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FULL SETS OF STATES ON A C*-ALGEBRA

JOHAN F.AARNES

§ 1. Introduction.

This note contains a discussion of necessary and sufficient conditions
on a subset S, of the set S of states on a C*-algebra A, for its convex
hull {S,) to be w*-dense in S. In the case where 4 has an identity,
results to this effect have been known for some time [1], [2], [3]. If 4
does not have an identity, the situation is a little more complicated, and
will be dealt with on the following pages.

The set of states on a C*-algebra A4 is the family of all positive linear
functionals on 4 of norm equal to one. If 4 has an identity, S is convex
and compact in the w*-topology as a subset of A*. If 4 has no identity,
S is still convex, which may be proved by means of an approximate
identity for 4, but S is no longer compact. In this case it is therefore
often convenient to introduce the set N of all positive linear functionals
on 4 with norm £1. Then N is compact, and S is a subset of N which
is a face, i.e., if g;,0, € N and p=74p; +(1 —2A)p, €8, 0<A<1, then g, and
0, both belong to S. Let A denote the C*-algebra obtained by adjoining
an identity to 4, and let S be the set of states on A. For pe N let
ola+211)=p(a)+4, ac A, e C. The map ¢ — g is a bicontinuous, affine
isomorphism of N onto S, and we have §| 4 =p.

The author wishes to thank G. Kjergard Pedersen who suggested
several improvements in the text, and also furnished the example preced-
ing Theorem 2.

§ 2. Full sets of states.

For the case where 4 has an identity, the facts are recorded in Theorem
1 below. The essential condition, introduced by Kadison [3], is the
following: A family §, of positive linear functionals on a C*-algebra is
Sfull if, for a € A, p(a) 2 0 for all p € S implies that a = 0.

In Theorem 1, the equivalence of conditions (i), (ii) and (iii) is known,
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see [1] or [3]. That condition (iv) is equivalent to the others may also
be known, but this is not to the author’s knowledge.

THEOREM 1. Let A have an identity. The following conditions on a
subset S, of S are equivalent:

(i) Sy vs full.

(i) Sy=28,8 (the set of extreme points of S).
(i) ¢Spy=A8.
(iv) lla||=sup,s,0(a) for any a2 0, a € A.

Proor. For (i) < (ii) <= (iii) we refer to [1, 2.6.2 and 3.4.1]. If ¢ =0,
then ||a||=p(a) for some p € 9,8, so (ii) = (iv). To finish the proof, we
show that (iv) = (i). We do this through two lemmas,

LemMma 1. Let A be a C*-algebra. Suppose So< N and that S, satisfies
(iv) above. Let a € A, a*t+0, be given. Then, for any ¢> 0, there is p € S,
such that

e(a*) z [at|—e, ofa7) =

™

Proor. Let £¢>0 be given. We have a=at—a-, and |a|=
max (|la*|,lle~|]). Suppose first |ja||=|lat|, and choose g € §, such that
o(at)2|jat||—e. Then

la*ll = lla*+a-|| 2 e(a*+a7) = e(a*)+e(a) 2 [la*||—e+ela”).

Hence p(a7)se. If Jlal=[la~]l, let b=a*—(|a*|/la")a~, so [Bb]=]a*].
Then choose ¢ € S, such that

o(b%) = e(a*) 2 [la*|—(latll/lle~e 2 llat]—e.
Then, by the first result
e(0) = (la*ll/lla~e(a) = (la*ll/lal)e,
80 g(@a~)<e. The proof is complete.

LEmMA 2. Let A be a C*-algebra. If S, N and |ja||=sup,g,0(a) for
any a20 in A, then Sy s full.

Proor. First, let a € 4, and suppose p(a) =0 for all p € §,. Suppose
a~+0, and apply Lemma 1 to b= —a. We can find g € §, such that

e@”) z ¢llel,  ela*) = .
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But then g(a)=¢(at)—p(@) = tlle ||— ¢le-||l= —ille~]|<0, a contradic-
tion. Hence a¢ = 0.

Now let @ € 4 be arbitrary, with g(a)=0 for all g € §,. Then g(a*)=
o(a)=p(a)=0, so o(Ima)=0, and o(a)=p(Rea)= 0 for all g ¢ S,. Hence,
by the first part of the proof Rea =0 and both Ima =0 and —Ima=0
so Ima=0. Consequently a=Rea >0, and the proof of Lemma 2 and
Theorem 1 is complete.

§ 3. Algebras without identity.

We now assume specifically that 4 has no identity. Let P be the pure
states on 4, that is, a state p on 4 isin P if 0S¢ <9, p € N, implies
¢ = A for some A between 0 and 1.

Lemma 3. (a) P=9,8.
(b) S (P) (closure taken in N).

Proor. (a). We know that 9,N={0}uP [1, 2.5.5]. Hence each pure
state of 4 is an extreme point of 8, since P<S<N. Conversely, each
extreme point of S is also an extreme point of IV, since § is a face of N.
Since these extreme points have norm equal to one, they must belong to
P by the fact quoted above. Hence P=4,S.

