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DUALITY OVER GORENSTEIN RINGS

ROBERT FOSSUM

The principal purpose of this note is to state and prove a result for
Gorenstein rings which Roos [10] has shown for regular rings. For a
commutative noetherian ring 4, and an 4-module M of finite type,
with Ext (M,A)=0 for 0<i<n, there is a natural homomorphism
M — Ext *(Ext"(M,A4),A) which is a generalization of the natural
homomorphism M — Hom ,(Hom ,(M,A4),A). In this first section the
existence of this homomorphism is established using a spectral sequence
of the type considered by Roos [10]. The main result, Roos’ theorem
for Gorenstein rings, appears in Section 2 along with a relation to a result
of Auslander, the spherical filtration theorem (Proposition 8, page 39 of
[11]). There is also a generalization of another result of Auslander and
Buchsbaum [3] which appears as Proposition 10.

These results perhaps follow from results in Hartshorne’s book [8],
but I am not competent to elaborate on this point.

Throughout this note, 4 denotes a commutative noetherian ring with
unit. All 4-modules are to be of finite type. Ann, M denotes the anni-
hilator of the A-module M. An element fe A is reqular on M provided
fx=0, x € M, implies x=0. An ordered set of elements of 4, f,,...,f, is
a regular M-sequence of length n provided f, is regular on M and f; is
regular on M/(f{M + ...+f;_yM) for 1<i<n.

ProrositioN 1. ([9, Proposition 3.3]). If I is an ideal in A and M is
an A-module, the following are equivalent:
1) Ext (N,M)=0 for all A-modules N of finile type such that Supp N <=
Supp A/I and all integers i <mn.
ii) Ext(A/I,M)=0 for all i<n.
iii) There is a regular M-sequence fy,. . .,f, with each f; € I.
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COROLLARY AND DEFINITION. Let g=max{i+1:Ext (4/I,M)=0
for 0=j=1}). Then g is the maximal length of a regular M-sequence con-
tained in I. This integer is called the I-depth of M (depth;M). If A isa
local ring with maximal ideal m, then depth M =depth, M.

Propositiox 2 ([11, Chap. 0, Proposition 2]). Let fe A be regular on
both A and M. Then, on the category of A[fA-modules, there are isomor-
phisms of functors

Tor4/i4, (M|fM, ) - Tor4, (M, ),

ExtA/fA”(M/fM, ) - Ext (M,-),

Ext 0™ (-, M|fM) - Ext m+1(-, M)
Sfor all n.

Another integer, related to the depth, is defined by grade, M =
min {i: Ext (M, 4)+0}. It follows that grade, M =depth,,,, 4. This
leads to a result which will be needed later.

Prorosrtiox 3. Let 0 > M — M - M" - 0 be an exact sequence of
A-modules of finite type.
a) grade M’ zgradeM.
grade M'' = grade M.
grade M =min (grade M’, grade M"’).
b) There exists a unique submodule M (i) of M with the properties:
i) grade M (z) =1,
ii) If M,<M with grade M, =¢, then M;<M(q).

Since this result does not seem to be available, a proof is provided.
Proposition 7, Chapt. 0 of [11] states that

grade M/ = min {depth4,: p € Supp M} .

Since Supp M = Supp M'uSupp M"’ part a) follows. Since M is of finite
type, there is a submodule M (z) of M maximal with respect to the prop-
erty that gradeM(¢)=¢. If M,<M and gradeM,=¢, then

grade(M,+M(i)) = ¢
by part a). Hence M, + M(:)=2M(z), and part b) follows.
Let %, denote the class of A-modules M of finite type with
grade M =1. Proposition 3 shows that each A-module of finite type
admits a filtration M = M(0)> M(1)>... such that M(¢) is the unique

maximal submodule of M in %, and it then follows that grade M =1
if and only if M =M (i) and M+ M(i+1).
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Let .4} denote the class of those 4-modules M of finite type such that
M, =0 for all prime ideals p of A with htp <. (See [7] for other proper-
ties of 4}.) It is clear that each A-module M admits a unique maximal
submodule M[:] € A; and that A; <A},

ProposITION 4. a) G, A for all i.
b) G,=AN; for 0<i<n if and only if depthA,zinf(n,htp) for all
prime ideals p of A.

Remark. This last condition is condition S, of Serre for the ring A.
See [12] as a reference.

