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ON SOME MEASURES ANALOGOUS TO
HAAR MEASURE

JENS PETER REUS CHRISTENSEN

Let M be a locally compact Hausdorff space and consider a fixed
base # for a uniform structure on M compatible with the topology and
suppose that % consists of open sets. By a measure on M/ we mean a
Radon measure defined on the Borel field of M. Usually we study
positive measures, not identically zero.

A positive measure « on M is called right uniform (with respect to %)

it Ve,ye MYUeU: w(U[x]) = w(Uly]) .
It is left uniform if
Ve,ye M VYU e¥: w(Ux]) = w(U[y]),

and it is uniform if it is both right and left uniform.

Loomis is probably the first to have studied uniform measures (see
[1], [2]). He obtained simultaneously existence and uniqueness of a uni-
form measure in a space satisfying a combinatorial axiom and some
further conditions. By a different approach we obtain uniqueness with-
out further assumptions.

2.

TaEOREM 1. Let u and v be positive measures on M with w right uniform
and v left wniform. Then there exists A € R, such that v=_2Au. In particular
a uniform measure is unique.

It is known (see [3, theorem 7,2, p. 187]) that there is a unique @ in-
variant measure if G' is a transitive group of homeomorphisms of M
satisfying

Voe@Vz,ye MYUeW: (x,y)eU < (p(),py))eU.

Since a @ invariant measure is uniform this is also the only uniform
measure on M.
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Proor. In the sequel Fubini’s theorem is used several times. This can
always be justified by observing that from a suitable stage all integrations
are carried out over a compact set and the functions involved are well
defined. For U € % we define the kernel K ;(x,y) by

KU(”:?/) = (CU(u))—l for (x,?/) eU 5
=0 for (z,y)¢U,

where ¢ (u)=u(U[x]), z € M arbitrary.
Let ¢ be a continuous function of compact support on M. Define K¢

by
(Ko@) = [ Ko@,y) 9(y) du(y)
M

We then have
|Kyp(r)— @) = fKu(x,y) lp(y) — ()| duly) = W,(U),
M

where

W (U) = sup {lp(x) - )| | (x,y) e U}.

K¢ is uniformly of compact support and bounded for U sufficiently
small. Let B be the filter base on #

{Ueu | UV} |Veu;.

Since ¢ is uniformly continuous, we see from the above estimate that
wap(x) dv(z) — j @(x) dv(x) along B.
M b4
We define cU(v) =v(U-[z]) and see by Fubini’s theorem that
[ Koot@) dvtz) = (T@)er) [ ¢(@) dute) .
M b4

If [, p(x)du(x)=+0 this shows that ¢U(v)/cy(u) has a limit 1 along B and
we have

[ #la) dv(@) = 2 [ (o) dutz)
M i
Since 2 is independent of ¢, theorem 1 is proved.

3.

For simplicity we shall now confine ourselves to the case of a locally
compact metric space (M,d), although similar results could be obtained
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in a more general setup. Let S(x,r) denote the open ball with center z
and radius 7.

An interesting and seemingly open question is whether a measure is
uniquely determined by its values on the balls. By applying the Hahn—
Banach theorem it is easily seen that the locally compact metric space
(M,d) has this property if and only if the space of functions of the form
>:A(d(a;,)) (where the sum is finite and the 1;’s are continuous func-
tions such that 1,(d(a,,x)) has support in a compact ball) is dense in the
space of continuous functions of compact support with the usual inductive
limit topology. In the special case where a uniform measure exists, we
have the following result.

TaEOREM 2. Let (M,d) be a locally compact metric space and u a uni-
form measure on M. If m is a signed measure with m(S(x,r))=0 for all
xe M and r>0 such that m(S(x,r)) s defined, then m=0.

Proor. The kernel function is now

K, (x,y) = (c(u))* for d(x,y)<e,
=0 for d(z,y)ze,

where ¢ (u)=u(S(x,¢)). Using the same argument as in the proof of
theorem 1 we find that

lim,, [ Kg@dn@) = [ p@)dniz),
M M

where ¢ is continuous and of compact support. Fubini’s theorem shows
that [,, K @(x)dm(x)=0 for all ¢, hence [, p(x)dm(z)=0, and theorem 2
is proved.

We call a positive measure « on (M,d) an almost uniform measure if,
for every compact set K< M,

lim, o u(S(x,¢))/u(S(y,e)) = 1 uniformly in (z,y) € K2.

With only minor modifications the proof of the uniqueness theorem 1
carries over and we have the result that there is at most one almost
uniform measure.

In the case of a Riemannian space the well-known Riemannian measure
is almost uniform with respect to the Riemann metric.

A positive measure u is called relatively uniform with modulus 4: M2 - R
if

Va,ke M Yr>0: A(z,y)uw(S(z,r)) = w(S(y,r)) .
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One easily shows that 4 must be strictly positive, continuous and satisfy
Ax,y)A(y,2) = A(z,z) for all z,y,2e M .

Hence 4 has the form A(x,y)=g¢(y)/p(x), where ¢ is unique up to a
positive factor and continuous. The measure 2 with density (p(z))!
with respect to « can easily be shown to be almost uniform. Applying
the uniqueness theorem for almost uniform measures we obtain the fol-
lowing result:

If w and v are relatively uniform measures with modulus A(x,y)=
@(y)|p(x), then there exists A€ R, such that v=72u. If m is a relatively
uniform measure with modulus A'(x,y)=vy(y)[y(x), then m has density
p(x)/p(x) with respect to w (up to a positive factor of proportionality).
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