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ON HOMOTOPY INVARIANCE OF THE
TANGENT BUNDLE II

JOHAN L.DUPONT

1. Introduction.

This paper is a subsequence of the paper [5], in which the following
problem is considered.

Let M and M’ be oriented compact, differentiable manifolds, let
f: M — M’ be a homotopy equivalence preserving orientation, and denote
the tangent sphere bundles v and 7’ respectively. Is it true then, that
and f*<t’ are fibre homotopy equivalent ?

This is actually shown by R.Benlian and J.Wagoner [3]; but here
we will prove it by the simple method developed in [5]. As kindly
pointed out to me by C.T.C. Wall, this method also applies to define
the unstable tangent sphere fibration for a Poincaré complex which is
necessary for developing a theory for embedding and surgery of Poin-
caré complexes.

Finally I also want to thank M. F. Atiyah, W. Browder and W. Suther-
land for interesting remarks on the note [5] which made this paper pos-
sible.

2. Sphere fibrations.

In this section we will study more closely the ‘“‘action” defined in
[5, § 2]. The results of this section are closely related to the work of
James and Thomas [7], Rutter [8] and Barcus and Barratt [2]. In
particular our Corollary 2.3 and Proposition 2.7 are reformulations of
Theorem 1.8 in James and Thomas [7]. (Compare the remark following
our Definition 4.6.)

As usual H(n) denotes the space of homotopy equivalences of S"-1,
SH(n) denotes the component of H(n) consisting of maps of degree +1,
and F(n) denotes the subspace of SH(n+ 1) consisting of basepoint pre-
serving maps. There is a natural inclusion of SH(n) in F(n) by means of
unreduced suspension.
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A Hurewicz fibration with fibre a homotopy % —1 sphere is called a
n—1 sphere fibration. According to J. Stasheff [12] there is a space
B, =BSH(n) classifying oriented n— 1 sphere fibrations over CW-com-
plexes, such that homotopy classes of the classifying maps are in one-to-
one correspondence with equivalence classes of sphere fibrations under
orientation preserving fibre homotopy equivalence.

If & and &, are sphere fibrations over a space X, &, + &, denotes the
fibrewise join of &, and &,. If &, and &, are sphere fibrations over X, and
X, respectively and p;: X, x X, > X, are the projections, we put

E1x &y = (P1™ &) +(p*Ey) -

The trivial £ —1 sphere fibration is simply denoted by k.

Analogously there are spaces BF(n) classifying pairs (£,s) consisting
of an oriented » sphere fibration & and a section s. Homotopy classes of
the classifying maps are in one-to-one correspondence with equivalence
classes of pairs under section and orientation preserving fibre homo-
topy.

If £ is an oriented sphere fibration and s and s’ are homotopic sections,
then the pairs (£,s) and (£,s') are clearly equivalent.

For any CW-complex X the natural map

[X,BF(n)] -~ [X,BSH(n+1)]
corresponds to forgetting the section, and the map
[X,BSH(n)] > [X,BF(n)]

corresponds to the map sending & to the pair (£§+1,s;), where s, is the
section which is constantly 1.

LeEMMA 2.1, Let & be a q sphere fibration over a q-dimenstonal finite
CW-complex X.

Any section s of & gives rise to a q—1 sphere fibration &, such that
(&' +1,8,) and (&,8) are equivalent pairs. The equivalence class of &' only
depends on the homotopy class of s.

Proor. According to James [6], the map

Jxt ﬂi(SH(Q)) - n(F(q))

is an isomorphism for i< 2(¢—2) and an epimorphism for ¢=2(q—2).
This, together with an easy calculation for ¢= 2,3, implies that j, is an
isomorphism for 1 <q—1. Hence the map
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[X,BSH(q)] -~ [X,BF(q)]
is bijective for X at most ¢g-dimensional. This proves the lemma.

Especially consider X =ZLuUe?, where L is a (¢—1)-dimensional com-
plex (according to Wall [15] this is the case for a ¢g-dimensional Poincaré
complex), and let £=¢&,+ 1, where &, is a ¢— 1 sphere fibration.

By obstruction theory any section s of & is homotopic over L to the
trivial section s, which is constantly 1. Extending this homotopy to X
(Strem [13]) we conclude that any homotopy class of sections of &,+1
is representable by a section which is trivial over L. Trivializing &, over
¢4, 8 defines a map

(€7, 8971) — (89,%)
of a certain degree d(s).

