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EXTENSIONS OF DEDEKIND’S »-FUNCTION

D. SURYANARAYANA

1. Introduction.

In 1877 R. Dedekind [4, p. 288] (cf. also [5, p. 123]) established the
arithmetical form of y(n)=34_,d9'p(g), where g=(d,8) and ¢(n) is
the Euler totient function. He proved that

(1‘1) W(n) =n Hp]n(1+p—l) )

the product being extended over all prime divisors p of n. It is clear
that p(n)=134-,14%d)d, where u(n) is the Mobius function. Recently,
E. Cohen [3] proved an interesting result, viz.,

(1'2) ZneLV)(n)_l = 712/6 P}

where L is the set of integers whose prime factors are all multiple (see
Remark 2.2 below).

In this paper we define three arithmetical functions y,(n), ¥,(n) and
Yao(n) as generalizations of y(n) and establish their arithmetical forms,
arithmetical identities, orders and average orders. Further, we prove
two results of type (1.2).

2. Notation and preliminaries.

Let k& be a fixed positive integer. Let ¢,(n) and @D,(n) be Cohen’s
(cf. [1], also cf. [2]) and Klee’s totient functions [7], respectively. They
have the following arithmetical forms:

(2.1) Pi(n) = 0F [Ty (1—-p7%),

(2.2) Pi(n) = n [Ty (1—p7*) .

We need the following property of ¢,(n) (cf. [1, Theorem 1]):
(2.3) ZanPild) = n.

Let 6(n) denote the number of square-free divisors of n. It is clear
that 0(n)=2“", where w(n) is the number of distinct prime factors of
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n>1, and w(1l)=0. We define the functions y,(n), ¥,(n) and py,(n) as
follows:

(2.4) yr(n) = Za-nd*97*@i(9), where g = (d,9),
(2.5) Pi(n) = Zgsanr(d) Pr(6)

where

(2.6) £,(n) = 0(n) or 0 according as n is or is not

the kth power of an integer .

Clearly, &,(n)=6(n). Further

. ) k—1 a;—1 k-1
(2.7) ve(n) = I1 jv(p™) + PP+ L+ ( )
i-1 1 o
and ygy(1)=1, where
(2.8) n = pp,2...p," is the canonical representation of n ,

and

(}) - e

. =

Clearly, (‘;) =01if 0<s<t, and

(2.9) (j>+(til) = (iii)

Remark 2.1. It is clear that y,(n)=vyq(n)=w(r). The fact that
Y, (n)=y(n) is noted in Remark 3.1 below.

The following notation and terminology is needed in our present
discussion: A positive integer n is said to be k-free if n is not divisible
by the kth power of any integer >1. Clearly, 1 is k-free and if » is of the
form (2.8), then n is k-free if «; <k for each ¢. On the other hand, = is
said to be k-full if x, >k for each 4. 1 is also considered to be k-full. Let
@, and L, be the sets of k-free and k-full integers respectively.

REMARK 2.2. The set L of (1.2) is the set L, of 2-full integers.

We note that any positive integer n can be uniquely written as
n="mn,n,y, Where (n,,n,)=1 and n, € @), n, € L,. We define an arithmetical
function g,(n) by setting

(2.10) ex(n) = 0(n,) .

Since every positive integer is 1-full, g,(n)=0(n). We introduce another
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function ggy(n) defined thus: gy,(1)=1 and if n is of the form (2.8), then

(2.11) ewn) =TT (£)-

i=1 \%g
Clearly, ou)(n) = p*(n).
Finally, we need the function y,(n) introduced by Klee [7] as a gener-
alization of the Mébius p-function, defined thus: p,(1)=1, yi(n)=(—1)"
if n is of the form (2.8) with «;,=Fk for each 7 and y;(n) =0, otherwise.

REMARK 2.3. We note that e(n), g.(n), og(n) and pi(n) are multi-
plicative.

3. Arithmetical properties.

In this section we establish the arithmetical forms of . (n), ¥.(n),
ygy(n) and some arithmetical identities. We prove first

THEOREM 3.1. y,(n) is multiplicative.

