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DIRECT INTEGRALS OF HILBERT SPACES I

WILBERT WILS

1. Introduction, notation and preliminaries.

In the theory of direct integrals of Hilbert spaces, as it has been
developed until now, it is normally assumed that the fiber spaces are
separable [1]. This situation is rather unsatisfactory and has as con-
sequence that e.g. the well-known spaces L?,(H,Z), where H is a non-
separable Hilbert space, cannot be described as integrals of Hilbert
spaces. In [5] I. Segal defined so called weak direct-integrals of Hilbert
spaces. No countability conditions are imposed and Segal shows how
these weak direct-integrals turn up in a natural way in the theory of
decomposition of von Neumann algebras of operators. Unfortunately
almost no theory is developed in the general case. In the presence of
separability Segal’s definition is equivalent to the usual one. This lack
of theory has as a consequence that e.g. the multiplicity theory in the
non-separable case is entirely based on non-spatial arguments. One
works with the algebra of operators rather than with the underlying
Hilbert space [3], [5].

In the present paper a slight variation of the definition of Segal’s for
integrable families of Hilbert spaces is proposed. Some simple properties
and a structure theorem are proved. An application to the multiplicity
theory of spectral measures is given. In another paper [8] decomposi-
tion of von Neumann algebras will be treated.

It is a pleasure for me to thank lektor E. T. Kehlet for reading the
manuscript and referring to [5].

Let (Z,2,u) be a measure space and denote by M*(Z,u) the algebra
of all complex-valued, bounded and measurable functions on Z, by
N*®(Z,u) the ideal of all p € M*°(Z,u) which are locally u-almost every-
where negligible, and by L*(Z, ) the quotient-algebra M*(Z, u)|N°(Z, u).
The canonical image of ¢ € M*°(Z,u) in L™(Z,u) we denote ¢. By abuse
of notation we shall sometimes not distinguish between ¢ and . For
maps f and g, defined on Z, we write f=g if f(z) =g(z) p-locally almost
everywhere. In the sequel we shall assume always that u(Z)<oo. All
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results though are valid for direct sums of finite-measure spaces, espe-
cially for Radon measures on locally compact sets.

As for the theory of direct integrals of Hilbert spaces, we follow
J. Dixmier [1]. Given (Z,2,u) we call a collection {H(z) | z € Z} a field
of Hilbert spaces on Z. Elements of IT,.,H(z) are called vector fields.
If p e M*(Z,u) and f is a vector field, then ¢f: Z 35 20 ¢(2)f(2). If fand
g are vector fields, then

(f,9): Z32(f(2),9(2)) and |f]: Z3zb|f()].

For a Hilbert space H the algebra of continuous operators on H is denoted
L(H).

1.1 DeriNtTION. Let (H(2)),. be a field of Hilbert spaces on (Z,2,u)
and let I" be a subspace of [T,.,H(2). Then ((H(2)),I") is said to be an
integrable family of Hilbert spaces if it fulfills the following conditions:

1. For every f e I', the function |f|? is u-summable.

2. If fe I1,H(z) is such that there is a ¢ € L*Z,u) with |f| ¢ and if
(f,g) is measurable for all g € I, then there exists a f'e I with (f—f’,g)=0
for every ge I'.

3. Let f'eI and fe I1,H(2) be such that |f|? is u-summable and
f'=f. Then we have feI.

The third condition in 1.1 is of course not essential and is added for
convenience. The main difference with the usual definition for measur-
able families of Hilbert spaces is that we do not impose the maximality
condition on I, that if for a vector field f we have that (f,g) is measurable
for all g e I', then fe I This made it possible to consider subspaces I"
which are not countably generated.

That the integrable families as defined here are precisely the objects
one would like them to be, follows from the following.