Later in this section we will see that for £, oriented, d(s) depends only
on the homotopy class of s, and thus d(s) determines this uniquely.
(For &, non-orientable the homotopy class of s is determined by the
mod 2 degree.)

For any integer d let g; denote the composite map

X Xveee xy e,

where ¢ is the pinching map and f;: 87 — 8?2 is of degree d. Further let
&, denote the fibration

§a = ga*(&ovTy) s
where 7, is the tangent sphere bundle of 8?2, If vy: X — B, is classifying
for &, and u,: 8?2 - B, is classifying for 7,, then in the notation of [5,
Section 2] v is classifying for &;. Clearly there is a natural equi-
valence

Ea+1 = gg*((So+1) v (7+1)) = gg*((So+1) v (g+1)) = &p+1
which we denote by p;. Under this the constant section of £;+ 1 defines
a section o(d) of &+ 1 of degree d. In fact the constant section of 7,+1

over 87 has degree one with respect to the obvious trivialization.
Using Lemma 2.1 we clearly have

ProrosiTION 2.2. For any section s of &,+1,

¢ = a9 = Gin) (0¥ 7o)
18 the unique fibration such that

(& +1,8) and (&+1,8)
are equivalent pairs.
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Proor. In fact o(d(s)) and s are homotopic sections of &+ 1.

An equivalence « of a fibration & with itself is called an automorphism
of £ For any automorphism « of the fibration &,+ 1, where &, is a sphere
fibration over an arbitrary space X, we define the section s,=xos, of
&,+1. Here again s, denotes the trivial section, and clearly s;;=s,.

We now obtain in the special case of X =Lue?:

CoROLLARY 2.3. For q odd, we have vy#* = v, iff there is an automorphism
o of 3+ 1 such that d(s,) is odd.

Proor. According to [5, Proposition 2.2], we have vy =wv,%° for d
odd. Hence v,=vy" iff v,=v,% or equivalently &,~&; for some odd

integer d.

If B: & — &; is an equivalence, then the composite equivalence
vao (B+1): &o+1>&+1

defines the section s, ,,5+1=0(d) of degree d.

Conversely, if o: & +1->&+1 has d(s,)=d, then (£,+1,s;) and
(&o+1,s,) are equivalent pairs, and hence we conclude from Proposition
2.2 that

S0 = fay = a-

Turning to the general case of a ¢—1 sphere fibration £, over an
arbitrary space X, we consider the Thom complex 7'(£,). This is defined
as the mapping cone on the projection map, and it is easily seen to be
homeomorphic to the space &,+ 1/s;(X), in such a way that the inclusion
X — T'(&) in the mapping cone corresponds to the section s_; of &,+1
which is constantly —1.

When &, is oriented, the Thom class

U, € H(¢+1,2Z)
is the unique class which restricted to the fibre is the generator and which
satisfies s;* U, = 0.
DerintTION 2.4. For any section s of &,+ 1, put
d(s) = s*U, € H(X,Z)
and for « an automorphism, put

x(x) = d(s,) e H(X,Z) .
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As an example the equivalence « induced by multiplication by —1 in
the trivial part 1 of £,+ 1, has y(x)=e(&,), the Euler class of &,.

PROPOSITION 2.5. For orientation preserving automorphisms « and 8 of
&+ 1 we have

x(xof) = x(x)+x(B) -

Proor. Put u= U, for short and denote the projection for &,+ 1 by p.
Obviously
a*y = u + p*(d(s,)) .
Hence
8¥.pt = (xo08p)*u = sg*u+8,*p*(d(s,))
= d(sg) + d(s,) .

For X a g-dimensional Poincaré complex Definition 2.4 agrees with
the previously defined degree. In fact for any integer d, the degree of
a(d) is d.

Notice that we could also have defined d and y mod2 for any sphere
fibration. Then Proposition 2.5 is valid for all automorphisms.

In view of Corollary 2.3 only the mod2 degree is essential for our
purpose. We will thus restrict to Z, coefficients in all cohomology groups
for the rest of this paper, unless otherwise specified.

