proposition 2.7, to show that

$$b_g(\xi_0) - b_{g'}(\xi_0) = e(\xi_\alpha)$$
.

In the stable track group $\{T(\xi_0), T(\xi_0)\}$ put

$$\gamma = T(\alpha) - \mathrm{id}$$
.

Use the Puppe sequences for the cofibrations

$$S^q \to T(\xi_0) \xrightarrow{j} T(\xi_0)/T(\xi_{0|*})$$

and

$$T(\xi_{0|N}) \stackrel{i}{\longrightarrow} T(\xi_0) \rightarrow S^{2q}$$
,

where N is homotopy equivalent to a (q-1)-dimensional complex, and * is the base point of M. We then get a factorization of γ through j and i, that is, there is a stable element

$$\eta: T(\xi_0)/T(\xi_{0|*}) \to T(\xi_{0|N})$$

such that $\gamma = i \circ \eta \circ j$. It is easy to see that if γ is represented by the map

$$\gamma_k \colon \varSigma^k T(\xi_0) \to \varSigma^k T(\xi_0)$$
 ,

then

$$Sq_{\gamma_k}^{q+1}(\varSigma^k U_{\xi_0})$$

is well defined with zero indeterminacy, and furthermore

$$Sq_{\gamma_k}^{q+1}(\Sigma^k U_{\xi_0}) = b_g(\xi_0) - b_{g'}(\xi_0)$$
.

Put $T = \Sigma^k T(\xi_0)$ and $f = T(\alpha + \mathrm{id})$, where f is a map of ΣT into itself. Define $M_f = \Sigma T \times I$ with identifications

$$(x,1) \sim (f(x),0)$$
 and $(*,t) \sim (*,t')$

for $x \in \Sigma T$ and $t, t' \in I$. Clearly

$$M_f = \Sigma^k T(\xi_\alpha)$$
.

On the other hand, f is homotopic to the map

$$\Sigma T \xrightarrow{\Delta} \Sigma T \vee \Sigma T \xrightarrow{\operatorname{id} \vee \Sigma \gamma_k} \Sigma T \vee \Sigma T \xrightarrow{\nabla} \Sigma T$$
,

where Δ is the pinching map and ∇ the folding map. Hence M_f is homotopy equivalent to $\Sigma T \times I$, with the identifications

$$(x,t,1) \sim \begin{cases} (x,2t,0) & \text{for } t \leq \frac{1}{2} \\ (y_k x, 2t - 1, 0) & \text{for } t \geq \frac{1}{2} \end{cases}$$

and $(*,s) \sim (*,s')$, where $x \in T$, $s,s' \in I$ and t is in the interval defining ΣT . Let Y be the subspace of points with coordinates (x,t,0) satisfying $t \ge \frac{1}{2}$ or coordinates $(x,\frac{1}{2},s)$ satisfying $0 \le s \le 1$. Obviously Y is homeomorphic to ΣT . The image of the set

$$\{(x,t,s)\mid t\leq \frac{1}{2}\}$$

in M_f/Y is homotopy equivalent to the space $\Sigma T \times S^1/(*) \times S^1$ whereas the image of the set

$$\{(x,t,s)\mid t\geq \frac{1}{2}\}$$

is homotopy equivalent to $C_{\Sigma\gamma_k}$, the mapping cone on $\Sigma\gamma_k$. In this way M_f/Y is homotopy equivalent to the space

$$\Sigma T \times S^1/(*) \times S^1 \cup C_{\Sigma_{Vk}}$$

where the base of the cone is $\Sigma T \times 0$ in $\Sigma T \times S^1$. Denoting the projection $M \times S^1/(*) \times S^1 \to M$ by π , we have

$$\Sigma T \times S^1/(*) \times S^1 = T(\pi^*(\xi_0 + k + 1))$$
.

There is a unique class

$$u \in H^{q+k+1}(M_f/Y)$$

such that the restriction to $\Sigma T \times S^1/(*) \times S^1$ is the bottom class. Let p be the natural map $M_f \to M_f/Y$. Then p^*u is the bottom class of

$$M_f = \Sigma^k(T(\xi_\alpha))$$

and

$$p^* \colon \ H^{2q+k+2}(M_f/Y) \to H^{2q+k+2}(M_f)$$

is the sum map $Z_2 \oplus Z_2 \rightarrow Z_2$. Now

$$Sq^{q+1}(\Sigma^k U_{\xi_n}) = p^* Sq^{q+1} u .$$

In order to calculate $Sq^{q+1}u \in \mathsf{Z}_2 \oplus \mathsf{Z}_2$ we restrict to $T(\pi^*(\xi_0 + k + 1))$ and $C_{\Sigma_{2k}}$ respectively.