Proor. By (2.4) it is clear that y,(1)=1. Let (m,n)=1. Every divisor
d of mn can be expressed as d,d,, where d;|m, dy|n and (d,,d,)=1.
Further, ((dy,m/d,),(dy,n/dy))=1 and (d,d,,mn/d,d,) = (d,,m[dy)(dy, n[d,).
Hence by (2.4) and the multiplicative property of ¢, (n),

yr(mn) = Ed]mnd’f(d,mn/d)—kqok((d,mn/d))
= Zdl|m,d2|nd1kd2k(dl’m/dl)—k(d2’n/dZ)—k(pk((dl’m/dl)(dZ’n/d2))
= Edllm,dzlndlk(dlim/dl)—k(pk((dlﬁm/dl))dzk(d2’n/d2)_k¢k((d27n/d2))
= Zdllmdlk(dlﬁ m/dl)_k‘Pk((dp m/dl)) : zdzlndzk (dg,n/dy) —kgvk((d2, n/dz))
= y(m) yy(n) .

Hence y,(n) is multiplicative.
CoROLLARY 3.1.1. y(n)=nk [T, (1+p*).

Proor. In virtue of Theorem 3.1, it is enough if we prove this corollary
for n=p*, a prime power. By definition (2.4),

V(D) = Zas- @9 % @i(g), where g = (d,9) .
By (2.1),

It

14 (pE=1) + (p* — p*) + . . . + (pDF — pla=DF) 4 po¥
pdk_*_p(gc—l)k — pak(l+p—k) .

i(p)

I
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Hence the corollary follows.
TrEOREM 3.2. Wi (n) =n Tk, (1+p7%).

Proor. By definition (2.5), Wi(n)=23 15—, 1(d) DP(6). Since g,(n) and
@, (n) are multiplicative, ¥, (n) is also multiplicative, by the calculus of
multiplicative arithmetical functions (cf. [8, § 7.2, Theorem 3]). Hence,
it is enough if we prove the theorem for n = p*, a prime power.

By (2.2) and (2.6), if <k,

Yi(p®) = zddzp"‘sk(d)¢k(6) = @ (p*) = p*
and if a2k, then 0= —[afk)k <k so that
Vi(p™) = Dp(p™) + 2{Dp(p*F) + Dp(p*—*) + . . . + Dy (p>~1o/kik)}

[o/k]~1
(p p:x—k) + 2{ z (pa—zk__p —(1,+1)k)+po¢—[o‘lk]k}

i=1
= p*—p*F 4 2p*F = p*Lprk = p*(1+p7F).
Hence the theorem follows.
CoROLLARY 3.2.1. W (nk) =1y, (n).
This follows by Corollary 3.1.1 and Theorem 3.2.
REMARK 3.1. It is clear by Theorem 3.2 and (1.1) that ¥,(n)=yp(n).

THEOREM 3.3. If n is of the form (2.8), then

W™ = H p“‘-l—(k) "‘"1+...+(f')}.

1

Proor. It is clear by definition (2.7) that yg,y(n) is multiplicative.
Hence it is enough if we prove the theorem for n =p®, a prime power.
By (2.7), (1.1) and (2.9)

volP?) = $p7)+ (kI 1)1/’(10"‘—1)+ RS (k; 1)

-1 —
= (p*+p* )+ (k 1 )(p"“1+p“-2)+ coet (k“ 1)

— s k a—1 k a—2+ + k
=+ (y) e () ek ()
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Hence the theorem follows.

We now prove some arithmetical identities. We prove each of the
following identities only for n=p* a prime power, since all the arith-
metical functions involved in the identities are multiplicative.

THEOREM 3.4. y,(n) =45, #3(d) 6%,
Proor. By the definition of u(n) and Corollary 3.1.1,

Sas=pet®(d) 0% = pP(1) p* + p¥(p) p-1%
= PR = ().
Hence the theorem follows.
THEOREM 3.5. y,(n) =g, 0(d) @, (5) .
Proor. By the definition of 6(n), (2.1), (2.3) and Corollary 3.1.1,
Sas-p 0(d) 9(6) = Pp(P”) +2 Zgpa-191(6)
— ( pak — p(a—l)k) + 2p(zx—1)k

= pk 4 pe-Dk = gy, (p*) .
Hence the theorem follows.

THEOREM 3.6. W, (n) =3 5, 1 2(d)d.
Proor. By the definition of u,(n) and Theorem 3.2,

Sas—pr i (@)0 = p* if a<k,
=p0¢+pa~k if zxgk,
so that in any case
Zd6=p°‘:uk2(d)6 = ¥i(p%) .
Hence the theorem follows.
THEOREM 3.7. ¥, (n) =3 jts_nn3(d)6.
ProOOF. 35—, #2%(d)0 is multiplicative (cf. [9, Lemma 2.4]) and
de,’=pac,u2(d)6 = pa if < k,
=p0‘+pa—k if azk.
Hence the theorem follows.