1.2 TEEOREM. Let (H(z)), be a field of Hilbert spaces and I'c TT,H(z).
Then ((H(z)),F) is integrable, iff

1. For every f € I, the function |f|? is summable.

2. If pe M®(Z,u) and fe I, then ¢f e I.

3. If for fe T1,H(z), with |f|* summable, there exists f' € I' with f'=f,
then fe I

4. For fe I’ we put ||f||=(|f|2du)t. The semi-normed space (I,]-]) 18
complete.

In the theory of integrals of Hilbert spaces, especially 1.2.2 is a crucial
property.
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1.3 DeriNITION. If ((H (), I ) is an integrable family of Hilbert spaces,
then the Hilbert space, corresponding to (I, ||-||) and obtained by forming
classes of maps which are equal almost everywhere, is called the direct
integral of ((H(z)),I") and is denoted by I' or [ H(z)du

The class of elements g € I' which are equal almost everywhere to a
fixed f e I' is denoted by f. The inner product of two elements f gelis
denoted by ( f g)). (Note the difference between ( (f,g) and ((f,9))-

Because integrable families have Property 2 of Theorem 1.2, the next
definition makes sense.

1.4. DeFINITION. Every element ¢ € L*(Z,u) determines a unique
operator 7'; on vy T, f o f € I'. Such operators are called diagonal.
We put 3={T; |§ € L*(Z, )}

Normally one is especially interested in the commutant 8’ of 3, that
is,

= {Ae ()| AT, =T, A4,$ € L*(Z,p)} .

The algebras 8 and 3’ are von Neumann algebras and it is shown in [5]
that conversely every commutative von Neumann algebra can be identi-
fied with the algebra of diagonal operators on a suitable integral of Hil-
bert spaces.

We give two examples of integrable families.

1.5 ExampLES. 1. Suppose H, is a fixed Hilbert space. We put
H(z)=H, for every z. For I' we take the set of all measurable maps
f: Z - H, such that |f|? is summable. It is well known that this family
satisfies the conditions mentioned in 1.2 and therefore is integrable. It
is called a constant family, and we denote it by (Hoy,Z,%#?,(H,,Z)) or
just £2 (Hy,Z). The corresponding integral is L2 (H,,Z).

2. Let Z be the direct sum of the measurable sets {Z,},.;, and {H,};.,
a collection of Hilbert spaces. For ze Z,; we take H(z)=H,;. A map
feTI,H(z) is in I, iff |f|? is summable and if f|Z; is a measurable map
from Z, into H;. This family is said to be a direct sum of constant fami-
lies, and it is denoted by {(Z;,H,)};., and the corresponding I'" by I'=
@; £*,(H;,Z;), where u, is the restriction of u to Z;.

Up to a certain equivalence relation these examples exhaust the set of
integrals of Hilbert spaces.

1.6 DeFINITION. 1. Two integrable families ((Hi(z)),!"t), i=1,2, are
called equivalent if there exists a unitary operator U: Iy - I'y so that
U(T,); =(T,); U for all g € L*(Z, ).
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2. A direct sum of constant families €&,= ( (Hi(z)),I’i) is called a
regularisation of the integrable family & if &, is equivalent to &.

Then we have

1.7 THEOREM. Any integrable family of Hilbert spaces on a finite measure
space admits a unique regularisation.

In the second section of this paper Theorem 1.2 will be proved. In
the third section we consider the behaviour of integrals of Hilbert spa-
ces under the forming of tensor products and some other properties.
The proof of Theorem 1.7 will be given in the fourth section. In the
fifth and last section it is shown how, by means of Theorem 1.7, the
multiplicity theory of spectral measures can be treated.

Added November 1968: In a conversation with H. Leptin some more
papers dealing with integrals of non-separable Hilbert spaces were brought
to the attention of the author. Without going in detail too much we re-
mark that in [2] and [7] a topological version of Definition 1.1 of the
present note was used, that is, Z is assumed to be a locally compact
space and the functions |f|, f€ I" are continuous. The applications are
to decomposition theory. In [4] and [6] direct integrals are defined
roughly stated as direct sums of constant families. The theory is applied
to multiplicity theory. It is a pleasure to thank H. Leptin for mentioning
these articles.

2. Integrable families of Hilbert spaces.
The proof of Theorem 1.2 will be given in two steps.

2.1 ProPOSITION. Let ((H (z)),F) be an integrable family of Hilbert
spaces. We put for f€ T, ||f]|=(f|f[Pdw}t.

1. Suppose (f,)nen 8 @ sequence in I so that lim, f,(2)=f(z) exists al-
most everywhere and with (||f,|)..n bounded. Then f: z v f(2) s contained
in I.