Clearly Sq^{q+1} is zero in $T(\pi^*(\xi_0+k+1))$ so as an element in \mathbb{Z}_2

$$\begin{split} Sq^{q+1}(\varSigma^kU_{\xi_\alpha}) &= Sq^{q+1}(i^*u) \\ &= Sq^{q+1}_{\varSigma y_k}(\varSigma^{k+1}U_{\xi_0}) \,, \end{split}$$

where $i: C_{\Sigma\gamma_k} \to M_f/Y$ is the inclusion. On the other hand

$$Sq^{q+1}(\Sigma^k U_{\xi_\alpha}) = \Sigma^k U_{\xi_\alpha}^2 = \Sigma^k \Phi(e(\xi_\alpha))$$
,

where

$$\varPhi \colon\thinspace H^*\big(M\times S^1\big/(*)\times S^1\big) \to H^*\big(T(\xi_\alpha)\big)$$

is the Thom isomorphism. This ends the proof of Theorem 4.4.

DEFINITION 4.6. If $b_g(\xi_0)$ is independent of the choice of X-orientation, we write $b(\xi) = b_g(\xi)$ for any q-1 sphere fibration, which is stably equivalent to ξ_0 .

Remark. Theorem 4.4 shows that $b_g(\xi_0)$ is not independent of the

choice of orientation, precisely in case there is an automorphism α of $\xi_0 + 1$ satisfying $\chi(\alpha) \neq 0$ or equivalently $e(\xi_\alpha) \neq 0$.

Now $e(\xi_{\alpha}) = w_{q+1}(\xi_{\alpha})$, and the collection of stable fibrations over $M \times S^1/(*) \times S^1$ represented by ξ_{α} , where α is any automorphism of $\xi_0 + 1$, is the same as the collection of stable fibrations of the form $\pi^*\xi_0 + \eta$, where π is the projection onto M and η is induced from a fibration over ΣM .

Hence $b(\xi_0)$ is not well defined iff there is a sphere-fibration η over ΣM satisfying

$$w_{q+1}(\pi^*\xi_0 + \eta) = \sum_{i=0}^{q+1} \pi^*w_i(\xi_0) \cup w_{q+1-i}(\eta) + 0.$$

This is the criterion of James and Thomas [7] saying that there is only one q-1 sphere fibration which is stably equivalent to ξ_0 .

5. The invariance theorem.

We are now in the position to prove the following theorem.

Theorem 5.1. Let M and M' be closed q-dimensional differentiable manifolds with tangent sphere bundles τ and τ' respectively. If $f \colon M \to M'$ is an orientation preserving homotopy equivalence, then τ and $f^*\tau'$ are fibre homotopy equivalent.

PROOF. This theorem is proved in [5] for q even and q=1,3,7, and according to Atiyah [1], τ and $f^*\tau'$ are at least stably equivalent. We know from Lemma 4.2 that τ is X-orientable in the sense of Definition 4.1. Hence we conclude from Corollary 4.5 that either τ and $f^*\tau'$ are in fact equivalent, or the invariant $b(\xi)$ is well defined for q-1 sphere fibrations which are stably equivalent to τ .

The theorem now follows as in [5] from the following two lemmas. Using the notation of [5] we have for q odd different from 1,3,7:

LEMMA 5.2. Let ξ_1 and ξ_2 be q-1 sphere fibrations over M with classifying maps v_1 and v_2 respectively, and let ζ be a stably trivial q-1 sphere fibration over S^q with classifying map μ .

If $v_2 = v_1^{\mu}$, then $b(\xi_2) = b(\xi_1) + b(\zeta)$, whenever $b(\xi_1)$ is defined and independent of orientation.

PROOF. Let η be a fibration such that $\eta + \xi_1$ is trivial, and choose an X-orientation of ξ_1 originating from a classifying map

$$\varphi \colon M \to B_n \langle v_{q+1} \rangle$$

for $\nu + \eta$.