THEOREM 3.8. W, (%) =13 35-r0r(d) @(d).

Proor. By the definition of g,(n) in (2.10) and 34, ¢(d) =n, we have
if x<k,
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Zda=pa0k(d)¢(5) = Zs-p=P(0) = p*,
and if x2Ek,
Sas—pr 0 @)P(0) = p(P*) + ... +@(p**+1) +
+2{p(p* ")+ ... + (1)}
= Y is—pxP(0) + Zgs_ pa-tp(0)
= prtprk
Hence in any case,

Zd6=p"‘9k(d)(p(6) = ¥ (p"),

by Theorem 3.2. Hence the theorem follows.
THEOREM 3.9. (1) =245, 00(d) 0.
Proor. By the definition of gyy(n) in (2.11) and Theorem 3.3,
Sarpes@d = 5+ ()t (B) = g
Hence the theorem follows.
THEOREM 3.10. If k=2, then wuy(n) =3 g5-npu*(d) py—_1)(9).
Proor. By (2.9) and Theorem 3.3,

T as—p D) Ye-(0) = Y-0(P%) + Yg-p(p*?)

e (e ()
e )
p“+(’f)p“—1+...+(;‘)

= %c)(P“) .

I

Hence the theorem follows.
THEOREM 3.11. If k= 2, then yuy(n) =35m0 00-1(d)w(5).
Proor. By (2.11) and (2.7),
Sueprtan @0 = p@)+ (57 e+ (V1)

= Yu(p”)
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Hence the theorem follows.
THEOREM 3.12. If k22, then g4y(n) =3 g5mn () 0pe—1)(0)-

Proor. By (2.11) and (2.9),

St @ean® = (") +(E7]) = (£) = owtrn.

o x—1 o4
Hence the theorem follows.

REeMARK 3.2. Theorems 3.4 to 3.12 can also be obtained by using gen-
erating series of arithmetical functions involved and multiplication of
Dirichlet series.

4. Orders and Average orders.
In this section we establish the orders and average orders of w,(n),
¥y(n) and ygy(n).

TrEOREM 4.1. For every £> 0,

(4.1) P(n) = O(nk+e) ,
(4.2) Yi(n) = O(nl+) ,
(4.3) Yay(n) = O(nl+e) .

Proor. We first prove (4.2). Writing f(n)= ¥, (n)/nl**, we see that
f(n) is multiplicative.
If m<kE,

f@™) = Pi(p™)[prt+) = pm[pmt+) = 1[(p™)* >0 as p™ > oo,
If m=k,

fm) = p™(1+p7*)[pmi+d = (1+p7F)[pm™ < (1+27F)/(pm)* >0 as

pm™—> oo,

Thus in any case, f(p™) — 0 ag p™ - c. Hence f(n) - 0 as n — oo (cf.
[6, Theorem 316]), so that (4.2) follows.
Now, (4.1) is an immediate consequence of Corollary 3.2.1 and (4.2).
To prove (4.3), we write g(n) =y, (n)/n*+e. This function g(n) is multi-
plicative, and by Theorem 3.3,

Math. Scand. 26 — 8
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A k kY kE\ _
() () 1 (D) (B o

g(p™) = peTEn = e
(1+p1)k o . -
< — (equality if m >k and inequality if m < k)
p
1+2-1)k
( (+ ) ) 0 as p™—> oo,
pm &

Hence g(n) - 0 as n - oo (cf. [6, Theorem 316]), so that (4.3) follows.
Thus the theorem is proved.

Throughout the following « denotes a real variable =2 and {(s) denote
the usual Riemann Zeta function. We need the well-known (cf. [6,
Theorem 302]) result, viz.,

(4.4) io:,u?(n)n-s = {(s)/¢(2s) for s>1.
n=1

THEOREM 4.2. The average order (cf. [6, § 18.2]) of y,(n) is n*{(k+1)/
£(2k+2). More precisely,

{(2)*

(4.5) Dnss Yiln) = 22(a) + O(x logx) if k=1,
_ tlenan
= G+ Dihse T 0@ k22

Proor. By Theorem 3.4,

zngz'pk(n) = anx zd6==muz(d) ok = Edégz‘“z(d) ok
= stzﬂz(d) Zdéa:/dék

z/d
- zdgz;ﬂ(d){ | eeae+ 0(xk/dk>]
1
k+1
(k+ 1)dk+1
.’L‘k"'l oo ”2(d)

= 2

T k+1 2, det

= Sicat@] + 024

+ 0@k g, d-®) + O(ak 3y, dF) .
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The first O-term is O(x) and the second O-term is O(x logz) or O(z*)
according as k=1 or k=2.
Hence (4.5) follows by (4.4).

