MATH. SCAND. 26 (1970), 132—140

ON THE IMPOSSIBILITY OF REPRESENTING
CERTAIN FUNCTIONS BY CONVOLUTIONS

LEONARD Y.H.YAP

1. Introduction.

Let @ be an arbitrary locally compact group and let p, ¢, » be real
numbers satisfying 1<p<oo, 1<g<oo, 1/r=1/p+1/g—1>0. Then the
inclusion

i) L,(@)*(L(@) n LX(@)) € L(G)

holds and is known as Young’s inequality, see [2, (20.14) and (20.18)].
Recently E. Hewitt [1] has proved that in the case p=1 (hence q=r),
(i) can be improved to read

(i) Ly(G)«L(G) = L,(G) .

This raises the question as whether or not equality also holds in (i) for
p>1, ¢>1. The purpose of this paper is to answer this question nega-
tively. More precisely, we prove the following Theorem (1.1), which is
the main result of this paper.

(1.1) TueorREM. Let G be an infinite locally compact group and let
P, q, r be as in Young’s inequality with p>1, ¢>1. Then the subspace
spanned by L,(@) * (L (G)NL*()) is a dense subspace of the first category
in L(G), and the functions in L.(G) which cannot be factored in
L,(G) % (L(G)nL*(G)) comprise a dense subset of the second category in
L (G).

Our proof of this theorem is elementary and, unlike many proofs of
results of this nature, we actually construct a function in L,(G) which
can not be written as a convolution product of the desired type. We use
the theory of L(p,q) spaces, and it is suggested by O‘Neil’s interesting
paper [5]. A reader of [5] and the present note will be aware of our debt
to Professor O‘Neil.
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The material presented in this paper is drawn from a section of the
author’s doctoral thesis written at the University of Washington, Seattle.
The author wishes to express his gratitude to Professor Edwin Hewitt
for kind advice and encouragement.

All terms and notation not explained in this note are as in Hewitt
and Ross [2].

2. L(p,q) spaces and proof of the main result.

For the convenience of the reader, we first reproduce a number of
definitions and record some known facts about rearrangements of func-
tions and L(p,q) spaces [see (2.1) below], which will be needed in the
sequel.

(2.1) DEFINITIONS. Let f be a complex-valued measurable function
defined on a measure space (X,u). For y= 0, we define

m(fy) = plpe X |f@)|>y}.
Note that m(f,+) is a non-increasing, right-continuous function. For
x 20, we define

f*x) =inf {y: y>0 and m(f,y)<x} = sup {y: y>0 and m(f,y)>x},

with the conventions inf = cc and sup@=0. We note that f* is a non-
increasing, right-continuous function and it is called the non-increasing
rearrangement of f onto the non-negative real numbers. For x> 0, we define

fro@) = 2= [ ey
0
It is known that if f,g are measurable functions, then

(i) (f+g)** = f** +g**.

(An elementary, detailed proof of this fact is given in [6].) For a meas-
urable function f defined on a measure space (X,u), we define

fllp,0 = {f:o [21/P ¥ (x)]2 x‘ldx}llq

for 1<p<oo, 1 Sq<oco. Wesay that f e L(p,q)=L(p,¢)(X)=L(p,g)( X, u)
if ”f”(p,q)< 0.

It is well known that L(p,p)=L, and |f|, £Ifllpn=2'Ifl,, where
1/p+1/p’=1 (see for example [5] for proofs of these facts). A theorem
of Hardy (see [8, p. 20]) tells us that
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(i) floo < ' {[ s etdaf™ < 5/l -

It is also easy to show (use inequality (i) above) that L(p,q) is a Banach
space with norm |||, -

We now state a theorem about L(p,q) spaces which includes Young’s
inequality as a special case. Even though a much stronger result is known
[7], we give here a completely elementary proof for the case we need in
this note. This theorem is stated in O‘Neil [5] for unimodular groups
and the last part of our proof is borrowed from the same paper. We have
benefited from conversations with Professor O‘Neil regarding this proof.

We find it convenient to use the term S-function to mean a function
of the form 37 ,x,&p,, where «;>0, 0<A(E,;) < o0, and &, is the charac-
teristic function of A.

(2.2) THEOREM. Let G be an arbitrary locally compact group with left
Haar measure A and let py, Py, qq, 42 be real numbers such that 1 < p;< oo,
15¢;<, 1=1,2, and

1p;+1/py > 1,
and suppose
feLp,0:)(G.4), g€ L(Pyga)(G,4) 0 (L(Py: 1) (G A)*
Then h=fxg e L(r,s)(G,A), where r is given by
lr = 1/p,+1/p,—1
and 821 18 any number such that
Ygi+1/gz 2 1fs .

Proor. (The inclusion of this proof was suggested by the referee.)
First note that we may assume without loss of generality that
fz0, 920, and g=g* (otherwise we simply replace g by g+g*
throughout, and note that if f*(g+g%*) is in L(r,s), so is f+g). For easy
reference we divide the rest of the proof into three steps:

(I) If (fy);, is a non-decreasing sequence of non-negative measurable
functions defined on @ such that f,(x) 1 f(z) for each x € G, then we have
@) m(fr,y) ~ m(f,y) for every y=0; (i) fi*(x) - f*(x) for every 2= 0;
(iii) fo**(x) — f**(x) for every > 0. (We omit the simple proofs of these
assertions.)

