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DIRECT INTEGRALS OF HILBERT SPACES II

JORGEN VESTERSTROM and WILBERT WILS

Introduction, notation and preliminaries.

The theory of reduction of von Neumann algebras has been effec-
tuated only for algebras %, which are generated by their centre 8 and a
countable family of other elements. In this paper we hope to show,
using the existence of liftings on finite measure spaces, how several of
the basic results of this theory can be extended to the general case.

In the second section we shall prove that the commutant 8’ of the
set 8 of diagonal operators on a constant field coincides with the set of
decomposable operators (cf. [1]). The decomposition of 3’ will be
linear and positive and it is proved that it can not be chosen so as to be
multiplicative as well.

In the third section, it is shown that any commutative von Neumann
algebra 3 is spatially isomorphic to the algebra of diagonal operators on
a suitable integral of Hilbert spaces, which can be chosen so as to make
a multiplicative decomposition of 3’ possible. The approach here is
similar to the one used by I. Segal in [10].

In the last section the results of the second section are applied to ob-
tain a partial solution of a problem posed by S. Sakai [9].

After this paper was written E.T. Kehlet informed us that Miss
O. Maréchal [5] had obtained Theorem 2.1. using the same method as
we do.

Added in proof.

Several more articles on reduction theory should be mentioned. Apart
from [10] also in [12], [13], and [14] a decomposition of operator algebras
on not necessarily separable Hilbert spaces was obtained. In these ar-
ticles direct integrals on perfect measure spaces were considered. It is
well known that for such spaces a natural lifting exists and the same
reasoning as used in the present note can be applied. We are indebted
to H. Leptin for pointing out to us the relevance of [12], [13] and [14].

It is interesting to remark that Proposition 2.5 on the impossibility of
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a multiplicative decomposition (cf. also [14, § 11]) can be derived (and
generalized) from the result of Feldman and Fell [15] and Takesaki [16],
which states that a separable representation of a von Neumann algebra
without a direct summand of finite type I is necessarily o-continuous.

Although this paper can be read quite independently of the foregoing
one [11], we shall, in order to avoid duplication, refer to the introduction of
it for most of the notation used here. Also the definition of an integrable
field of Hilbert spaces is asin [11]. We need some additional information
though.

Thus let (Z,2,u) be a complete measure space. A linear lifting of
L®(Z,n) is a linear positive map g: L®(Z,u) - M™(Z,u) satisfying
o(I)=1 and

N

e@) = ¢ for all peL®(Z,p).

A lifting of L*(Z,u) is a linear lifting o of L*(Z,u), which is also multi-
plicative. A theorem of D. Maharam [4] asserts that every finite measure
space admits a lifting. Using Maharam’s result R. Ryan [6] proved that
a measure space (Z,2,u) admits a lifting if (Z,2,u) is a direct sum of
p-summable sets. In particular if Z is locally compact and u a positive
Radon measure on Z then a lifting exists (cf. A. and C. Ionescu Tulcea [2]).

To avoid complications of a technical nature we shall state most of
the theorems for finite measure spaces. It is clear from the above con-
siderations that in fact these theorems are valid for direct sums of finite
measure spaces.

As for the theory of direct integrals of Hilbert spaces we must intro-
duce the concept of diagonal and decomposable operator.

Let ((H(z)),I") be an integrable family of Hilbert spaces on the finite
measure space (Z,2,u). 1f H is a Hilbert space, L(H) denotes the set of
bounded operators on H. The identity in L(H) is denoted by I, or I.
An element 7' € [T,L(H(z)) is called an operator field. For a vectorfield
x, Tz is the vectorfield Z 5z T(z)x(z). The operator field 7' is said to
be measurable if for x € I" also T'x € I'. It is readily seen that any meas-
urable 7' defines a bounded linear operator on [® H(z)du, which is de-
noted by [®7T'(z)du or T'. Operators on [® H(z)du, which are of this form
are called decomposable. The set of decomposable operators is denoted
by 2. Plainly the operator field Z sz ¢(2)I g, is measurable for
pe M®(Z,u) and [Op(2)lgz,du only depends on ¢ € L*(Z,u). This
operator is denoted by T'; or 7, and they are called diagonal. For the
set of diagonal operators we use 3.