Consider the commutative diagram

where i is the inclusion and j the collapsing map. Taking Thom complexes on the appropriate fibrations, we get the dual homotopy commutative diagram for k large:

Here Δ is the map which splits the top cell into two, and t is the inclusion of S^{2q+k} in

$$T(q+k) = S^{2q+k} \vee S^{q+k}$$
.

The natural map $M \cup S^q \to M \vee S^q$ induces the map r_1 of Thom complexes

$$r_1 \colon T(\xi_1 + k) \vee T(q + k) \to T((\xi_1 + k) \vee (q + k))$$

which identifies the bottom cells. The pinching map $c \colon M \to M \vee S^q$ induces

$$\bar{c}_1$$
: $T(\xi_1+k) \rightarrow T((\xi_1+k) \vee (q+k))$.

Analogously there are induced maps

$$\begin{split} r\colon \ T(\xi_2+k) \ \mathbf{v} \ T(\zeta+k) \to T\big((\xi_2+k) \ \mathbf{v} \ (\zeta+k)\big) \ , \\ \overline{c}\colon \ T(\xi_2+k) \to T\big((\xi_1+k) \ \mathbf{v} \ (\zeta+k)\big) \ . \end{split}$$

The fact that ζ is stably trivial, shows that there is an equivalence α between $\xi_1 + k$ and $\xi_2 + k$, such that there are the commutative diagrams

$$T(\xi_1 + k) \xrightarrow{\overline{c_1}} T((\xi_1 + k) \vee (q + k))$$

$$\downarrow^{T(\alpha)} \qquad \downarrow$$

$$T(\xi_2 + k) \xrightarrow{\overline{c}} T((\xi_1 + k) \vee (\zeta + k)).$$

$$T(\xi_1+k) \vee T(q+k) \rightarrow T(\xi_1+k) \vee T(\zeta+k)$$

$$\downarrow^{r_1} \qquad \qquad \downarrow^r$$

$$T((\xi_1+k) \vee (q+k)) \rightarrow T((\xi_1+k) \vee (\zeta+k)).$$

Clearly $g_k' = T(\alpha) \circ g_k$ defines an X-orientation for ξ_2 in such a way that we have the commutative diagram

The lemma now follows by an easy calculation as in [5, § 3].

Lemma 5.3. Let $f: M \to M'$ be an orientation preserving homotopy equivalence of oriented q-manifolds with tangent sphere bundles τ and τ' respectively. If $b(\tau)$ is well defined, we have

$$b(\tau) = b(\tau')$$
.

PROOF. Let $A \in H^q(M \times M)$ denote the element defined in the proof of [5, Proposition 3.4]. Also let

$$j: M \times M_+ \to T(\tau)$$

denote the map collapsing everything outside a tubular neighbourhood. Finally consider the twisting map

$$t: M \times M \to M \times M$$
.

We know that $j^*U = A + t^*A$. The normal bundle $v \times v$ of $M \times M$ clearly satisfies $v_{\sigma+1}(v \times v) = 0$. Accordingly we can find a map

$$\varphi \colon M \times M \to B_n \langle v_{q+1} \rangle$$

classifying $v \times v$. Obviously

$$\varphi \circ \Delta : M \to M \times M \to B_n \langle v_{q+1} \rangle$$

classifies $\nu + \nu$ over M. Hence we conclude from Corollary 3.2 that the corresponding X-orientation for τ is the composite $\Sigma^k j \circ g_k$, where

$$g_k \colon X_{-2g-k} \to \Sigma^k(M \times M_+)$$

is an X-orientation for $M \times M$ in the sense of Browder [4, § 1]. Hence $b(\tau)$ is the functionalized Sq^{q+1} on the map $\Sigma^k h \circ g_k$, where

$$h: M \times M \to K(Z_2,q)$$

represents A + t * A. Clearly

$$\Sigma^k(f \times f) \circ g_k \colon X_{-2g-k} \to M' \times M'$$

is an X-orientation for $M' \times M'$. If

$$h': M' \times M' \rightarrow K(\mathbb{Z}_2, q)$$

represents the analogous element

$$A'+t*A' \in H^q(M'\times M')$$
,

we obviously have

$$(f \times f)^* (A' + t^* A') = A + t^* A$$

and thus

$$h' \circ (f \times f) = h \colon M \times M \to K(Z_2, q)$$
.