DEeriNITION 2.6. Let £ be a sphere fibration over a space X with base
point x,, and consider an automorphism « of £ Denoting the unit
interval by I, consider & x I with the identifications

(z,1) ~ (xx,0) for =zef¢,
(x,t) ~ (x,t") for ze§, and t,t'el.
This defines a fibration denoted &, over X x S'/x,x St

Denote the Euler class by e, the suspension of X by 2X, the suspen-
sion homomorphism by %, and the natural map of X x 8!/x, x 8§ onto 2X
by j. We then have

ProrosrrioN 2.7. For any automorphism « of §=£&,+ 1, where &, is a
q—1 sphere fibration, we have

e(&,) = j*Z(x(x)) .

Proor. The Euler class of &, is the image under the transgression of
the generator of H?(S?, +). The transgression is the additive relation
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H(S9, +) 2> He+1(g, Sty - Hav\(X x Sz, x 8) ,

where p is the projection.
Obviously e(&,+1)=0, so e(£,) is in the image of j*. Consider the
commutative diagram with exact columns:

s

HY(S1, +) —~ He+(E , 87) E° Har(X x S, 24 x SY)

e ! L

HY((Eo+ 1) x 0,8,(X) x 0) —— HI(E, (&, +1) x 0) £ H(ZX)

to to
HY(£y+1,87) « 2 Hy(X).

It is easy to see that the lower p* is an isomorphism, and hence ¢’ =0.
By definition +*U,, is the generator of H%(S?, +). Hence (j*)'e(&,) is
the image of U, under the additive relation on the middle row. Now

p: EJ(E+H1)x0 > X
has a right inverse s, defined by
sy xid: X xI - (§,+1)x1.
That is, (j*)'e(é,) is the image of U, under the map
H((E,+1) x 0, 8,(X) x 0) > HIH(£,[(E,+1) x 0) > Ha+(ZX)

Define a space F as the quotient space of (X x I) u (&,+ 1) with the iden-
tifications
(,1) ~ s,(x) for xeX.

There is a map of triples
(F,(&+1)UX x0,Xx0)~ (&, (£+1)x0,5(X)x0)

defined by sending (x,?) to (s;z,t). Hence we have the commutative dia-
gram
Hi(Ey+1,,(X)) —~ HI(E,, (£y+1) x 0)

|

Ha(gy+1) —> H(ZX)

Here the lower 6 is the connecting homomorphism for the pair (C, ,&,+1),
where O, = F[X x 0 is the mapping cone on s,. This proves Proposition
2.7.
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We conclude this section with a lemma concerning homotopy of
automorphisms. If & is a n— 1 sphere fibration over X with base point
z, and « is an automorphism of £, we have defined the fibration &, over
X x 8'[x,x 8, the restriction of which to X x 0 is £ Hence fibre homo-
topy classes of automorphisms of £ are in one-to-one correspondence
with homotopy classes of maps

X x 8'[xyx St - BH(n)

the restriction of which to X x 0 is the classifying map for &.

LemmA 2.8. Let & be a q sphere fibration over a finite g-dimensional
CW-complex, and « an automorphism of &+k, k> 0.

Then « is homotopic to an automorphism of the form «'+1id, where o
18 an automorphism of &.

Proor. The map BH(q+1) - BH(q+k+1) is a ¢+ 1 equivalence ac-
cording to James [6]. Hence the lemma follows from Spanier [9, Chapter
7, § 6, Theorem 22].

3. S-duality.

We shall need some simple lemmas concerning S-duality of Thom
complexes. We refer to the papers of Atiyah [1], Spivak [11] and Wall
[15] for the following fact:

Let M denote a g-dimensional Poincaré complex, with (k— 1)-dimen-
sional normal sphere fibration ». If & and # are n—1 and m —1 sphere
fibrations over M such that &+ is trivial, then the diagonal 4: M —
M x M induces a map of Thom complexes

Tw+n+m)—>Tw+n)ATE).
The composite with a Thom map
Satktntm s Ty 4 n+m) - T(v+n) A T(&)
is a S-duality for T'(v+#) and T'(£).
ProrosiTioN 3.1. Let i: M, <= M, be an embedding of a closed manifold

in another. Denote the normal bundle of M, and M, by v, and v, respecti-
vely, and the normal bundle of © by v,. Then the dual map of

T(t*vy) - T'(vy)
18 the map
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(M) — T(v)
which collapses everything outside a tubular neighbourhood of M, in M,.
COROLLARY 3.2. Let M be a closed manifold with normal bundle v and
angent bundle v. Then the map
Tw+v) > Ty xv)
induced by the diagonal M — M x M is the dual of the map
(M x M), > T(z)
which collapses everything outside a tubular neighbourhood of the diagonal.