In [11] it is shown that in a global sense the study of direct integrals
of Hilbert spaces reduces to consideration of so called constant families.
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This is the reason why we shall mainly consider these last objects. Thus
let #,%(H,,Z) be a constant family on (Z,X,u). For ee H, we define
é:Z —~H, by é@)=e. If pis bounded ée€ L,XZ,H,). If T € L(H,) then
T is the operator field 7'(z) =7 and 7= [T (z)du. -

1.2 ProrosrrioN. Suppose L 2(H,Z) is a constant field and T is a meas-
urable operator field with ess sup {||T'(2)||} < co. Then the following condi-
tions are equivalent.

1} T is measurable.

2) ZazepT(z)ee I for all e € H,.

3) Zszv (T(z)e.f) is measurable for all e,f € Hy and Té has essentially
separable range in H, for all e.

Let T be a decomposable operator and S a measurable operator field.
Then T =[® 8(z)du(z) if and only if (Te,f)=(S2,f) a.e. for all e,fec H,.

Proor. 2) <= 3) is a standard result on measurability of vector-
valued maps.

1) = 2) is trivial.

2) = 1). Now assume 72 € I'for alle e H,. Every « € I" has separable
range and there exists an orthonormal set {e,},.n <H, so that

x = lim, 3*_ (x,8,)8, € T.
Then
Tx = lim, T Y*_ (%,8,)e, € I

because I" is complete. In interchanging 7' with lim, we used the fact
that {||7'(z)|}, is essentially bounded.

Concerning the last assertion we remark that it is clear that if 7=
[® 8(z)du then Té(z)=S(z)e a.e. for all e H. Conversely, making use
of the fact that any x € I" has separable range, we easily deduce from
(Té(z),f)=(S(z)e,f) a.e. for all e,fe H, that (T'z)(z)=S(z)x(z) a.e. for all
z €I and we are done.

The following example shows that in the non-separable case the
equality [©7'(z)du=[D S(z)du does not imply 7T'(z)=S(z) a.e. Take Z=
[0,1], u Lebesgue measure and H, a Hilbertspace with an orthonormal
base {¢,},.,. We define S(z) as the projection on the span of e, and
T(z)=0. Then S is measurable, S(z)+ 0 for all z and [® §(z)du=0.
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2. Diagonal and decomposable operators on a constant field.

We suppose that (Z,2, u) is a finite measure space and consider a fixed
linear lifting ¢ of L*(Z,u) together with a constant field £ (H,, Z).

2.1 PROPOSITION. The set @ of decomposable operators is equal to the
commutant 3' of 3. Moreover for any T € 8' and z € Z there exists a unique
operator T(z) with

T = (T@ef), efeH,.
The operator field Z 5 z - T(z) is measurable and T = [® T(z)du. The as-
signment T  T(z) is linear and positive.
Proor. It is obvious that 2<8'. So let T=3'. For all g,pe
M>(Z,u) and e,f e H, we find
(TT 2, Tof))l < ITIIT el T fI
that is,

[verv@ e dul < 1T lep 11 [ 10G)Rdu [ e d

and hence

(TN = TV el ae.

Consequently |o[(7'e, HULITIS el and for every z € Z there is a unique
operator T(z) € L(Hy(z)) with |T(2)|| < ||T|| and (T'(2)e.f) = o[(T2,f)](2)

We want to show next that 7'(:) is measurable. Observe that for
e€ H,, Té has separable range K. If fe K* then (Te(z),f)=0 a.e. and
thence (T'(z)e,f)=0 for all z, which shows that T(z)e € K, so that 7T(-)e
has separable range too. We see that 7'(-) satisfies condition 3 of Propo-
sition 1.2 and therfore is measurable. It also follows from Proposition 1.2
that 7'=[®T(z)du, since (T(2)e,f)=(T2(z).f) a.e.

Finally, the linearity of 7' - T'(z) is ev1dent. Let us check the positiv-
ity. Suppose 772 0. For e € H, and any ¢ € M*(Z,u) we have

0 5 ((IT,7,8) = [ lp@I* (T8e),c) dp .