Proor or Proposiriox 4. Since grade M =inf g, » depth 4, it fol-
lows that M e %, and p e SuppM implies htp =depthA4,2:. Hence
MeN,.

b) Suppose ;= A, for 0=i<n. Let p be a prime ideal of 4. Then by
hypothesis 4/p € A49 S Dintn,nep- Hence

inf(n, htp) < gradeAd/p < inf,,, depth4, .

In particular, depthA,=inf(n, htp). On the other hand, if this last
condition is satisfied for each prime ideal in 4 and M e A4}, then

grade M = inf q, .y depthd, = inf inf(n,htp) z inf(n,j).

Hence M € 9,4, j)-
This completes the proof.

It is possible to give a characterization of ¥, in terms similar to the
above for A4;. In fact let

Y,={peSpecd: Alpe¥,;.

Then %, is the class of A-modules of finite type M such that
SuppM < Y,. Let ¥, denote the class of all A-modules N such that
SuppN < ¥,. Let E(M) be the injective envelope of M. Then

E(M) = I_IpeAsleuo(p’M)E(A/p) .

Now SuppE(4[p)=V(p)={qeSpecd: q2p}. Hence Mec ¥, if and
only if E(M)e ¥',.

ProrosritioN 5. Let M be an A-module of finite type. Let
E(M) = HpeAsleuo(p’M)E(A/p) ’
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and let
E(IL)(M) = I_IpeAssMnYinuo(p’M)E(A/p) .

Then E(i)(M)=E(M()) and E(M)|EG)(M)=E(M|M ().

Proor. E(i)(M) is the maximal submodule of E(M) in ¥’,. It is then
standard that E(:)(M)=E(M(:)). From the commutative diagram

0 0

|
¢

|
+

0~ M@E -~ M - M[M®) -0
!

v e

0 — E(M(i)) > E(M) -~ E(M)|E@)(M) > 0

it is seen that Kerg is isomorphic to a submodule of Cokery. As
Cokery € 4'; and as (M/M(3))(i) =0, it follows that Kerp=0, and hence
that E(M)[E@)(M)=E(M|M(i)).

The next proposition is a partial generalization of a result due to
Auslander (cf. Proposition 1, Chap. 3 of [11]).

Prorosition 6. Let M be an A-module with grade M >n. Then there
is an A-module D and exact sequences of functors

0 - Ext (D, ) - Tor4, (M, ) -~ Ext *(Ext *(}M,4), ) - ...
. > Ext J(D,-) > Tor4,,;, ;(M,-) - Ext -1 (Ext,(M,A),)~ ...
. > Ext »(D,+) > MQ,+ - Ext"(Ext "(M,4),) >

- Ext*+3(D,-) >0,

0 < Tor4 (D, -) < Ext »(M, ) < Tor4 (Ext " (M,A4),-) « ...
. < Tor4,(D, ) < Ext"+*1~1(M, ) < Tor4;_,(Ext »(M,A4),*) < ...
.. < Tor4,,,(D,-) < Hom (M, ) < Tor4, (Ext ,»(M,a),) <
< Tor4, ,5(D, ) < 0

and isomorphisms of functors

Ext »+(Ext (M, A), ) - Ext »++2(D, ),
Tor4, ,;(Ext m(M,A), ) < Tord, ;o(D,*) forjz1.

Proor. Consider the transformation of functors

t: M® 4Hom ,(N,L) -~ Hom ,(Hom ,(M,N),L)



DUALITY OVER GORENSTEIN RINGS 169

which is natural in all the variables. For M a projective 4-module this
is an isomorphism. For M =Hom ,(P, A) where P is a projective A-mo-
dule and N =4, this map becomes the isomorphism Hom ,(P,4)® ,L —
Hom 4 (P,L), since P -~ Hom (Hom , (P, A4),A4) is an isomorphism. Now
let M be an A-module with grade ,M 2n. Let

Poa—P,—~ ... >Py—>M-—>0

be an exact sequence with each P; a projective 4-module and let P

denote the complex of projective 4-modules

.=>0> ... >0->P, 1> ... P, >0.