Proor or ProposiTioN 3.1. Let N be a tubular neighbourhood of M,
in M, with boundary N. Clearly

T(r) = T(”zw)/T (o) -

Embedding M, in 8*, for n large, the proposition follows from the com-
mutative diagram

s T(y) —L s T(vg) A Ty

|

87— Ty T(rgys) L2 T(vg) A T(vy)

!

s T(y) — L (M),) A T(ry).

Here f,, f; and f; are induced by the diagonals M; - M, xM;, N —
N xM, and M, - M, x M, respectively.

Now let M denote an arbitrary Poincaré complex with normal sphere
fibration », and let £ and % be sphere fibrations such that &+ # is trivial.

Lrmma 3.3. If « and B are automorphisms of & and n respectively, such
that the automorphism o+ f of £+m is fibre homotopic to the identity, then

TA+8): Tw+n) > T@w+n)
is the dual of
T(x): T(5) > T(£) .

LemMmA 3.4. For any automorphism « of &, there is an automorphism o'
of the trivial k—1 sphere fibration for some k>0, such that «+id and
id+«' are fibre homotopic automorphisms of &+ k.
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Lemma 3.5. For any automorphism o« of & there is an automorphism B
of n+k, for some k, such that « + 8 is fibre homotopic to the identity.

Proors. The proof of Lemma 3.3 is trivial. Adding # to & it suffices to
prove Lemmas 3.4 and 3.5 for & trivial.

For ¢ trivial the stable fibre homotopy class of « corresponds to a
map ZM - BH, where BH=limBH(n). Lemma 3.5 now follows by
well-known arguments from the fact that [XM,BH] is a group in one
and only one way.

Finally 3.4 follows from 3.5.

For later reference we finally state without proof the following well-
known fact.

LemMmA 3.6. For M an n-dimensional Poincaré complex with normal k— 1
sphere fibration v, the composite map

Hi(M) 2> H, o (TG) - H,_(M)

of the S-duality homomorphism D and the Thom isomorphism @ equals the
Poincaré duality homomorphism. That i3, Do D is cap product with the
orientation class [M].

4. Definition of b(§).

We recall the notation of [5, § 4].
Assume g odd. The map

Vg+1* Bn - K(Zz:9+ 1)
represents the Wu class v,,;. Consider the fibration
T Bn<vq+1> - Bn

induced by v,,; from the path fibration over K(Z,,q+1) with fibre
QK(Z,,q9+1)=K(Z,,q9). Put $,=n*y,, where y, is the universal n—1
sphere fibration over B,. Then Y, =7T(y,) defines a Wu spectrum in
the sense of Browder [4]. {X,} is the dual Wu cospectrum.

Now consider M a g-dimensional compact differentiable oriented mani-
fold with normal bundle », and let £ be any oriented ¢ — 1 sphere fibration
over M. Choose a fibration 5 such that £+ is trivial, and choose a lifting
¢’ through n of the classifying map ¢ for »+.

Clearly »+#n=(¢')*(7,). This defines maps

Tv+9)—>Y,
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and thus dual maps
gk‘: ‘X—M'—k - ZkT(é)
for k large, such that

It Hogur( X _9q 1 Z) ~ qu+k(2kT(§ ),Z)

is an isomorphism. We say that g, has degree one.
A system g={g,} of maps constructed in this way is called an X-orien-
tation for &.

In the following all homology and cohomology have Z, coefficients.

DeriNITION 4.1. Let U, € HY(T'(§)) be the Thom class. For a fixed
orientation g of & satisfying
Iie(Z¥U,) = 0
define the composite map
é = Z*hog,,
where h: T(&) - K(Z,,q) represents U,, and put
by(§) = Sg#*(2*1) € HXHK(X o, ) = Z,.

Here Sqg,2+! is the functionalized Sg2+! on é. As in Browder [4] it is clear
that the indeterminacy is 0, and that b,(¢) is independent of k.

LEMMA 4.2. Let & be stably equivalent to a SO sphere bundle. Then
9:*(Z*U,) = 0
of
wi () U . Vw(v+y) =0 for G+ +i,=4q.