Therefore (T%(z),e) 2 0 a.e. and (T(z)e,e) 2 0 for all z. This means 7'(z) 2 0.
The proposition is proved.

It might be useful to give an example of an operator 7' € 3’ for which
it is not immediately clear that 7' 2. Let T be an operator field such
that sup,[T'(z)|| <o and such that the functions Z sz (T(2)e,f) are
measurable for all e,fe H,'. The map
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(.91~ [ (T(:)a(e),y(e) di

is continuous and sesquilinear on L 2(H,Z). In this way an operator 7'
on L*H,Z) is defined and T € §'. However the conditions imposed
on 7' so far do not ensure that 7' is measurable.

2.2. ProrosrtioN. If T € 8’ and Sy, T, € L(H,), then
8y TT(2) = 8,T(2) T,

Proor. Fore,fe Hyand Tye=g we get
(BoTTo(2)e.f) = ol({8sTTo2}.1)](2)
el(Tg, 8p*f)](z)
= (T(2)g,8:*f) = (SyT(2) Toe.f) -
Thus the desired equality follows.

It

The following obvious corollary will be used later on.

2.3 ProrositioN. If A< L(H,y) and T € 8’ satisfies T8=8T for all
8 € U, then T(z) is contained in the commutant A’ of W for all z € Z.

Proor. Apply Proposition 2.2.

There is a natural connection between liftings and decompositions.
Let CL(H,) be the set of compact operators in L(H,)

2.4 PROPOSITION. Suppose that for every T € 3’ we are given a decompo-
sition T — T(+) into a measurable operator field such that for all z € Z,

1) T8(z)=T(z)8 for 8 € CL(H,),

2) jHo(z)=IHo1

3) T — T(z) is positive and linear.
Then there exists a linear lifting o of L®(Z, ) such that for e,f € Hy we have
ol(Te,))z)=(T'(2)e.f)-

Proor. Let ¢ € L*(Z,u) and S e CL(H,). Clearly 7;8=8T;,. Be-
cause of 1) and 3) we find T;(z) S=S8T;(z). Hence T;(2) is a scalar mul-
tiple o(¢)(2)I g, of I;,. Since T(-) is measurable p(¢)(-) is measurable.
If e € H, is a unit vector we find

¢ = (T;2,8) = 0(f) -
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Since the map ¢ — o(¢) also is positive and linear and satisfies o(I) =1
because of 2) we see that ¢ is a linear lifting of L™(Z, u).

For e,f e H, we define e®fe CL(H) by (eQf)g=(g,e)f where g € H,,.
For z,yeI'and T € 3§’ we get

N . NN
(FeTeger,y) = [(T4e).1)ala).e)fy(a) du = (T5e@fz9)
where ¢=(T%(-),f). Therefore
P T A~
fRfTe®@e = TyeQf .
Applying 1) and 3) we get
fofT(z)e®e = T;(2)e@f = o(#)(2)e®f -
From this the statement in 2.4 readily follows.

The condition 2) in 2.4 is very weak, because only 1) and 3) are used
to prove that

Ia?) = Te(z) = o)), where (1) =1.

The methods used to prove 2.1 and 2.4 readily show that ‘“‘the con-
tinuous analogue of the Schur lemma’ proved in [6, § 26, th. 8] holds
without the condition that the space H, mentioned there, is separable.

An interesting question is whether it is possible to decompose the
operators 7' € 8’ in such a way that apart from 1), 2) and 3) in 2.4 also
TS(z)=T(z)S(z) for all ze Z, 8, T € 3’. This is of importance among
others for the decomposition of group representations. It is known [1]
that if A < 8§’ is a *subalgebra, separable in the uniform operator topology,
that then a decomposition of elements in U can be found, which is
multiplicative. Also it is not hard to see that if g is a lifting and if we
decompose with g, we then find for 7€ 8’ and ¢ € L®(Z, )

TT;) = e@@)T(2) = T3(2)T(z) -

From this it is deduced, using Proposition 2.2, that if § is a measurable
operator field such that {S(z) | z € Z} is u-essentially compact in L(H)
and T € 8’, then

T8(z) = T(z)S(z) .