2. I' is complete with respect to the semi-norm ||-||.

3. If pe M™(Z,u) and fe I, then of € I.

Proor. 1. The assumptions imply that |f|? is summable. For geI”
we get lim,_ (f,,,9)(2) = (f,9)(z) almost everywhere and consequently (f,g) is
measurable. There exist f' € I" with (f—f’,g)=0 for all ge I In par-
ticular we find (f—f', f, —f')=0 and in the limit f=f', whence fe I'.

2. Let (f,)nen be a Cauchy sequence in (I',|| ||). There is a subse-
quence which converges almost everywhere to a limit fe [T,H(z). We
obtain from 1 that f € I" and it can be readily verified that lim,, | f,, —f]|=0.

3. For any measurable set A<Z and fe I, there is an f' € I" with
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(xaf.9)=(f",g) for every ge I', where y, is the characteristic function
of A. For g=f this becomes

(xafsf) = (F0) = (Foxaf) = (FF)

We get y f=f', so y fel.

It is clear that if ¢ is a simple function and fe I'" then ¢f e I. The
fact that the set of simple functions is dense in M*(Z,u), in combination
with 1, readily yields the desired conclusion.

The above proposition proves the “only if”’ part of Theorem 1.2. Now
we show the converse.

2.2. ProposITION. Let &= ((H (z)),F) have the properties mentioned in
1.2, then € is an integrable family.

Proor. The only difficulty is Condition 2 of 1.1. Suppose fe IT,H(2)
and ¢ € #*(Z,u) are given as indicated in 1.1. We remark that since for
g€ I' we have (f,g) is measurable and |(f,g)| <|g9lp, (f,¢9) is summable.
The linear functional defined on I'" by g - [ (f,g)du is continuous, because

[0 du] < 191 19l

The semi-Hilbert space (I, ]|+]|) being complete, we infer the existence of
an element f’' € I' with

[G9)du=[(pdu foranger.
Thus we get, for fixed g € I" and arbitrary v € M*°(Z, ),
[0 dn = [vir0)du,

whence (f,g)=(f’,g9) and we are done.

A helpful corollary to 1.2 is the following

2.3 CoroLLARY. If (H(z)), is a field of Hilbert spaces and I'< I1,H(z)
18 a linear subspace so that for any f € I', |f|? ts summable, then there exists
a unique smallest subspace I'21" in TI,H(z) such that ((H(2),T') is an
integrable family.

Proor. Let IV be the set of all finite linear combinations of products
of functions ¢ € M*(Z,u) and maps fe I. Then I"'2 1, I is aM>™(Z, u)-
module and it is easy to see that |g|? is summable for every g € I'". The
subspace I" will consist of those elements g € [T, H(z) which are limits of
Cauchy sequences with respect to ||| in I". It is clear that I" has the
desired properties.



78 WILBERT WILS

In practice, the above corollary is very useful, because often one meets
the situation, where a field of Hilbert spaces is given and also a subspace
I'ysTI,H(z). The space I'y is constructed from I'y as befcre I from I'
and now we consider the subspace I'< I'y’ which consists of those elements
fe I’y for which |f|? is summable. To I" we find then I". We see that in
this way any subspace I'\cII,H(z) determines a unique integrable
family.

We note that the subspaces I'cTI,H(z), so that ((H (z)),I’) is inte-
grable, can be partially ordered by inclusion. Theorem 1.2 and Zorn’s
lemma enable us to conclude that there are maximal elements among
the spaces I. These maximal elements indeed verify that if a vector
field f is so that |f|? is summable and (f,g) is measurable for all ge I,
then f € I" and they are characterized by this property. It is readily seen
that in contrast to the separable case, constant families are in general
not maximal. This, in fact, turns out to be the reason why it was not
possible in the classical definition of integrable families to dispense with
the countability hypothesis for a generating set for I

3. Subfamilies and tensor products.

3.1. DEFINITION. An integrable family ((H ’(z)),F’) is a subfamily of
the integrable family ((H(z)),I") if for every z€ Z, H'(z) < H(z) and if
I"er.