Proor. Here w; denotes the ith Stiefel-Whitney class. Since U, is the
bottom class of 7'(¢), by S-duality
9:*(2Z*U,) = 0
iff
T(@)s: HpnT+1)) — HyinT(7))
is zero. Now

Tyt Hq(B'n<vq+1>) - q(Bn)
is injective. Hence we only need to see that
Py Hq(M) - Hq(Bn)

is zero. When ¢ factors through BSO(n), this is clearly fulfilled when the
Stiefel-Whitney numbers of v+ are zero.

Math. Scand. 26 — 14
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REemaRK. The condition of 4.2 is fulfilled for ¢ odd and & stably equiv-
alent to 7, because w;(»+»)+0 only for ¢ even.

A similar necessary and sufficient criterion in general needs the struc-
ture of H*(BSH,Z,). This is calculated by J. Milgram.

When £ is X-orientable, the orientation depends on the following
choices:

I a) v and the Thom map for 7'(»).
b) 7 and the trivialization of &+.

II The lifting ¢’ of ¢.

First let us examine the choices according to I:
If »' is equivalent to » and #’ is equivalent to 7, a choice of equivalences
B, and S, respectively defines the S-duality

SN > Tw+n)ATE+E) > T +9') AT (E+E)

where the last map is 7'(8, + f,)Aid. With respect to this S-duality an
orientation 7'(v' + ') - T'(7,) defines the same X-orientation for 7'(¢ + k)
as the composite map
T(v+n) =0 16/ +1) > T(7,)
does with respect to the original S-duality.
Another choice of »" and 7’ thus amounts to a change of the S-duality

(4.1) SN > Ty +n+E+k) > Tr+n) A TE+E)

by automorphisms of » and #.

Also, fixing » and #», another choice of trivialization of &+# just
changes the S-duality map (4.1) by an automorphism of 5 +&.

Finally, according to Theorem 3.5 in Wall [15], another choice of
Thom map changes the S-duality map (4.1) by an automorphism of ».

Hence in all cases, a different choice according to I just changes the
S-duality map (4.1) by an automorphism of v+#+£&+k. Choosing n of
sufficiently large dimension, it follows from Lemma 3.4 that this auto-
morphism can be assumed to be of the form id+g+id, where § is an
automorphism of % only.

In this way we conclude from Lemma 3.3 that a different choice ac-
cording to I is equivalent to

I' Replace the orientation

I X _gqi > T(E+K)
by the orientation
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g = T(x)ogy
where T'(x): T(£+ k) > T'(é + k) is induced by an automorphism « of £ + k.

Lemwma 4.3. If b,(£) is independent of the choices 1, it is also independent
of the choices 11, and hence independent of the choice of X-orientation for £.

Proor. If ¢': M — B,{(v,,,) is a lifting of ¢, the other lifting is homo-
topic to the composite ¢’ :

M "> My 812" B (0g:1) v K(Z3,9) — Bolvgss) -

Here c¢ is the pinching map, and V the map folding K(Z,,q) onto the fibre
of #. Since V*7, is trivial over K(Z,,q),

T(V*7n) = T(9,) v Z(K(Zp,9)) -

Taking the dual it is clear that Z(K(Z,,q)) gives no contribution to the
functionalized Sq2+!.

We now consider the change of orientation originating from I'. Ac-
cording to Lemma 2.8, we can assume that the automorphism « of
E+k (¢ a g—1 sphere fibration) is of the form «'+id, where &’ is an
automorphism of &+1.

THEOREM 4.4. Let &) be an X-orientable g— 1 sphere fibration over M9,
q odd, and let & be an automorphism of &y+1. Further choose an X-orien-
tation g of &, and let g’ denote the orientation defined by

9 = T(x+id)og,
for k large. Then
by(0) — by (&o) = x(x) .

COROLLARY 4.5. The number b,(&,) depends on the choice of X-orienta-
tion, iff every q—1 sphere fibration which is stably equivalent to &,, auto-
matically is equivalent to &;.

Proors. Corollary 4.5 clearly follows from Theorem 4.4, Corollary 2.3
and Definition 2.4.