THEOREM 4.3. The average order of Wi (n) is nl(2k)/t(4k). More pre-

cisely,
(4.6) Znsa Pi(n) = $2°0(2)[0(4) + O(xlogz) if k=1,

1a2L(2k)/C(4k) + O(x) if k=2.

I

Proor. By Theorem 3.7,

2oz V() = 2z Zapo—nt?(d)d
= Ziks<a*(d)0
= Yap<oti(d) Dscpard
= Zg<oup¥(d){3([x/d*]* + [x/d*])}
= § Zgcmup®(@){#?[d?* + O(x/d*)}

32?3 u*(d)[d** + O(@® 2y p1kd ) + O(@ Zycpnd*) .
d=1

The first O-term is O(xV*) and the second O-term is O(x logx) or O(x)
according as k=1 or k= 2.
Hence (4.6) follows by (4.4).

THEOREM 4.4. The average order of ygy(n) s ni*(2)[C%(4)=n(15/n2)*.
More precisely,

(4.7) Znse¥u(n) = 3a?l*(2)[C%(4) + O(z loghz) .

To prove this theorem we need the following

Lemma. For >0,

Snse @n-1logh(an-1) = O(x logh+lz) .

Proor. Since ¢ loght is an increasing function of ¢, we have, for n2 2,
n
an-1logh(zn-1) < f xt-1 logh(xt-1) dt .
n—1

Hence
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x

Sonss on~tlogh(en) < [ at-1logh(at1) dt
1

=z f w1 loghu du
1

= O(x loghtlz) .
Hence the lemma follows.
Proor oF (4.7). We prove this by induction on k. It follows by (4.5)

that (4.7) is true for k=1. Let k> 2. Assuming (4.7) for £—1, we prove it
for k. By the induction assumption, we have

(4.8) ZnsaVa-n(n) = 3?F1(2)[C*1(4) + O logh-1a) .
By Theorem 3.10,

Engxw(k)(n) = anx Zd6=n/"2(d)1/)(k—1)(6)

= Zas<a#3(d) ge-1(d)

= Sa<z4*(@) Ss<iaP-0(0) 5
so that by (4.8),
s ¥w(n) = Zasa®( d){%xzd“zi"“(2)/f"‘l 4) + O(zd~* log"-Y(zd 1))}

= (§22{*1(2)/F71(4)) Ed “2ui(d) + O(? Zg.,47%) +
+O0(Z < 2d ! logk-t(xd-1)) .

The first O-term is O(x) and the second O-term is O(x logkz), by the

above lemma. Hence by (4.4), it follows that (4.7) is true for k. Thus
(4.7) is proved.

5. Two special properties.
In this section we establish two results of type (1.2).

THEOREM 5.1. 3, 1 v;(n)~t={(2k), where L, is the set of all 2-full inte-
gers.

Proor. If a(n) is the characteristic function of L, (that is, a(r)=1 or
0 according as n € L, or n ¢ L,), then

ZneL2 'I’k(" z a Wk(n)‘l

n=1
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This series is absolutely convergent by (4.1), and hence it may bc ex-
panded into an infinite product of Euler type (cf. [6, § 17.4]). By Corol-
lary 3.1.1,

) a(n) oo a(pm) o p—mk
= = l [
n—1Yk(n) I;;I mzzo '/’lc(pm)} 1;[ { +m§2 1+ p_k}
— . p_zk
- IpI 1+1+P"‘ l—p"‘}
1
= — = ((2k).

Hence the theorem follows.

THEOREM 5.2. 3, 1, vi(n)1={(4k)((6k)/{(12k), where L, is the set of all
4-full integers.

Proor. If b(n) is the characteristic function of L,, then

<> o)

n=1 1)Uk('n') '

Zner¥un)™t =

By the same reasoning as in Theorem 5.1,

< b(n) < b(p™) }
ngl 1/"lt:(n) 11—)I m=0 1»Uk(pm)
_ o p-—mk
- 1;[ 1+m§4 1 + p—k}
1 p~4k
T
1 __p—2k + p—4k 1 +p—6k
- I;I C 1—p% } - A :l—p‘ﬂ
_1I 1—p-12% } _ {(4k)((6k)
5 l(=p)(1—p%k) t(12k) -

Hence the theorem follows.
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