(b). ({0},Py=(9,N) is dense in N by the Krein—-Milman theorem.
Hence {0}, {P)), which is compact, must be equal to N. Now § con-
sists of the elements of N with norm equal to one, hence S < (P).

LemMa 4. (Glimm [1, ex. 2.12.13]). 0 P.

Proo¥. There is no loss in generality by assuming that 4 is faithfully
represented on a Hilbert space X, and that 4 operates non-degenerately
on X. A is an ideal in 4, so if 0<x € 4, then z is not invertible in 4
since 1, the identity operator on X, does not belong to 4. Hence xz is
not invertible in #(X), so

infg_wix) = inf,_,(2§,€) =0, feX.

If {e,} is an approximate identity for 4, then {e,} converges strongly to 1.
If ||lo,]| denotes the norm of w, as a linear functional on 4, we have
lwg||=1lim, w(e,) = ||£]?, 50 w;e S when ||§|=1. This means that 0¢€ S,
since sets

U(z,e) = {oe A*: |o(x)|Se; 0sz € A, ¢>0}
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form a basis for the neighbourhoods of 0 in A*. By Lemma 3 it then
follows that 0e (P), which clearly implies that 0 e P. The proof is
complete.

ProrosiTiON 1. §=(P)=N.

Proor. Since (P)c S, the first equality follows by Lemma 3. S is
closed, convex and contains 9, N by Lemma 4, so S=N.

Lemma 5. Let S, be a full subset of N. Let a € A, 1 € R, and suppose
0=p(a)+4 for all pe 8. Then 4120.

ProoF. Assume that 1<0, and let {¢,} be an approximate identity
for 4, 0<e, |e/)|=1 for all ». Then

e(a+2e) = o(@)+2gle,) z o@)+4 = 0
for all p € 8,, so a+Ae,= 6 for all v. Hence, for any g € P,
e(@)+4 = lim, o(a) + 4g(e,) = 0.

Since 0 € P, it follows that 1=0, a contradiction. Hence A= 0 and the
proof is complete.

CoRrROLLARY. If S, is a full subset of N, then 0 S,.

Proor. If 0 & S,, then there is an element 0<a € 4 and a real number
A>0 such that inf, g 0(@)24>0. But then g(a)—Az0 for all g€,
which contradicts Lemma 5. The proof is complete.

It is fairly easy to see that if S is a full subset of IV, then {S,) need not
be dense in N. However, with the strengthened assumption that S, 8
one may ask whether (S,) will be dense in S (and then automatically
in N, by Proposition 1). The following example, due to R. V. Kadison
(oral communication), shows that this need not be so.

Let 4 be the abelian C*-algebra of all complex sequences {a,} such
that a, - 0 as n - oo, equipped with the norm |ja||=sup,|a,|, ¢={a,}.
For n#m let o,,,(a)=4(a,+a,). Clearly o,, €8, and we take Sy=
{opm:nEm}. 8y is full: Let a € 4, and suppose a~=+0. There is an
a,, <0, such that

limngn,m(a) = hmn%(an'l_a’m) = %am <0.

Hence ¢, ,,(a) <0 for some n. Now let ¢ € S be given by ¢(a)=a,, and
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let b={1/n}. Then g, ,(b)=34(1/n+1/m)<} for all n+m, so o(b) <} for
all g € {8y). But ¢(b)=1, so |p(b)—e(d)| = } for all p € {S,), which shows
that (S,) is not dense in S.

If, however, S, is a full set of pure states on an abelian C*-algebra A,
then (§,) is dense in §. Indeed, we have A =% (X)=the family of con-
tinuous, complex functions vanishing at infinity, on a locally compact
Hausdorff space X. We may identify X with P, and if S, is a full subset
of X, this means that a function fe % (X) is everywhere non-negative
if it is non-negative on §;. But then clearly S, is dense in X, and con-
sequently (S,) is dense in (P2 8.

It is interesting to note that this is not true in general. That is, even
if S, is a full subset of P, {(S,) need not be dense in S. The following
example is due to G. Kjergard Pedersen (private communication).

Let 4 be the C*-algebra of compact operators on an infinite dimensional
Hilbert space X. Take an arbitrary unit vector %, € X, and let

K ={eX: |f|=LI&n) <4}.

Now take S, to be the set of pure states w, on 4 associated with vectors
£e K. We claim that §, is full, but {S,) not dense in 8. Indeed, let p
be the one-dimensional projection determined by 7, that is, p& = (&,7,)7,,
£e X. Then, for £ e K,

wg(p) = (p&,&) = 1(&:m0)1® = T < lIpll 5

which shows that {S,) is not dense in S.

Now let x € 4, and suppose that w,(x) =z 0 for all £ K. Let ¢>0 be
arbitrary, and let x; be the restriction of z to (1—p)X. Then z,:
(1—-p)X — X has no bounded inverse y. For if such a y existed, then
1=x,y==y, making 1 compact which is impossible since X is infinite
dimensional. Hence there is a unit vector &,e (1—p)X such that
llz&,l| < e. Now take any unit vector n € X and define & = {79+ x§, with «,
|¢| £1, chosen so as to make ||&||=1. Clearly £ € K, so by assumption

0 = (@€,8) = Ham,m)+2|xéll = F(an.m) + 2¢.