For the proof of Theorem 4.4 it suffices, according to Proposition 2.7,
to show that

by(&e) —by(€o) = e(&,) -
In the stable track group {7'(&,),T(&,)} put
y = T(x)—id .
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Use the Puppe sequences for the cofibrations

8¢ > T(&) L T(&,)/T (&)

and '
TN e T(&,) — S%,

where N is homotopy equivalent to a (g — 1)-dimensional complex, and *
is the base point of M. We then get a factorization of y through j and 7,
that is, there is a stable element

n: T(E)/T (o) — T(Egpw)
such that y =i0%0j. It is easy to see that if y is represented by the map

Vi: ZkT(Eo) - Z*T (&) ,
then
SgiH(2*U,,)

is well defined with zero indeterminacy, and furthermore
S qzz-l(zk Uéo) = by(&o) — by (&) -

Put T'=2*T(&,) and f=T(x+id), where f is a map of X7 into itself.
Define M;=2XT x I with identifications

(x,1) ~ (f(),0) and (x,¢) ~ (%,t')
for z € 2T and t,t' € I. Clearly
M, = 2¥T(&,) .
On the other hand, f is homotopic to the map

IT A ST v T 22, v T s 3T,
where 4 is the pinching map and V the folding map. Hence M, is homo-
topy equivalent to 27" x I, with the identifications

(x,2t,0) for ¢t =%

and (*,8) ~ (*,8'), where x € T, 8,8' € I and ¢ is in the interval defining X7'.

Let Y be the subspace of points with coordinates (x,f,0) satisfying
t= % or coordinates (z,%,s) satisfying 0<s=<1. Obviously Y is homeo-
morphic to 27T. The image of the set

{=.t,9) | t=1}
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in M,|/Y is homotopy equivalent to the space 27T x S1/(x) x S! whereas
the image of the set

{(.t,8) |2 %}

is homotopy equivalent to Cy,, , the mapping cone on Zy,.
In this way M,/Y is homotopy equivalent to the space

2T x 8Y/(x) x Stu Cy,, ,

where the base of the cone is 27 x 0 in 27" x S1. Denoting the projection
M x 8Y/(¥) x 8t - M by =, we have

T x 8Y(x) x 8 = T(n*(Ey+k+1)) .

There is a unique class
w e HI+k+Y(M | Y)

such that the restriction to X7 x 8Y/(x) x St is the bottom class. Let p
be the natural map M, - M;/Y. Then p*u is the bottom class of

M, = Z¥T(£,))
and
p*: H2+k+e3(M [Y) — H2a+k+2( )

is the sum map Z,PZ, -~ Z,. Now
Sqr (2*U,,) = p*Sq*iu .
In order to calculate Sq?+u € Z,Z, we restrict to T'(z*(&,+ &+ 1)) and
Oy, respectively.
Clearly Sg2+! is zero in T'(w*(£y+ k + 1)) so as an element in Z,
Sqr(2*U, ) = Sqa+(1*u)
= S¢3,,(Z1U),
where i: Oy, — M,/|Y is the inclusion. On the other hand
SEA(SMU,) = ZRUE, = SHO(e(8,)
where

@: H*(M x 8Y(x) x 8t) -~ H¥T(£,))
is the Thom isomorphism. This ends the proof of Theorem 4.4.

Drrinrrion 4.6. If b,(&,) is independent of the choice of X-orienta-
tion, we write b(£)=5,(&) for any g—1 sphere fibration, which is stably
equivalent to &,.

REeMARK. Theorem 4.4 shows that b,(£,) is not independent of the
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choice of orientation, precisely in case there is an automorphism « of
&+ 1 satisfying y(«x)+ 0 or equivalently e(£,) + 0.

Now e(é,)=w,1(¢,), and the collection of stable fibrations over
M x 81/(x) x S* represented by &,, where « is any automorphism of &+ 1,
is the same as the collection of stable fibrations of the form n*&,+ 7,
where 7z is the projection onto M and 7 is induced from a fibration over
M.

Hence b(&,) is not well defined iff there is a sphere-fibration # over XM
satisfying

g+1
wq+1(”*§o+77) = ,Zoﬂ*wi(éo) u wq+1—z’(’7) + 0.
This is the criterion of James and Thomas [7] saying that there is only
one g — 1 sphere fibration which is stably equivalent to &,.

5. The invariance theorem.
We are now in the position to prove the following theorem.

THEOREM 5.1. Let M and M’ be closed q-dimensional differentiable
manifolds with tangent sphere bundles v and v’ respectively. If f: M — M’
i8 an ortentation preserving homotopy equivalence, then T and f*i' are
fibre homotopy equivalent.

Proor. This theorem is proved in [5] for ¢ even and ¢=1,3,7, and
according to Atiyah [1], = and f*7’" are at least stably equivalent. We
know from Lemma 4.2 that v is X-orientable in the sense of Definition
4.1. Hence we conclude from Corollary 4.5 that either = and f*7’ are in
fact equivalent, or the invariant b(¢) is well defined for g—1 sphere
fibrations which are stably equivalent to .