Suppose N is an A4-module and a complex concentrated at 0. The two
natural isomorphisms given by ¢ above for the choices (M,N,L)=
(P,A4,N) and (Hom (P, A4),A,N) respectively induce the two Kiinneth
spectral sequences

Ext »(H?(P*),N) = H,(P®_4N)
and
TorAp(Hq(P*),N) = H"(HomA(P,N)) ,

where P*=Hom ,(P,A). Since HYP*)=0 for q=+n,n+1, the spectral
sequences degenerate to the exact sequences and isomorphisms of the
proposition, where D is taken to be D=H"*{(P*) and H™(P*)=
Ext »(M,A).

ReMARK. In the notation of [11], D= D(£2"M), so the first four terms
of the exact sequences are just those of Proposition 5.8¢ [ibid.] and
Theorem 7.5 of [1] and Theorem 2.8 of [2].

In particular, there results from these exact sequences natural trans-
formations

MR, — Ext »(Ext "(M,4),-)
and
Hom (M, -) - Tor4, (Ext " (M, A),") .

It is possible to deduce the existence of these homomorphisms from
Proposition 2 and the results quoted in the Remark above, but the long
exact sequences are given because they seem to be of some independent
interest.

Finally, recall that A4 is a Gorenstein ring if grade Ext /(M ,A4)zj for
all j and all 4-modules M of finite type.
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2.

Roos, in [10], uses a similar spectral sequence to obtain the results in
his Theorem 1. In this section is a statement and proof of his theorem
for Gorenstein rings. His condition («) is, in fact, the definition of a
Gorenstein ring. The condition (d) is false in general as an easy exampie
shows. However it is possible to prove

ProposITiON 7. Let A be a Gorenstein ring, M an A-module of finite
type. Let E [ (M)=Ext (M,A) and L4, (M)=E [(E(M)). (The A
will usually be omitted.)

a) L(L;(M))=LyM), equality being induced by the natural homomor-
phism of the second module into the first. (Condition (n7) of Roos.)

b) If gradeM =i, then M(i+1)=Xer(M — L/(M)) (part of condition
(¢) of Roos).

c) gradeEi(L,(M))zj+2 for j>i (condition (6) of Roos).

d) L(M()) = Ly(M).

e) grade Coker(M (i) - L(M))zi+2 (remainder of condition (e)).

REMarx. Chr. U. Jensen kindly pointed out to the author that the
results of Roos in [10, pages 1720-1722] concerning the derived functors,
lim®, of lim can be deduced from Proposition 7 for any quotient ring of
a Gorenstein ring. In particular, it follows that for any quotient ring B
of a Gorenstein ring, im® M =0 when each 2/, is of finite type and
¢>KrulldimB. (It has been conjectured that this holds for any noethe-
rian ring B.)

Proor or ProrosiTioN 7. Let fy,...,f; be an A-sequence in Ann E(M)
and set B=A/f where f is the ideal generated by the A-sequence. From
Proposition 2 it follows that L (M)=Homyg(E (M),B). Since B is
Gorenstein and L4,(M) is the dual of a B-module, it follows that it is
reflexive (Proposition 6.1 (6) of [5]). Hence

LA (L4,(M)) = LP(Homyp(E (M), B))
= Homy(E #(M),B) = L4,(M) .
This proves a).

To see b), note that the kernel of the map M — L, (M), which is a
module of the form E YD) from Proposition 6, has grade greater
than 4. Let N be a submodule of M with gradeN >¢. Let M""=M|N.
Then EYM)=E{M") and so L,(M)=L,(M"). From the commutative
diagram
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O>N-> M - M' -0
4 }
L(M) = L{(M")

it is seen that N is in the kernel. Hence Ei+1(D) is the maximal sub-
module of M of grade more than 7. So b) is established.

The proof of c¢) goes by induction on ¢. If ¢=0, then N=2M** is a
reflexive A-module. By Theorem 8.2 of [3] it follows that there is an
exact sequence of A-modules

0>N->P,—>Py—~L->0

with P, and P, projective. Hence EI(N)=Ei+3(L) for jz1. Hence
grade Bi(N) =)+ 2.

Suppose the statement has been established for all integers k, 0< k<
i—1. Let feAnnL/(M) be regular on 4. Let B=A|fA. Then
EJ(L4(M))=Eg*(L4,(M)) by Proposition 2. Since L,(L;(M))=
L/(M) by a), it follows that LB,  (L4,(M))=L4,(M). Hence, by the
induction hypothesis, gradepEp/-1(L,(M)) Zzj+1 for j—1>i—1. But
grade N =1+gradeyzN for a B-module N. Thus the statement is
proved.