It is obvious that I” can be identified with a closed subspace of I"
and that then I is invariant with respect to the set 8 of diagonal opera-
tors. Conversely, any closed subspace I"<I" which is invariant with
respect to § determines a unique subfamily I < I'by fe I' iff f € I

We denote the set of all fe I' for which |f| € M®(Z,u) by I'°. In the
case where (Z,2,u) is not a finite measure space, we have to be a little
bit more careful. It is sensible to introduce then the set I" of all
feTIl,H(z) which are locally in I, that is, if 4 € 2’ summable and y, is
its characteristic function, then y,fe I'. Next we define I'® as the set
of bounded elements in I'". It is simple to see that I'!, I'*° and I" deter-
mine each other uniquely.

3.2. DerFINITION. Suppose &= ((H(2)),I;) and & =((H'(2)),T,) are
two integrable families of Hilbert spaces. There is a natural linear map ~
of I'*®I',™ onto a subspace T of TI,H(z)®H'(z). 1t is defined by
(f&f") (2)=f(2)®f(2) for all fe I';, f' € I'y.. Let I';g, be the smallest
subspace in [T, H(2)®H'(z) with I'c I, g, and so that

(H)QH' (2), Tege)
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is an integrable family. We denote this family by EQE” and call it the
tensor product of € and &'.

3.3. ProposITION. Let &= ((H(2),I") be an integrable family and K
fixed Hilbert space. Suppose &' is the constant family corresponding to K.
There exists a unique isomorphism U: I'.®K — f’8®8,, which for any
f el and x € K maps f Qx into (fQx)".

Proor. By z we denote that element of 1’; which satisfies Z(z)=2z
for almost all 2.
If f,, i=1,...,n, are elements of I' and z;, i=1,...,n, vectors of K,

then we find
no_ 2 n .
[|3F@n] au=3 [(Fof)du @) =

= i, =
The map which sends 3f,®z; into 3 (f;®x,) is defined on the algebraic
tensor product I'Q K and acts isometrically. We denote the continuous
extension to the Hilbert space tensor product of I"and K by U.

It is readily verified that the set of elements of the form ¥ (f;®z;)
is dense in (I'yg.) . Therefore U is onto and an isomorphism.

This proposition shows in particular that there is a unique isomor-
phism U: L2C,Z)QK -~ LXK,Z) so that U(jQx)=¢z, where ¢ e
LXC,Z) and x € K.

2

2":1 (f:®,)"

4. Regularisations.

This section will be primarily devoted to proving 1.7. We start by
showing that regularisations are unique in a strong sense. First a simple
case is treated.

4.1. LEMMA. If the constant family £ 2(H',Z) is a regularisation of the
constant family £ 2(H,Z), then dim H =dimH'.

Proor. If z € H, then x will denote the class of maps fe £ *(H,Z)
with f(z)=2 almost everywhere. A similar definition holds for 2" € H'.

Suppose {e,},.s is an orthonormal basis for H. Then {e,},.; is a system
which satisfies

1° Je,|=1,

2° (6,,6,)=0 for a+a’, .

3° iffeLf(H,Z) and (f,éa)=(3 for all x € J, then f=0.
It is clear that if {f,|feJ'} is an orthonormal basis for H' and if
U: LXH,Z)~ L2H' Z) is the isomorphism implementing the regu-
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larisation, then {f,}, ;. and {Ue,},., have similar properties as {é,},.-

Let H be finite dimensional. By choosing almost everywhere ortho-
normal representatives for Ue,, o € J, we see dimH’'2dim H. The con-
verse inequality follows from the remark that dim H is bigger than the
dimension of each finite dimensional subspace of H'. This settles the
problem whenever dim H or dim H' is finite. Now we assume that both H
and H' are infinite dimensional and that u(Z)=1. We consider (Ue,,f 8)s
«x€d, fed’, and note that for fixed «x € J, there are at most countably
many B €J’ such that (Ue,,f ﬁ) +0. This follows from the fact that for
each finite set F'cJ’ we get

= V)] 2 Sper [ Uef 2 dpe.

In the same way we see that for fixed g e J’, there are not more than
countably many « € J with (Ué,,f,) ) ¥0. The result is that

dimH £ XydimH’ = dimH’

and conversely, thus dimH =dimH’.
The general case follows easily from this.