The theorem now follows as in [5] from the following two lemmas.
Using the notation of [5] we have for ¢ odd different from 1,3,7:

LemMA 5.2. Let & and &, be q— 1 sphere fibrations over M with classify-
ing maps v, and v, respectively, and let  be a stably trivial g—1 sphere
fibration over 8¢ with classifying map u.

If vy=v,#, then b(&,)=b(&;)+b(L), whenever b(£,) is defined and inde-
pendent of orientation.

Proor. Let % be a fibration such that %+ &, is trivial, and choose an
X-orientation of &, originating from a classifying map
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P M~ Bn<vq+1>
for v+ 1.
Consider the commutative diagram

Mu(x) - MuySe-, B,(vgi) U (»

I l
+ +

M z Bn<vq+l> ’

where ¢ is the inclusion and j the collapsing map. Taking Thom com-
plexes on the appropriate fibrations, we get the dual homotopy commu-
tative diagram for £ large:

X oy v 820k WYL T +E) v T(g+k) -5 T((&+k) v (g+k))
] A 1 c1

D. G = T (& +k).

Here A4 is the map which splits the top cell into two, and ¢ is the inclusion
of S22+ in
T(q+k) = Sa+ky Su+k

The natural map M uUS? - Mv8? induces the map 7, of Thom complexes

ry: T +k) v T(g+k) - T((&+k) v (g+Fk)

which identifies the bottom cells. The pinching map ¢: M - Mv 8¢
induces

T(&+k) - T((E+k) v (g+k) .
Analogously there are induced maps

T(E+E) v T(E+ k) > T((E+E) v C+E)) ,
e: T(Ea+k) ~ T((E,+0) v (E+E)) .

The fact that  is stably trivial, shows that there is an equivalence «
between &, + & and &,+k, such that there are the commutative diagrams

T(&T k)~ T(E+F) v (g+F))
T(®

T(E,+k) —— T((E+k) v C+h),
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T(E,+Kk) v T(q+k) - T(E +k) v T(C+k)
l'rl [ r
'
T((&,+k) v (q+K) > T((5,+k) v (C+E)).

Clearly g,' =T(x)og; defines an X-orientation for &, in such a way that
we have the commutative diagram

X oq i VO — > T(& + k) v T(C + F)
Lo i I
X gy 7> T(Ea+k) — T((E+h) v (C+5)).
The lemma now follows by an easy calculation as in [5, § 3].
Lemma 5.3. Let f: M — M’ be an orientation preserving homotopy equiv-

alence of oriented g-manifolds with tangent sphere bundles v and T’ re-
spectively. If b(z) s well defined, we have

b(r) = b(7').
Proor. Let A € H(M x M) denote the element defined in the proof of
[5, Proposition 3.4]. Also let
j: Mx M, —~T(7)

denote the map collapsing everything outside a tubular neighbourhood.
Finally consider the twisting map

t: MxM->MxM.

We know that j*U=A4 +¢*4. The normal bundle » xv of M x M clearly
satisfies vg.,(v x ) =0. Accordingly we can find a map

@: M xM — B,(v,41)
classifying » x ». Obviously
pod: M - Mx M - B,(v,41)

classifies v+ v over M. Hence we conclude from Corollary 3.2 that the
corresponding X-orientation for 7 is the composite X%j o g, , where

Ot X gqp > Z¥M x M)

is an X-orientation for M x M in the sense of Browder [4, § 1]. Hence
b(7) is the functionalized Sq?+! on the map Z*¥hog,, where

h: MxM - K(Z,,q)
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represents A +t*4. Clearly
ZHfxf) o g X g~ M'x M’
is an X-orientation for M’'x M'. If
B M xM — K(Z,,q)
represents the analogous element
A" +t*A' € H(M' x M),
we obviously have
(fxf)*¥(A +t*4") = A+t*4,

and thus
B o(fxf)=h: MxM —~ K(Z,,q) .

Hence b(1’) is also the functionalized S¢?+! on the map
2% o ZK(fxf)og, = Z*ho g, .
This ends the proof of Lemma 5.3 and hence of Theorem 5.1.
Analogously using BSO(n) instead of BSH(n) we have the following

theorem.