To show d), the isomorphism is shown first for 4=1. There is the
exact sequence

0—-MQ1)-> M- M** Q0

from Proposition 6, where gradeQ =2. Let M'' =M/M(1) and consider
the resulting exact sequence

.= Bi(Q) - BI(M**) > Ei(M") - Ei+YQ) — ... .

Since grade B/(M**)>j+2 for j21 and grade E/+}(Q)=j+1, it follows
that gradeE/(M"')=j+1 by Proposition 3. Consider also the exact
sequence

0 - EYM") - B\ (M) - EY{(M(1)) > EXM") - ...,
For each j, let
K; = Ker(E/(M) -~ Ei(M(1))),
W; = Coker(Ei(M) —~ Ei(M(1))),
U; = Coker(E{(M") -~ Ei(M)) .

Then there are the corresponding short exact sequences for each j.
Since K is a homomorphic image of E/(M"’) it has grade greater than j.
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Since W, is a submodule of Ei+}(M") it has grade greater than j. Hence
L(M)=Ei(U;)=L;(M(1)).

Now let fe AnnM(1) be regular on 4. Let B=A/fA. Let N denote
the B-module M(1). Then it follows that N(j)=M(j+1). Now it may
be assumed that the statement has been established for B-modules, so
that LB, ,(N(i—1))=L5;_;(N) for j—12i—1. But then, by Proposi-
tion 2, L4, (M(i))= L4,(M(1)) and d) is established.

To see e), note that the cokernel of the homomorphism M(z) —~
L(M(3))=LyM) is of the form Ei+%(D) for some A-module D, and hence
this statement is established.

The proof of the proposition is now complete.

The chain M =M0)=2M(1)=... is related to Auslander’s spherical
filtration. A chain M =M,2M,=2...2M, is a spherical filtration of
length » provided

a) pd (M, ,/M;,)siand E J(M, ,[M;)=01for 1<j<i—1,

b) For each ¢, M, ; - M, /M, induces an isomorphism E (M, /M)

- FE (M, ;) for 1L5=1.
According to Proposition 8, Chap.2 of [11] (also found in [2]) each
module M of finite type over the Gorenstein ring 4 admits a free module
F such that F@M has a spherical filtration of length » for any fixed =.
The next two propositions relate the two chains.

Prorosition 8. Suppose A is Gorenstein and M is an A-module with
E {(M)=0 for 1<i<n. Let M' be a submodule of M satisfying the condi-
tions:

i) E {(M')=0 for 15i<n.

i) M* - M'* - 0 is exact.

iii) Ext J(M,-) - Ext (M, -) is an isomorphism for j>n.
Then the following hold :

a) pd (M/M')<n.

b) E (M|M')=0 for 1<i<n and E (M|M') — E ;M) is an isomor-

phism.

c) M(1)=M(n).

d) M(n+1)=M'(1)=M'(n+1).

Proor. M"'=M|M' satisfies conditions a) and b) by Proposition 9,
Chap. 2 of [11]. Since L4 (M)=0=L4,(M') for 1<j<n and 1241 <n, it
follows that

M@j) = Ker(M(j—1) > L4, (M)) = M(j—1) for 2<j<n.
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Hence c) is verified. Likewise M'(1)=M'(n+1).
It remains to show that M(n+1)=M'(n+1). If
R, >Ry~ M0

is exact with R, and R, projective, then, with D(J{)=Coker(Ry* — R;¥),
Propositions 6 and 7 show that the natural homomorphism £ Y(D(M))
- M induces an isomorphism E }(D(M))=M(1). Let

0=+P,— ... >Py>M"—-0
be an exact sequence with each P; projective and let
Q> Qy—>M -0

be exact with each @; projective. Then R, and R, and homomorphisms
can be found making the diagram below commutative with exact rows
and columns.