4.2. ProPOSITION. Suppose ((H'(2)),I") and ((H"(2)),I") are both regu-
larisations of the same measurable family. Then we get for almost all

zeZ,
dimH" (z) = dim H'().

Proor. It suffices to show that if {Z,'};.; and {Z,;"}; ;. are the direct
decompositions of Z corresponding to the two direct sums of constant
families, then wu(Z;nZ;)+ 0 implies dimH'(z)=dim H"'(z) for z € Z;nZ;.

The restriction of ((H '(z)),F) to Z;nZ; is a constant family, which is
a regularisation of the restriction of ((H"(2)),I"") to Z;nZ;, which is also
a constant family. The conclusion thus follows from the preceding lemma.

The construction of a regularisation requires more work. The next
lemma is crucial in this construction.

4.3. LEmMa. Let ((H(z),I") be an integrable family of Hilbert spaces.
There exists an element g € I' with |g|2=|g| and for f e I' we have |g|f =f.

Proor. We consider the set P of elements § € I" with |§|2=|g|. We find

supjep [ Ifldu = « S 1.
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There is a sequence (g,,),.n in P such that

hmn-—)oof Ignl d/,t =x.
We put

gn, = gn(l_supk<nlgk|) and émn =

3

M3z
Qs
S

Then we get |g,,”'| 2 |g,,| and g, € I'. The sequence (§,,”")ncn is & Cauchy
sequence in /" and has a limit g. It can be readily verified that |g|2=|g|.
Moreover we get =] |9|du and from this fact it is easy to conclude that
\g|f =f for all f e I, if one uses that it is possible to apply the operators
T, € B to elements of I

The function (class) |g| is uniquely determined and we call |g| the
support function of I' and denote it by .

4.4. PROPOSITION. Any measurable family ((H(2)),I") (on a finite meas-
ure space) admits a regularisation.

Proor. We consider the collection % of subsets ¥ < I" with the proper-
ties:

1° |hj2=h|+0 for heF.

° (h,h')=0 for h+h', b,k € F.
3° Let )

5 =1{9/g€F, |g|z|h|} for heF
and )
={fel|(f,9)=0 for geF;}.

The support function of the measurable family determined by Fj*
is xj say. Then y;< h| and zj+|h|.

4° We denote by |F| the set {|h| |he F}. Any non-empty subset of

|F| contains a greatest element.
Let F, be a maximal family in I" of maps ¢ so that |g|=7, (§,§')=0 if
g=+g’. Such families certainly exist and they satisfy 1°, 2° and 4° of the
above definition. The maximality of ¥, implies that ¥, also satisfies 3
This proves that & is not empty.

We define a partial ordering on & by inclusion. Suppose {F, |» e J}
is a totally ordered chain in #. We put @=U, , F,. It is easy to see
that G satisfies 1°, 2° and 3° of the conditions for elements of #.

Let bk’ € G and he F, b’ ¢ F. Because &' ¢ F we get (%',9) =0 for all
g € F and therefore (3° applied to k) |A'| < |h|. For a subset @' <@ and
h e @, there is a v € J with A e F,. It follows from the above argument

Math, Scand. 26 — 6
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that if A’ € G and not |A'| < |k|, then &' € F,. The set |@'nF,| contains,
by assumption, a greatest element, |hy| say, with b, G'nF,. Since 1N
is also greatest in |G| we proved that G has property 4° as well.

Using Zorn’s lemma we infer that & contains a maximal element.
F= {éa}ael .

We denote by |F|" the subset of L*(Z,u) which consists of the infima
of subsets of |F| and of 1. The set |F| is totally ordered and ge|F
satisfies ¢>=@. Suppose ¢ € |F|’. Consider the set

| pelF|u{0}, p<@}.

This set contains a greatest element ¢°. Then ¢*<¢ and if ¢ € |F| is
such that ¢ < ¢, then there exists ¢’ € |F| with ¢ >$' = $ and we get

Pz
We see that if ¢,¢’ € |F|' and ¢ <¢’, then
P<pSP<.