This shows that the restriction of such a decomposition to the algebra
of decomposable operators with essentially compact range is multi-
plicative. However, we next prove that a multiplicative decomposi-
tion of all 8’ does not exist. Surprisingly enough we have to add an
extra condition in the non-separable case.
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2.5 PROPOSITION. There exists mo decomposition T — T(-) of 3’ such
that the maps T — T(z) are *homomorphisms and satisfy 1) of 2.4 if u=+0
is non-atomic and H, infinite dimensional.

In the case that H is separable, the condition that T — T(z) satisfy 1) of
2.4 can be left out.

Proor. The proof will be given by deriving a contradiction. First
let H, be separable and {e, },,.n @ dense set in H,. Because H,, is separable
the theory of [1, ch. II] applies, to the effect that for the given decom-
position we can find a set Z,< Z, with u(Z,°) =0, such that for ze Z, we
get

RN
e, Qe (2) = e,Qe, forall n,m.

The maps 7 - T'(z), being *homomorphisms, are continuous and so by
continuity and linearity we get for all S € CL(H) that
§(z) =8 forzeZ,.
Thus for 7' € 3’ this means
T8(z) = T(2)8

Replacing Z by Z, shows that then 1) of 2.4 is satisfied.

According to the first remark following 2.4 we may as well assume
that also 2) of 2.4 is satisfied.

We suppose now that we have a decomposition 7' — T(-) of 3’ as
meant in 2.5.

Because of 2.4 and because the decomposition is multiplicative there
exists a linear lifting o of L®(Z,u) so that for e,f e Hy,

ol(T8,)1(z) = (T(z)e.f) -

Let {Z,},.n be a family of measurable and mutually disjoint subsets of
Z,1, the characteristic function of Z, and {f,},.n an orthonormal set
in H. We put

A(2) = 20112, /18f, -
Then A(-) is measurable and for k,l e N we get

el(A() fiof1)12) = 1 201 01m0(17,)
= 2?:19(1zn)(z)f1®fn .

which shows

Consequently
(m(z)fl’fl) = (A( A(2)* A(= @)fwf1) = zf=19(1zn)(2) .
On the other hand, A*A4(z)=(Z5.,12,)/1®f, and so
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(m(z)fl’fl) = e[({Z;?:llzn(°)}(f1®f1)f1,f1)](2) = Q(Z;‘;llzn)(z) .

loo]

The two expressions being equal we find 37 ,0(1,)=0(33_,15). It is
simple to see that the above equality implies that o can be extended to
a linear lifting on LY(Z,u), which does not exist according to [3,7]. This
is the desired contradiction.

3. A multiplicative decomposition.

It is our aim in this section to decompose “multiplicatively”. Instead
of considering the Hilbert spaces L} (Z,u) and the abelian algebra of
diagonal operators, we study an abelian von Neumann algebra 8 on a
Hilbert space H and a C*-algebra 9, with A< 8’, which admits a cyclic
vector x, € H. Finally we suppose that % < 8 is a weakly dense C*-sub-
algebra of 8§, which contains I, and whose spectrum is Z. The assump-
tions that 9 has a cyclic vector and that I € % are imposed for con-
venience only. For a more general theory compare [1, I, § 7].

Let S, be the image of ¢ € C(Z) under the inverse Gelfandtransforma-
tion from C(Z) onto #. The vector x, determines a measure y on Z by
Jodu=(8,xy,z,) for ¢ € C(Z). The measure u has support Z so that
C(Z) can be identified with a subspace of L*°(Z, u). Then there is a unique
extension, from C(Z) to L*(Z,u) of the mape S, with values in 3,
which is continuous, L*(Z,u) being equipped with o(L*(Z,u), LY(Z,u))
and B with the weak operator topology. This extended map, also de-
noted by ¢ ~ S_, is an isomorphism onto 3.

3.1 ProprosITION. Let the notation be as above and o a lifting of L®(Z, u).

1) There exists an integrable field of Hilbert spaces ((H(z)),I") on (Z,u)
and an isomorphism U:H — [®H(z)du so that for ¢ € L®(Z,u) we get
S;=U*T,U. B

2) There is a decomposition T —T(-) of 8" into measurable operator
fields, which is positive and linear. If AeN, Ted and ze€Z, then
TAR)=T(z)A(z).