THEOREM 5.4. Let f: M — M’ be a homotopy equivalence of oriented
g-manifolds with tangent q-plane bundles T and ' respectively. If f*v' and
T are stably isomorphic (as SO-bundles) then they are automatically iso-
morphic (as SO(q)-bundles).

As a consequence of Theorem 5.1 we have according to Sutherland
[14, Corollary 3.4]:

CoROLLARY 5.5. Let M and M' be oriented q-manifolds which are
oriented homotopy equivalent and suppose k< i(q—1). Then M admits a
k-field iff M’ does.

6. Connection with the semi-characteristic.

In this section we will show that under certain circumstances b(r)=
x*(M), the semi-characteristic of M. This is defined by the formula

gD
M) = 3 dimHY(M,Z,) mod2 .
=0

First we use B, = BO(n) for defining an X-orientation

Gt X _gg > Z¥M x M)
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for M an arbitrary ¢-dimensional manifold. We assume ¢ odd. Let y
denote the operation introduced by Browder [4, § 1],

y: Ker(g,*)t* - Z, .
Using the notation of Lemma 5.3 we have

by(1) = p(A+t*4) .

Lemma 6.1. If [M]=0 tn the non-oriented bordism ring, then
2k4 e Ker(g,*)tk .
Proor. Arguing as in the proof of Lemma 4.2 and using Lemma 3.6,
we have to show that ¢, (An[M x M])=0, where ¢: M x M — B, is the

classifying map for » x», and [M x M] is the orientation class of M x M.
This is equivalent to show that

Avw,(vxv)U ... Vw;(yxv) =0

for all ¢,,...,¢, satisfying ¢, + ... +4,=¢. Here of course w; denotes the
ith Stiefel-Whitney class. Now

d
4 =3 0;®p;
i=1
where {x;,...,04,01,...,P4} is a basis for H*(M) satisfying
a; U By = Oy0y

for degx;+degf;=g. Here o, denotes the top class of H*(M).

SuBLEMMA 6.2. Let x,y € H*(M) satisfy degx+degy=gq. Then
1) (#Qy)ud+0 < xUy+0 for degz>degy,
2) (x®y)UA =0 for degx <degy.

SUBPROOF. 1) Assume degz>degy. Write x and y as a sum of g,’s
and «;’s respectively. Then
(xQy)ud +0

iff, for an odd number of times, # contains §; and y contains «;, iff
zUy=+0.
2) is trivial.

Lemma 6.1 follows from the sublemma and the fact that

wrxv) = 3 wm)@w, ).
j=o
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We now use Theorem 1.4 in Browder [4] and the fact that
Aut*d = y*(M)oyr.ar
where o, is the top class of M x M, to conclude that
by(7) = p(A) + p(E*4) + (M) .

THEOREM 6.3. If [M]=0 in the non-oriented bordism ring, then there is
an X -orientation g for , such that

by(7) = x*(M) .

Proor. We want to show that for some X-orientation for M x M it
happens that ¢(4)=y(t*4).
Analogously to the construction of B, (v ;) let

Bn, = Bn<v(q+1)/2’ s ’vq+1>
denote the total space of the fibration
a': B, B,

which kills the Wu classes v 1y9,---,%41- Put p,/=(a')*y,, Y, =
T(y,'), and denote the corresponding dual cospectrum by X’'={X,'}.
Clearly the Whitney sum map

B,xB, - B,
lifts to a map
Bnl X Bn’ g B2n<vq+l> .

Hence the corresponding map of Thom complexes gives rise to a dual
map of degree one:
byt X gqo > X g A X oy

Clearly the normal bundle » of M? has a classifying map ¢: M - B,’.
The map induced on Thom complexes defines a map

Jir Xl ZHM ).

Hence the composite map (f, Af;)ok, defines an X-orientation for
M x M. We can thus use
X oaX

for computing the functionalized Sq?+!, just we know that X*4 (and
2%(t*A)) goes to zero under f Af,. In that case p(4)=y(t*4), because

the twisting map of X’ _,aX' _, into itself has degree one.
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Arguing as in the proof of Lemma 6.1 and Lemma 4.2, we need to
require that

AU ((wy,() U ... Uwy(»)@(wysa () U ... Uw, (#))) = 0

whenever ¢, + ... +1,=¢q. According to the Sublemma 6.2, this is the
case precisely when all Stiefel-Whitney numbers are 0. This ends the
proof of Theorem 6.3.
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