Let G |F|" and G*={¢*|$ € G}. Because G*c|F|u{0}, there is a
greatest element @,® € G¢ with $, € @. The element ¢, is greatest in G.
We put

a; = [@-99du, pelFV,

Then a;+0 and it follows from the foregoing discussion that 3-a, <1.
It is in fact not difficult to see that the sum equals 1. For let ¢, be the
infimum of all ¢ € |F|u{l} with 5 ,=74@, where A<Z is a measurable
set of positive measure. Then =7, @, and not y_, <y, $,*. This shows
that supg g, (¢ —§°) = I. We note that there can be at most countably
many a and therefore the set |F|" is denumerable.

Choose sets 4 such that 4;nA4; =0 for ¢+ ¢, U; 5, 4; =Z and with
Xaz=¢—¢" We define d; as the cardinal number of the set

{e.e F |le.) 2 ¢}

and take Hilbert spaces H; with dimension d;. The sets 4; and the Hil-
bert spaces H; determine a direct sum of constant families ((H '(z)),F')
with H'(z)=H; if 2€ A; and fe I iff |f|* is summable and f|4 isa
measurable map from 4 into H;.

The idea is to prove that this direct sum of constant families is a
regularisation of the original family.

The maximality of F implies that for fe I with (f,é,)=0 for x eI
we have f=0. For a finite subset B<I and fe I" we get
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IFI? 2 Zeenll(f, el

which shows that there are at most countably many « € I with (f,é,)+0
and that 3 (f,é,)¢, exists. We infer from the remark made just before
that

F=3.6)é

and also
f = z$e|F|’ ZaEI (.f’ éa)ZAa éa

If I is the subset of I, which consists of the indices x € I with |e,| =,
then IZA“E |=1%.4;| for « € I; and T4z s =0for ae 1.

In each of the Hilbert spaces H ; we take an orthonormal base
{v, ¢ |xel;}. We denote by v, »? the element of I with v, (z) v,° for
almost all z € 4; and 0 almost everywhere else. For f el weput

- —

Uf = Zieipy Zaer; (f> e,) v’

Then U is a unitary map from I' onto I” which commutes with all
diagonal operators. This ends the proof.

4.5. COROLLARY. Let (Z,2,u) be a direct sum of summable sets. Any
measurable family on (Z,2,p) admits a regularisation.

Proor. We apply Proposition 4.4 to each of the summable sets which
belong to the direct decomposition of Z and fit the resulting families
together in the obvious way.

The corollary applies in particular to the case where Z is a locally
compact space and u a Radon measure.

Theorem 1.7 can also be derived from the well-known structure theo-
rem for discrete von Neumann algebras, which states that every discrete
von Neumann algebra is the product of homogeneous ones. The homo-
geneous von Neumann algebras are known [1, III. § 3].

For the discrete von Neumann algebra one must take the commutant
B’ of the commutative algebra 3. The proof of the above mentioned
theorem is not spatial in nature and involves typical von Neumann alge-
bra techniques.

5. Multiplicity theory.

Two operators A and B on a Hilbert space H are said to be (unitarily)
equivalent if there exists a unitary operator U on H such that UBU 1= 4.
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Two equivalent operators are geometrically indistinguishable. Our prob-
lem is to find a complete set of invariants for equivalence classes of
normal operators on H.

There is a one-to-one correspondence between normal operators and
spectral measures on the Borel subsets of the complex plane. Equiv-
alent normal operators are associated with equivalent spectral measures.

In general a spectral measure, abbreviated s.m., on a measurable space
(Z,2) is a map E, defined on 2, with values in the set of orthogonal
projections on a fixed Hilbert space H, so that E(Z)=1I, the identity
operator, and E(U;_,A4,)=37_,E(A4,), whenever (4,),.\ is a sequence
of mutually disjoint elements of X.

Two s.m. £ and E’ are said to be equivalent if there exists a unitary
operator U: H — H’', where H and H' are the underiying Hilbert spaces,
such that UE(A)=E'(A)U for all A € 2.

We remark that with every integrable family of Hilbert spaces there
is associated a natural spectral measure (n.s.m.), that is, 254 T;,.
It follows from 1.6 that two integrable families are equivalent iff their
n.s.m. are equivalent.

Every discrete von Neumann algebra 9 can be represented in such a
way that its commutant § is commutative. Let Z be the spectrum of 3
in the hull-kernel topology and X the set of Borel subsets of Z. To every
open and closed set 4 <Z corresponds a unique projection P, € 8 so
that P (2)=1iff ze A. The map A+~ P, defines a spectral measure on
(Z,%). Two discrete von Neumann algebras are isomorphic iff their
associated s.m. are equivalent.