Proor. 1) Let 4 € A. By means of the Radon-Nikodym theorem we
see that there is a unique 5 4.4 € LY(Z, ) with

f hgdp = (8, Ay, Azy) .
If 920 we find [@h ., du20, so that h,.,=0 and we get also

[ Phasadu < 141 [ g du,
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which implies
haoa = |AIP = ||A*4]| and  h o € L¥(Z,p).

By linearity the map A*A4 v h 4., can be extended from A+ to a positive
linear map A4 & k4 from U into L*®(Z,u). We find

f ohadu = (8,420,30), =1, hg=ghy.

For every z a state on U is defined by 4 — o(h 4)(2).

Let H(z) be the Hilbert space associated with the just constructed state
on ¥ and o, the canonical representation of 9 into L(H(z)). The projec-
tion of A into H(z) is denoted by o,. Now we have a field of Hilbert
space (H(z)),.z- It is made integrable by taking for I" the subspace of
I1.H(z) determined by I'y={c,(4) | 4 € A}.

We put H'={dx |AEQI} Then H'=H. If Axz,=0, then k4 =0
and so x,(4)=0 for all z. This shows that we can define a map U from
H' into [@H(z)du by U(Axy)=[Do,(4)du. The map U is linear and
satisfies

(A, Azg) = [ hara()dpe = [ . (A)Pdp

Thus U is isometric and can be extended to all of H. It is obvious that
this extended U is an isomorphism from H onto [@H(z)du. If @e
L>(Z, ) then

(S, 4wy, Bay) = [ 9(@) hiseac) dp

= [ C)o4), 0.B)) dp = (T,U(4s), U(Bxy)),
such that indeed U*T , U=38§,,.

2) Not to complicate matters we identify H with [® H(z)du. If e= Ax,
we put e(z)=0,(4). Fore fe H'; g,y e L*(Z,u) and T € 3" we find

(TT e, T, f)I> < ITI® 1T el® IT,fI
that is,

[ e Tete) @) dus | < ITIE [ 10t R lete)Pdpe [ 1ote) 17 du

and hence

[(Te(z),f () = 1Tl eI If ()l a.e.
There exists a unique operator T(z) € L(H(z)) with |T(2)|| <||T|| and

ol(Te().f()(z) = (T(2)e(2).f(2) -

Math. Scand. 26 —7
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As before it is easy to see that 7' — T'(z) is positive and linear. There is a
sequence ¢, € H' with lim e, =7e. For every » we have

(T()e(z),en(2)) = (Te(2),e,(2)) a.e.
The same is true for all » simultaneously, so that, since
Teespieytnens T(2)e(z) = Te(z) ae.
This shows Z 5 z > T(2)e(z) € I', T(-) is measurable and [® T(z)du =
Finally, if A,B,C € 9, then we have

e[(ABzy(+), Cxo(+))1(2) = olhceanl(2)
= (0,(4B),0,(0))
= (m,(4)0,(B),,(C))
= (7.(4)(Bx,)(2), (Co(2)))
= (A(2)(Bzy)(2), (Co)(2)) -

Therefore n,(4)=A(z) and (4Bz,)(2) = A(2)(Bx)(2).
For 4eW, Te§, and e,fec H we get

(TA(2)e(2).f (2) = e[((TA)e BION(C
= ol(T(Ae(-).f(- ))) _
(T z)(Ae @.f(2) = (T(2)A@)e(z).f (2)) -

An easy corollary is the following

3.2. CorOLLARY. If A'(2)={T(2) | T € A'}, then A'(z) = A(z)".

If we take A=3’, then the described decomposition has some nice
properties.

3.3. ProrosrTION. Let A=73'.

1) The maps T v T(z) of A into L(H(2)) are *homomorphisms.

2) The spaces {m,(A) | A € 3’} are complete.

3) The algebra {T(z) | T € 8'} contains all compact operators on H(z).

Proor. 1) This follows directly from 2) of Proposition 3.1.
2) Let N(2)={4 € 3’ | o(h4+4)(2)=0}. The quotient norm on 8'/N(z)=
{o,(4) | A € 3’} is defined by
lo,(4)lly = inf{||B]| | Be A+N(2)} .
We show that
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lloo(Allg? = llo(A)PF = o(h 40.4)(2) -

This proves that 3’/N(z) is complete, because a quotient space of a
Banach space is complete in the quotient topology.