Hence $b(\tau')$ is also the functionalized Sq^{q+1} on the map

$$\Sigma^k h' \circ \Sigma^k (f \times f) \circ g_k = \Sigma^k h \circ g_k$$
.

This ends the proof of Lemma 5.3 and hence of Theorem 5.1.

Analogously using BSO(n) instead of BSH(n) we have the following theorem.

THEOREM 5.4. Let $f: M \to M'$ be a homotopy equivalence of oriented q-manifolds with tangent q-plane bundles τ and τ' respectively. If $f^*\tau'$ and τ are stably isomorphic (as SO-bundles) then they are automatically isomorphic (as SO(q)-bundles).

As a consequence of Theorem 5.1 we have according to Sutherland [14, Corollary 3.4]:

COROLLARY 5.5. Let M and M' be oriented q-manifolds which are oriented homotopy equivalent and suppose $k \leq \frac{1}{2}(q-1)$. Then M admits a k-field iff M' does.

6. Connection with the semi-characteristic.

In this section we will show that under certain circumstances $b(\tau) = \chi^*(M)$, the semi-characteristic of M. This is defined by the formula

$$\chi^*(M) = \sum_{i=0}^{\frac{1}{2}(g-1)} \dim H^i(M, \mathsf{Z}_2) \mod 2$$
.

First we use $B_n = BO(n)$ for defining an X-orientation

$$g_k\colon\thinspace X_{-2q-k}\to\varSigma^k(M\times M_+)$$

for M an arbitrary q-dimensional manifold. We assume q odd. Let ψ denote the operation introduced by Browder [4, § 1],

$$\psi \colon \operatorname{Ker}(g_k^*)^{q+k} \to \mathsf{Z}_2$$
.

Using the notation of Lemma 5.3 we have

$$b_{a}(\tau) = \psi(A + t^*A) .$$

Lemma 6.1. If [M] = 0 in the non-oriented bordism ring, then

$$\Sigma^k A \in \operatorname{Ker}(g_k^*)^{q+k}$$
.

PROOF. Arguing as in the proof of Lemma 4.2 and using Lemma 3.6, we have to show that $\varphi_*(A \cap [M \times M]) = 0$, where $\varphi \colon M \times M \to B_n$ is the classifying map for $v \times v$, and $[M \times M]$ is the orientation class of $M \times M$. This is equivalent to show that

$$A \cup w_{i_1}(\nu \times \nu) \cup \ldots \cup w_{i_n}(\nu \times \nu) = 0$$

for all i_1, \ldots, i_s satisfying $i_1 + \ldots + i_s = q$. Here of course w_i denotes the *i*th Stiefel-Whitney class. Now

$$A = \sum_{i=1}^{d} \alpha_i \otimes \beta_i$$

where $\{\alpha_1,\ldots,\alpha_d,\beta_1,\ldots,\beta_d\}$ is a basis for $H^*(M)$ satisfying

$$\alpha_i \cup \beta_j; = \delta_{ij}\sigma_M$$

for $\deg \alpha_i + \deg \beta_j = q$. Here σ_M denotes the top class of $H^*(M)$.

Sublemma 6.2. Let $x, y \in H^*(M)$ satisfy $\deg x + \deg y = q$. Then

- 1) $(x \otimes y) \cup A \neq 0 \iff x \cup y \neq 0 \text{ for } \deg x > \deg y$,
- 2) $(x \otimes y) \cup A = 0$ for $\deg x < \deg y$.

Subproof. 1) Assume $\deg x > \deg y$. Write x and y as a sum of β_i 's and α_i 's respectively. Then

$$(x \otimes y) \cup A \neq 0$$

iff, for an odd number of times, x contains β_i and y contains α_i , iff $x \cup y \neq 0$.

2) is trivial.

Lemma 6.1 follows from the sublemma and the fact that

$$w_i(\nu \times \nu) = \sum_{j=0}^i w_j(\nu) \otimes w_{i-j}(\nu)$$
.

We now use Theorem 1.4 in Browder [4] and the fact that

$$A \cup t^*A = \chi^*(M)\sigma_{M\times M},$$

where $\sigma_{M\times M}$ is the top class of $M\times M$, to conclude that

$$b_g(\tau) = \psi(A) + \psi(t^*A) + \chi^*(M)$$
.