We shall show how a relatively short proof can be given of the exis-
tence of a complete set of invariants for equivalent spectral measures.
The proof is based on Theorem 1.7. For a different approach cf. P .Hal-
mos [3, ch. IIT] and I. Segal [5].

We need some notation. As usual we write » <u for two measures »
and x on a measurable space (Z,2) if u(A4)=0 implies »(4)=0 for 4 € 2.
We indicate the situation »<u and u<v by writing u=v». We shall
make use of the fact that the partially ordered set F+ of all finite positive
measures on a measurable space (Z,2) is a boundedly complete lattice.
The infimum of two measures » and y is denoted by vAu. Two measures
v and yu are called orthogonal, v 1 u, if vAu is the zero measure 0. For any
subset 4 € F+ we put

A" = {veF+|vip, ued}.

A subset A< F+ is called a band iff A=A4". The band b(A4) generated
by A < F+ is by definition b(4)=A". Finally a direct decomposition of F+
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is a family {4;},.; of mutually orthogonal bands such that any element
v € F+ can be uniquely represented in the form v=3,_,», where », € 4,
and with order convergence.

To every spectral measure E we shall associate a direct decomposition
{A;};cs of F+ where the index set J is a set of cardinal numbers. The
invariant, as constructed here, is closely related to the multiplicity func-
tion of a s.m. introduced by Plessner and Rohlin [3, ch. ITI].

5.1. PropoSITION. To every spectral measure E on (Z,2) corresponds a
unique direct decomposition {A;};.; of Ft, where J is the set of cardinal
numbers not exceeding the Hilbert dimension of H.

Proor. We start by constructing to each u € F+ an integrable family
&, of Hilbert spaces on (Z,2). Let ue F+. For x € H we define v, € F+
by

vt 23 A (E(4)x,x)

and put H,={x | v,<u}. Obviously H, is closed and invariant under E.
The relation

Vagipy(A) = 2]aPr,(A4) + 218[2r,(4)

shows that H , is a linear subspace of H. There is a maximal set of unit
vectors {e,},.r in H so that (E(4)e,e,)=0 for AeX and x+a’. We
denote the Radon-Nikodym derivative of v, with respect to u by f,.
Then
g, =f} e LAZp).
For
veH, x=37,0,E(4)e,

we put
Vx = Zj la T;(A ga, o

where the notation is as before. It is readily verified that V, is a well-
defined, linear and isometric map from a dense subspace of H in L2 (H, Z),
which satisfies V, E(4d)x=T;,V x for all A €2, xe H. The continuous
extension of V, to H, is also denoted by V,,.

We remark that V, H,cL,*H,Z) is invariant with respect to the
nsm. F, of % 2H,Z). The subspace V, H, corresponds to an inte-
grable subfamily &, of % %(H,Z), which by 1.7 is equivalent to a direct
sum of constant families {(Z;,H,)};.;. The elements y, € L)(Z,u) are
uniquely determined by the condition dim H;+dim H," if i1’

Next we construct a direct decomposition of F+. If for a cardinal
number d < dim H, there is a 1 € J, with dim H;=d, then we put u;=jz,
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and u;=0 otherwise. The measures u; are mutually orthogonal, at most
countably many differ from zero and u=3,u,.

Now suppose »+ 0 and v < 4 for some d and u € F+. We have H,cH,.
The integrable family &,, associated with H,, is equivalent to the fa-
mily &, associated with V H,. There is a unique jyeL’(Z,u) so that
v=ju. There follows that &, can be gotten out of &, by multiplying
the elements of &, by x. The family &, is thus a constant family of
dimension d since y < y,., where dim H;=d, the notation being as before.

We obtain that €, is a regularisation of €, and so v=y,.

Finally we put 4;={u, | u € F+} for every cardinal number d < dim H
and we show that {4, | d <dim H} is a direct decomposition of F+.