It is clear that |z,(d4)|l,2|ln,(4)|l. Suppose P is the projection on
{37}~ and Q=I-P. For peL*, Ae 3 we find (T;4Qx, AQz,)=0
and therefore AQ € N(z). We also get

Il

4P| = sup {|APT ;x| | [T 5 < 1}

= sup{ [ Ip* @i dp | [ l912) duz1)

= “}I’PA'AP”oo

We notice that hp 4. p="h 4, because 4Q € N(z) for all 2.
Suppose |jo,(4)||=«. There is a T; € 8 with g(¢)(z)=1 and such that

= 32 2
hT;,u‘A = ¢%hguq £ 2.

Also 4 —T;A € N(z) because I —T; € N(z). We consider next 7'; AP then
A—T;AP € N(z) and ||T; AP|| £ « because of what we proved just before.
3) For A,B,C,D e 38" we get

9[((Axo(')®on('),Gxo(')®on(')))](Z) = (Azy(2),Cxy(2))(Bzy(2), Dxo(2 )
= (Axo )®Bz(2)) Oy (2), on(z))
so that
(Azg(*)RBxy(*))(2) = Awy(2)@Bzy(2) .

In 2) it is proved that the space {Adz,(z) | 4 € 8'} is all of H(z) so that
B'(2) contains all finite dimensional operators on H(z). Because 8'(z) is
closed, it contains all compact operators as well.

A disadvantage though of taking A= 8’ is that the spaces H(z) become
very big. This can readily be verified by looking at L 2(H,,Z), 3 being
the algebra of diagonal operators. If H, is separable, a,nd the measure
% 0 is completely non-atomic then the Hilbert dimension of the spaces
H(z) equals the cardinality of R. If we decompose with respect to the
algebra A, where % is equal to the set of decomposable operators 7'
which have essentially compact range in L(H,), then the spaces H(z)
can be identified in a natural way with H, and %(z) = L(H(2)).

A very interesting problem is whether the algebra (z) acts irreducibly
on H(z) if we assume that U is weakly dense in §’. This problem is
related to the question whether every representation of a locally compact
group can be decomposed into irreducible representations and it is also
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closely connected with the question whether every W*-algebra can be
written as a direct integral of factors.

4. On a problem of Sakai’s.

In this section we shall discuss a problem posed by S. Sakai [9]. Let
(Z,u) be a finite measure space and E, a Banach space with dual E.
L MZ,E,) is the set of equivalence classes of strongly measurable and
integrable E,-valued functions on Z. #%(Z,u) is the set of functions
8: Z — E such that {p,8(+)) € M>*(Z,p) for all pe E,.. N3 (Z,u) is the
set of functions in #F(Z,u) for which (p,S(:))=0 a.e. (u) for every
peE,. Finally the quotient space L% (Z,u)/N%G(Z,u) denoted by
L3 (Z,p), is a Banach space under the norm

ISl = inf {§T|| | T € L5,(Z,p), T=8},

where T - T denotes the canonical map from Li(Z,p) in LG (Z,p)
and |7 =sup{|T)| | 2 € Z}.
The bilinear form (-, ) on LXZ,Ey) x Lg (Z, ) defined by

&8y = [F@.56) dute)

establishes a duality between the two spaces, under which L% (Z,u) is
the dual of L YZ,E,) [3]. Sakai proved that if £ is an algebra with
separately o(#,E,)-continuous multiplication and if E, is separable,
#%(Z,u) is an algebra under pointwise operations [9]. This implies
that L (Z,u) is a Banach algebra, since in the separable case Ng (Z,u)
is an ideal in £% (Z,u). In case that E is a W*-algebra with separable
predual, L§ (Z,u) becomes in a natural way a C*-algebra, and because
it is a dual space, it is a W*-algebra. We shall deal with the case, where
E is a W*-algebra with not necessarily separable predual.

Before we prove that Lg (Z,u) is a W*-algebra, we state a preliminary
theorem of independent interest. If ¥ and # are von Neumann algebras
ARA denotes the von Neumann algebra tensor product.