Hence (2n,1) = — 8¢ which, by the arbitrariness of ¢ and #, implies that
2 0. So 8, is full and we have our example.

We now give the characterization of dense subsets of §, similar to
Theorem 1.

THEOREM 2. Let A be a C*-algebra without identity, and let S, be a sub-
set of N. The following statements are equivalent:

Math. Scand. 26 — 10
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(i) S,=2P.
(iii)’ (Sey28 (or {Spy=N).
(iv)" llal|=sup,.g,0(a@) forany az0, ac A.

Each of these conditions implies

(i) Sy s full.

Proor. (iii)’ = (ii)" by Proposition 1 and the partial converse of the
Krein-Milman theorem. (ii)" = (iv)’ as in the proof of Theorem 1.
(iv)" = (i)’ is covered by Lemma 2, so we are left to prove (iv)’ =- (iii)".
Clearly (iii)’ is equivalent to (iii) of Theorem 1 for 4 by the map N — §,
and it is therefore, by Theorem 1, sufficient to show that S, is full as a
subset of §. Now S, is full as a subset of N, so by Lemma 5 it suffices
to show that if a € 4, 120, and g(a)+ A2 0 for all p € S, then a + A1 = 0.
If a2 0 there is nothing to prove, so we may assume that a—=0. Then,
by Lemma 1, for any ¢>0 there is a g e, such that g(a*)<e and
o(a)z |a-| —e. Now

0 = g(@)+7 = ola*)—p(a7)+1,
S0
la-]|—e < olat)+A < e+4,
S0
lla=]| £ A+ 2e.
Hence |la~|| £ since ¢>0 was arbitrary, which implies that a+1120.
The proof is complete.

We will give another result in the same direction. A C*-subalgebra B
of a C*-algebra A is called facial (order-related, see [4]) if B+ is an order-
ideal of A+. For y € A, let A[y] denote the smallest facial C*-subalgebra
of 4 containing y.

THEOREM 3. Let Sy N. Then {S8,) is dense in N if and only if for
each 0<x € A and each &> 0 there is p € S, such that

lel A=)l > 1-e.

Proor. To prove the “if”” part it is, by Theorem 2 (iv)’, enough to
show that sup,.g,e(x)=1 for an arbitrary x e 4+, |z|=1. So let ¢>0
together with such an x be given. Let f be the real continuous function
on [0,1] given by

f)

0 for 0£A51~-¢,
=elA-1)+1 for 1—e<Aisl.
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Put y=f(x). By assumption there is a p € S, such that |jo| A[y]]|>1—e.
Let u, be the measure o assigns to o(x)<[0,1]. Let E=o(x)n(l—¢,1].
Then clearly u,(E)=Ilim,o(y").

On the other hand, y is strictly positive in A[y] in the sense of [5].
Indeed, if v is a state on A[y] and y(y)=0, then y=0 on the set
{ze Aly] : 3r e R+, 0<z=<ry}. This set is dense in A[y]*+ by [4, Lemma
1.1], hence y =0 on A[y], a contradiction. But then {y'/*} is an approxi-
mate identity for A[y] by [5, Theorem 1]. Hence

lle [A[y]ll = lim,o(y*™),
s0 u,(B)>1—e. It follows that

olz) = f 2dp,(2) = f 2du) 2 (1—e)puy(B) > (1—e)?
E

e(@)

Since &> 0 was arbitrary, we get sup,. g o(x)=1. The proof of the con-
verse is straight forward and is left to the reader.

In conclusion we wish to remark that the property of a set S, to be
dense in the set of states S has an obvious probabilistic interpretation.
Let a be a self-adjoint element of a C*-algebra 4 with identity, and let
o(a) be the spectrum of a. Each g € S induces a probability measure s,
on o(a) by

@) = [FDdua), 2e0),
ola)
where f - f(a) is the Gelfand-transformation of %(o(a)) onto the C*-
subalgebra A(a) generated by a and 1. Let i, be an element of o(a),
and let ¢ > 0 be arbitrary. We claim that if S is dense in 8, then for each
0> 0 there is a g, € §, such that

toy (o=, dg+6]) > 1-6.

Indeed, let f: o(a) — [0,1] be a continuous function such that f(1,)=1,
and f=0 outside the interval [1,—¢,4,+¢]. Then |[f(a)||=1 so there is a
00 € S, such that gq(f(z))>1—6. Hence

Ao+e
1-6 < f F0) dug(2) = f FO) g (B) < pgg (Lo~ Ao +e) -
a(a) Zo—e
In the context of quantum mechanics, this may be formulated as
follows. If S, is a dense family of states, then it is sufficiently rich in
the following sense: If a is an observable, 4y a point in the spectrum of a
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and E an arbitrary open interval in o(a) containing 4,, then there is a
state g, € S, such that the probability for a measurement of a in the state
©o to fall in £ can be made arbitrarily close to one.
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