(IT) We claim that for ¢> 0, we have
*) W) s [ ) g+ w) du.
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We prove this assertion in three stages:

(a) If f,g are S-functions with f=«ég, g=££,. We may suppose that
a=1=p. We verify the inequality (*) when A(E)<A(F) by considering
two posibilities: If ¢ > A(F), then we have,

f :° % () g% () du, = j P u A E) u AF) du = tAB)A(F) .
12
But
7
Lh¥**(t) = foh*(u) du < |kl = [Iflh]lglh = A(E) A(F) ,

and therefore (*) follows in this case. If ¢t <A(F), then

[T mgrman z [T rrug du = 1(8).
But
() B*0) < Bl S If gl = AE),

and (*) follows in this case. (Note that the assumption g=g* is used to
obtain inequalities similar to (#) for the case A(E)>A(F). See [2,
(20.14.iv))].)

(b) If f,g are S-functions with g=pg&,. We write f=37 &g,
f(x)= ;. Then we have

f=200 e F* =2 = 2R

and so
PF*(t) = Zf-q (frxg)** (@) < z;:=1ft Fi**(w) g**(u) du
- f:"f**(u) g**(u) du.

(¢) If f,g are arbitrary S-functions. In this case we do the same thing
as in (b) to g and then apply (b) to obtain (*). Finally (c¢) and (I) yield
(IT) easily.

(IIT) We have (following O’Neil [5])
Al = [ Tatr be¥(a))e ot do
(by step (IT))
< [T [z [Crowesoa] e

(by changing variables: z=y-1, t=u"1)
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= f : [y"” " f':f () g (w) w2 du] yidy

(Ur+1)r" = 1, glu) = f*(u ) g**(u)u-?)
= [T [om [lowan] yray

(Fo) = [*ptau)

= f o WE@)ryert dy

(by Hardy’s theorem [8, p. 20])

I

8 = 1/7! 89/~1
rfo [y p(y)fy~ dy

I

re J :o "y gy y*1yt dy

(y =«

rsf [x1+1/1:f**(x) g**(x)]s -1 dx .

0

There exist positive numbers m, and m, such that
lmy+1/my =1 and 1/my < sfqy, 1/my < s/gs .

Now apply Hoélder’s inequality with the complementary indices m,,m,
to the last integral above to obtain

”k”fr, o < s f:o z~lm [xllplf**(x)]sx_—llmz [x”ng**(x)]s dz

IA

rs {f:o [aHPLf ok () [ g1 (Jlac}llm1 {f:o [x/P2g* (z) |21 dac}llm2

rs“f”(‘;zl,sml) llgll(;g,smz) < o0,

the last inequality follows from a well-known theorem of A. P. Calderén
(which states that L(p,q)< L(p,q+1) if =0, see O‘Neil [5, p. 137] for
an easy proof) and ¢; <sm,, gy < sm,.

A special case of the preceding theorem is the following corollary,
which we single out for easy reference.

(2.3) CoroLLARY. Let G and A be as in (2.2) and let p, q, r be as in
Young’s inequality, with p>1, ¢>1, then
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L,(@)*(Ly(G) n LXG)) € L(r,1)(G) .

We need the following factorization theorem of Hewitt [1] for later
reference. We reproduce only what we need, the original theorem being
considerably more refined.

(2.4) TerorEM (E. Hewitt). Let A be a complex Banach algebra with
norm ||+ ||, and let L be a complex Banach space with norm |||-|||. Swppose
that there is a mapping of A x L into L, and we write the image of (u,x)
as px for all ue A, x € L. We further suppose that this mapping has the
Jfollowing properties:

(i) (u+9) 2= () +(-2) =z +v-a;
pr@+y)=(pa)+(uy)=pr+py;

(if) (fp)-x=t(u-x)=pu-(tx) for any complex number t;

(i) (w)-x=p-(v-x);

1v) |l zlll S cllull |l|z)l], where ¢ is a real constant =1;

(v) for every finite set {u,,...,u,}S A, x€ L, and every positive real
number a, we can choose a single element ve A such that ||| <d
(d is a positive constant) and |vu;—pill<a, j=1,2,...,m, and
-2 —z <a.

Then A-L=0L.

Next we obtain two consequences of Hewitt’s factorization theorem.
The straight-forward proof of the first one is omitted.

(2.5) CoroLLARY. Let A,L,- be as in (2.4) and suppose that A, is a
dense subset of A containing 0, and L, ts a dense subset of L containing 0.
Then A, Ly is dense tn L.

(2.6) CoroLLARY. Let @,p,q,r be as in Young’s inequality, then
L,(G)*(L(G)NLX@)) is dense in L,(G).

Proor. The preceding Corollary tells us that Cyy(Q)*Cyo(GF) is dense
in L,(G), where Cy,(G) denotes the set of all continuous functions on G
with compact supports.