4.1. THEOREM. Let H, be a Hilbert space and A< L(H,) a von Neu-
mann algebra. Let [©Udu be the set of decomposable operators T =
[®T(z)du on the constant field £ 2(H,,Z) for which T'(z) € A for almost
all z. Let M be the algebra of multiplication operators on L>2XZ). We
identify L 2(Z,Hy) and HyQL,XZ). Then

1) [©Udu is a von Neumann algebra and ([O Adu)' =[OA dp,

2) AQM = [DUdpu,

3) (ARQM) =A'QM.
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Proor. 1) [®Ady is a *-algebra of decomposable operators. Let
TeLH). If T commutes with [©Udy then T is decomposable say
T = [®T(z)du(z) where T(-) denotes the decomposition of 2.1. From 2.2.
it follows that 7(z) € A, hence 7' e [®U'du. If conversely T € [® ' dpu,
clearly we have that 7' commutes with [©UAdu. Hence ([®UAdu) =
JOU'du. Interchanging the roles of A and A’ we see that [DAdu is a
von Neumann algebra.

2) Any operator of the form 37,R®f; is via the identification of the
form [® 3fy(2)T;du(z) with f;e L,*. Hence it is in [®Udu and since
the latter is a von Neumann algebra we have ARQM < [@UAdu. If
T e (ARM)' then by the same procedure as above we get T'e [OUA'du=
(J©Adu)’. Hence (AQM) =(JO®Adu) or [OAducARXM so finally
JOUdu=AQM.

3) Follows immediately from 1) and 2).

4.2, CorROLLARY. Let € and D be two von Neumann algebras of which
€ 1s of type 1. Then ((R9) =€'Q2'.

Proor. From the structure theorem for type I algebras it follows
that it suffices to consider ¥ maximal abelian and o-finite. Then apply
3) of Theorem 4.1.

4.3. THEOREM. Let E be a W*-algebra and (Z,u) a finite measure space.
Then L% (Z,u) is isometrically *isomorphic to EQL,®(Z) and is therefore
a von Neumann algebra.

Proor. We represent E faithfully as a von Neumann algebra on some
Hilbert space H, and identify L% (Z,u) with Ly (Z,u). By the isomo-
phism E, is transformed into the set of ultraweakly continuous linear
functionals on %, that is, the set of functionals of the form w: T'e A -
3 (Te,,f;), where e, f; € Hy, X|le;|> and 3 ||f;||? < oo. Since any w is a uni-
form limit of weakly continuous functionals on % we infer that a field
of operators 7' is weakly measurable if and only if it is ultraweakly
measurable.

By the remark after 2.2 we get that an element of Ly (Z,u) defines a
decomposable operator on the constant field (H,,Z,u), and it is easily
seen that it belongs to (fOUA'du)’, therefore to [@Adu. Hence we have
a linear *-preserving map from L (Z,u) onto [®Adu and its kernel is
NE(Z,u). Its image is all of [®UAdu. Consequently, Ly (Z,u) is iso-
metrically isomorphic to [®Adu, which is isomorphic to ARL,*(Z).
Hence L3, (Z,u) is isomorphic E®QL,*(Z), and the theorem is proved.
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Remarks. 1) The difficult thing in making LF(Z,u) an algebra is
that £ (Z,u) is in general not an algebra under pointwise operations.
This was overcome by considering the measurable operator fields. This
notion is easily seen to be invariant under algebraic isomorphism be-
tween von Neumann algebras. They form an algebra under pointwise
multiplication, and each class in Ly (Z,u) admits a measurable operator
field as representative. Hence, denoting the measurable fields by
Ly (Z,p), Ly (Z,u) is isomorphic to

S 2> ) LG (Z, 1) O NG (Z, 1)

and Ly (Z,u)N Ny (Z,p) is an ideal in L§ (Z,u). This constitutes an-
other way of equipping Ly (Z,u) with an algebraic structure.

Theorem 4.3 generalizes Theorem 2.5, page 3.21 in [8].

2) Essentially the same methods as used here work to solve Sakai’s
problem in the affirmative in the case where F = L(X), the algebra of
continuous linear maps on a reflexive Banach space.
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