Theorem 6.3. If [M] = 0 in the non-oriented bordism ring, then there is an X-orientation g for τ , such that

$$b_q(\tau) = \chi^*(M) .$$

PROOF. We want to show that for some X-orientation for $M \times M$ it happens that $\psi(A) = \psi(t^*A)$.

Analogously to the construction of $B_n\langle v_{g+1}\rangle$ let

$$B_n' = B_n \langle v_{(q+1)/2}, \dots, v_{q+1} \rangle$$

denote the total space of the fibration

$$\pi' \colon B_n' \to B_n$$

which kills the Wu classes $v_{(q+1)/2},\ldots,v_{q+1}$. Put $\gamma_n'=(\pi')^*\gamma_n$, $Y_n'=T(\gamma_n')$, and denote the corresponding dual cospectrum by $X'=\{X_n'\}$. Clearly the Whitney sum map

$$B_n \times B_n \to B_n$$

lifts to a map

$$B_{n}' \times B_{n}' \to B_{2n} \langle v_{q+1} \rangle$$
.

Hence the corresponding map of Thom complexes gives rise to a dual map of degree one:

$$h_k: X_{-2a-2k} \to X'_{-a-k} \wedge X'_{-a-k}$$
.

Clearly the normal bundle ν of M^q has a classifying map $\varphi \colon M \to B_n'$. The map induced on Thom complexes defines a map

$$f_k \colon X'_{-g-k} \to \Sigma^k(M_+)$$
.

Hence the composite map $(f_k \wedge f_k) \circ h_k$ defines an X-orientation for $M \times M$. We can thus use

$$X'_{-q-k}$$
 A X'_{-q-k}

for computing the functionalized Sq^{q+1} , just we know that $\Sigma^k A$ (and $\Sigma^k(t^*A)$) goes to zero under $f_k \wedge f_k$. In that case $\psi(A) = \psi(t^*A)$, because the twisting map of $X'_{-q-k} \wedge X'_{-q-k}$ into itself has degree one.

Arguing as in the proof of Lemma 6.1 and Lemma 4.2, we need to require that

$$A \cup ((w_{i_1}(v) \cup \ldots \cup w_{i_l}(v)) \otimes (w_{i_l+1}(v) \cup \ldots \cup w_{i_m}(v))) = 0$$

whenever $i_1 + \ldots + i_m = q$. According to the Sublemma 6.2, this is the case precisely when all Stiefel-Whitney numbers are 0. This ends the proof of Theorem 6.3.

REFERENCES

- 1. M. F. Atiyah, Thom complexes, Proc. London Math. Soc. (3) 11 (1961), 291-310.
- W. Barcus and M. G. Barratt, On the homotopy classes of extensions of a fixed mapping, Trans. Amer. Math. Soc. 88 (1958), 57-74.
- R. Benlian et J. Wagoner, Type d'homotopie fibré et réduction structurale des fibrés vectoriels, C. R. Acad. Sci. Paris Sér. A-B 265 (1967), A 205-A 209.
- W. Browder, The Kervaire invariant of framed manifolds and its generalization, to appear.
- J. L. Dupont, On homotopy invariance of the tangent bundle I, Math. Scand. 26 (1970),
 5-13.
- 6. I. M. James, On the iterated suspension, Quart. J. Math. Oxford (2) 5 (1954), 1-10.
- I. M. James and E. Thomas, An approach to the enumeration problem for non-stable vector bundles, J. Math. Mech. 14 (1965), 485-506.
- J. Rutter, A homotopy classification of maps into an induced fibre space, Topology 6 (1967), 379-403.
- 9. E. H. Spanier, Algebraic topology, McGraw-Hill, 1966.
- 10. E. H. Spanier, Function spaces and duality, Ann. of Math. 70 (1959), 338-378.
- 11. M. Spivak, Spaces satisfying Poincaré duality, Topology 6 (1967), 77-102.
- 12. J. Stasheff, A classification theorem for fibre spaces, Topology 2 (1963), 239-246.
- 13. A. Strøm, Note on cofibrations, Math. Scand. 19 (1966), 11-14.
- W. A. Sutherland, Fibre homotopy equivalence and vector fields, Proc. London Math. Soc. (3) 15 (1965), 543-556.
- 15. C. T. C. Wall, Poincaré complexes I, Ann. of Math. 86 (1967), 213-245.

UNIVERSITY OF AARHUS, DENMARK