0 0 0
M } ¥
Q> QoM -0
¥ v ¥
R >Ry—-M -0
b ¥ ¥
P,—Py—>M">0
4 } v
0 0 0

When Hom ,(-,4)=* is applied to this diagram, there results, by virtue
of condition ii), the commutative diagram with exact rows and columns

0 0 0 0
¥ ¥ ¥ \

0 M"* > Py*>P*>D" -0
4 ¢ ¢ {
0-M* >R*->R*->D -0
¥ ¥ + {
0->M* - Q* >@*—>D -0
v \ ¥ {

0 0 0 0

Now E \(D")=E *(E M"))=L", (M) since the sequence
0> D" > Py*—> ... QPn*»EAn(M”)eO
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is exact and M - M" induces an isomorphism E »(M')=E ~(M).
When * is applied to the exact sequence of the D’s, there results the com-
mutative diagram with exact rows and columns

0 0 0
¢ { 4
ED") — E (D)~ E D")
¥ \ ¥
0—- M - M - M" -0
{ { ¥

0 M™% > M > Jex

Hence 0 -~ EY(D’) - EM(D) - L, (M) is exact, and so
M'(n+1) = EYD') = Ker(M(n) - L,(M)) .
Thus M'(n+1)=M(n+1) and the proof is complete.

When applied to a spherical filtration of an 4-module, this proposition
yields
ProrosiTiON 9. Suppose 4 is a Gorenstein ring, and
M=M>oM,>...o2M,
a spherical filtration of the A-module M. Then
M) = My (1) = M)
Jor all ign and all j<i+1.

Proor. For each 1 <j<n, the modules M; ;> M; with M" =M, ,/M;
satisfy the conditions of Proposition 8. Thus the result follows.

3.

In connection with these results, it is possible to give a result, which,
for A an integrally closed integral domain, is due to Auslander and
Buchsbaum ([3] and [6, p. 52]).

ProrosiTion 10. Let 4 be a Gorenstein ring, N an A-module such that
grade N =1 and N(i+1)=0. Let M be a submodule with @=N|M.

a) If M=L,/(M), then Q(:+2)=0.

b) If N=L,(N) and Q(¢+2)=0, then M =L, (M).

Proor. Since N(i+1)=0, N may be considered to be a submodule
of Ly(N). If W=LyN)/M, then @ may be considered to be a submodule
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of W. Then Q(:4+2)=QnW(i+2). So one may assume that N =L,(N)
and show that @(i+2)=0. Now apply the functor * twice to the exact
sequence relating M, N, and @ to get the commutative diagram with
exact rows and columns

0 0
{ ¥
0—>Ly(M)~>L(N)~ @ —- 0
{ |
0— EYS) - L(N) - L,(Q) - E+YS) - ...
{ {
L; (@) 0

for some 4-module §. Now Ker(Q — L;(@))=@Q(¢+1). From the serpent
lemma, Q(¢+1) is a submodule of L, (@) and hence Q(:+2)=0. This
proves a).

If, on the other hand, N = L,(N) and Q(¢ + 2) = 0, then the commutative
diagram with exact rows and columns

0 0
\ \

0- M - N —-Q -0
¥ ¥ ¥

0> L(M)—>L(N)->W-=>0
{ V
|4 0

is obtained where Ker(Q — W)=V and grade V 21+ 2 by e) of Proposi-
tion 7. Hence V< Q(:+2)=0. Thus the proof of the proposition is com-
plete.

REemark. This proposition does not imply the result of Auslander and
Buchsbaum. However it is possible to state and prove modified forms of
this result under less restrictive hypotheses: For instance one could
suppose A4, is Gorenstein for height p <», and then add some unmixed-
ness properties. As an example, Theorem (1.4) of [12] has as a corollary

Prorosrrion 10°. Let 4 be a quasi-normal ring (i.e. A, is Gorenstein
Jor prime ideals p with htp <1 and depthd,>inf(2, htp) for all prime
wdeals p of A). Let 0 > M — N — @ — 0 be an exact sequence of A-modules
with N torsion free.

a) If M is reflexive, then p € AssQ smplies htp < 1.

b) If N is reflexive and p € AssQ implies htp < 1, then M 1is reflexive.
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Proor. The proof of a) is the same as the proof of Theorem (1.4)in[12].
To see b), suppose f;,f, is a regular A-sequence. It is required to show
that this is a regular M-sequence. f, is regular on M since it is regular
on N. There results the exact sequence

0 - Kerg fy — M[fyM - N[f,N - Q[f, - 0

where Kerg f; denotes the kernel of the homomorphism on @ induced
by multiplication by f;. If fym’=0 for m’ € M/f, M, then m’ € Ker,, f,
so f, is in a prime ideal p associated to Ker, f;. But f; is also in this
prime ideal and hence htp =2, a contradiction. So f;, f, is a regular
M-sequence and then M is reflexive. Thus the proof of the proposition
is complete.
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