(2.7) TarorEM. Let G be an infinite locally compact group with left
Haar measure A, and let p,q,,q, be real numbers such that 1 <p<oo and
1=5¢q,<qy< 0. Then L(p,q,)(G, 1) is properly contained in L(p,q:)(G,4).

Proor. That L(p,q,)< L(p,q,) is the well-known theorem of A.P.
Calderén already used in the proof of Theorem (2.2). See O‘Neil [5] for
a simple proof that if f e L(p,q;), then
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) 1fllpap £ (@)% |fll g, -

Now we proceed to show that there exists a function F e L(p,q,),
but F ¢ L(p,q,). First we record three simple facts for later use.

(a) Since 1=¢,<g,<oo, there exists >0 such that ¢;f<1 and
g:8>1. Take f=1/q, + (1 —q,/¢,)/2¢,, for example.

(b) If we define p(x)=2/? (logx)~#, then g is a strictly increasing func-
tion on (ePA, c0).

(€) Zipgni(n+1) =g,

Now we construct the desired function ¥ by considering two cases:

Cask 1. Suppose that G is non-discrete. Let n, be a positive integer
such that 1/ny,<A(@) and n,>ePf, where § is as in (a) above. Next we
choose a sequence (V,);"_,, of pairwise disjoint A-measurable subsets of ¢
such that

AMV,) = ntn+ 1)L, n=ngne+1,....
Define
F = E;.:;no angV,, »
where
a, = nt?P(logn)=8, n=ngny+1,....

We assert that F e L(p,q,), but F ¢ L(p,q;). Note that we have
a,<a,.,,and for y =0,

m(F,y) = 1fn, if 0sy<a,,,
= 1(n+1) i a,Sy<ay,.
Thus
F*z) =a, if 1/n+1) =2 < 1/n.
Hence

f:o x2/P=1[F*(x)]|%2dx = f:/""xqzlp—l [F*(x)]% dx

(o)

1/n
= > a,® f 2%2/P=1 Jq
1/n+1)

g 00 nq2/ r4 qs

= , 0 <1,
@2 1Sy (logn)f2 p(n+ ¢, )2/P+1 <Cn

< 3%, (logn)#eat < oo,
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Therefore F € L(p,q,), by virtue of the inequality (ii) of (2.1). A similar
computation shows that F ¢ L(p,q,).

Case II. Suppose that @ is a discrete group. Since G is infinite, we
can choose a sequence (z,),._, of distinct points in G. Define
F(z) = if =2, n=2,3,...,

a‘n
0 otherwise ,

where
a, = n-P(logn)-f, n=2.3,....

We note that a,>a,.,,

m(F,y) = 0 if a5y,
= i @y aSy<pi,
= oo if y=0,
and
F*¥x) =a,,, if n<x<n+l.

Calculations like those for Case I show that F € L(p,q,), but F & L(p,q,).
Thus Theorem (2.7) is proved.

Proor or TrEOREM (1.1). Corollary (2.3) and Theorem (2.7) tell us
that L,(@)*(L(@)nLX(@)) is a proper subset of L,(G), while (2.6) tells
us it is dense in L, (G). The rest of the statements in the Theorem (1.1)
follows from Calderén’s theorem, the inequality (i) in the proof (2.7),
and the following version of the open mapping theorem: Let 7' be a
continuous linear map of a complete pseudometrizable linear topological
space K into a (Hausdorff) linear topological space F. If the range of 7'
is of the second category in ¥, then 7T maps E onto F (see [3, (11.4)]).

The main theorem has two interesting corollaries.

(2.8) CoroLLARY. Let G be an infinite compact group and let r be any
real number such that 1 <r< oo, Then L, (G)*L(G) is a dense subset of the
Jirst category in L (G).

Proo¥. Define p=g=2r/(1+7)>1. Then we have 1/p+1/g=1+1/r,
p<r, and L,(G)cL,(G). Hence L,G)L,(G)cL,(G)*L,(GF) which is
properly contained in L (G).

(2.9) CoroLLARY. Let G and r be as in (2.9). Then L,(G) is a Banach
algebra without any bounded (in L,-norm) approximate unit.
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Proor. If L, (@) had a bounded approximate unit, then Hewitt’s
factorization theorem (2.4) would be applicable and one would have
L,(G)* L (G)=L, (@), which is impossible by Corollary (2.8).

3. Remarks and open problems.

(a) Corollary (2.8) is of course well-known for the case r=2. In fact,
if G is Abelian, then L,(G)*Ly(G) is just the space of functions on G
with absolutely convergent Fourier series. In the general (non-Abelian)
case, M. G. Krein [4] has shown that L,(G)=*Ly(@) is the space of all
complex linear combinations of continuous positive-definite functions
on G. It will be interesting to have an exact description of the set
L (@)+L,(Q) for r+2.

(b) When is L,(G)*(L,(G)nL*(G)) a linear space?

Added in proof.

Dr. G. I. Gaudry has informed me that he has obtained a stronger
version of theorem (1.1) when @ is the n-dimensional Euclidean space.
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