Because every u=3X,u, with u; € 4,4, it suffices to prove that the sets
A, are mutually orthogonal. Suppose d+d’ and v=pzau'y for some
u,u' € F+. Since »<uy we get v=v; and similarly v=v;. But we also
have that »,; is orthogonal to »; and thus

—_— — —_ ’
V=vgAve =0 = ugApg .

Therefore {4, | d <dim H} does the trick.

5.2. PropPoSITION. Equivalent spectral measures E and B’ are associated
with the same direct decomposition of F+.

Proor. If £ and E’ are equivalent, then the restrictions E, and E,’
to the spaces H, and H,' are equivalent. Consequently the restrictions
F, and F, of the n.s.m. of # 2%(H,Z) and ¥ *H',Z) to V, H,and V H,/
are equivalent and thus &, is equivalent to &,’. The decomposition of u
with respect to &, is therefore equal to the decomposition with respect
to &,’. The statement readily follows from this.

The next proposition shows that we in fact have a return ticket.

5.3. PROPOSITION. To every direct decomposition {4, |d=d,} of F+
corresponds a spectral measure E such that the direct decomposition of F+,
which is associated with E, equals {4, |d <d,}.

Proor. For each d<d, there is a maximal family {u, ;|xeJ4} of
mutually orthogonal elements in A4,;. Suppose H; is a Hilbert spaceof
dimension d. We put

H = S4c4, Zucs iy aHa Z) .
To each L2 ,(H,, Z) there is the ns.m. F, ;. We consider
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F = zdgdo ZaEJdFa,d

Then F is a s.m. on (Z,2).

If {4, |d=<dimH} is the direct decomposition of F+ associated with
F, then clearly u, ;€ 45 for a € J; and also if » is the supremum of
measures equivalent to the measures p,;, d fixed, then » € 4,;". This
implies 43 4,4 for alld <d,. Because {4, |d=dy} and {4, |d<dimH}
are direct decompositions of F'+, this implies 4;=Ad’ for all d <d,.

Finally we have

5.4. ProPOSITION. If the s.m. B and E' are associated with the same
direct decomposition, then B and E' are equivalent.

Proor. Let E be a s.m. and {4, |d=<dimH} the associated direct
decomposition. We take {u, ;| x € J;} as in 3.3 and note that if w1,
then H, 1 H,, where H, and H, are as in 3.1. We get

H = Zd EaeJdea,,p E = Z(l ZaeJdE[la’d .

The s.m. E, , is the restriction of ¥ to H, , and, as remarked in 3.3,
it is equlvalent to F, ., the nsm. of Z (Hd,Z) where dimH;=d.
Thus F is equivalent to

F =33

which is the s.m. canonically associated with {4, |d <dim H}.

If E' is another s.m. with the same decomposition of ¥+ corresponding
to it, then also E’ is equivalent to F. This implies that £’ is equivalent
to K.

In total we have proved the following.

5.5. THEOREM. Let (Z,2) be a measurable space. The set of direct de-
compositions of F+, which are indexed by the cardinal numbers, is a com-
plete set of invariants for the spectral measures on (Z,X).

The relation between the direct decompositions of F+ associated with
a s.m. E and the multiplicity function U of E is very simple [3, ch. III].
Let u e F+and pu=34u,, then we put Ug(u)=inf{d | ug+ 0}. It is readily
verified that Uy thus defined is a multiplicity function and that Uy is
the multiplicity function of E.

The reason why we have chosen direct decompositions rather than
multiplicity functions is that it seems to us that direct decompositions
are a little bit easier to handle and are maybe intuitively more clear.
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It is obvious that the above multiplicity theory is to a large extent
inspired by [3, ch. III].

In the case of a separable Hilbert space the theory simplifies consider-
ably, since it is then easy to show the existence of a measure u € F+ so
that H=H,,.

In general it is easy to see that for a spectral measure £ one has

Ao = {p|H,=0} = ;|2 HY,

which shows that if E is simple, that is, 4;,=0 for d=2, then
{v, |re H}"" =4, and {», | x € H} is a complete invariant for £. We note
that F is simple iff the smallest weakly closed algebra in L(H) which con-
tains the operators {£(4) | 4 € 3} is maximal abelian.

The fact that two simple spectral measures £ and £’ are equivalent
iff the sets {v, |z e H} and {»,’ |2 € H} coincide is a theorem due to
Wecken and to Plessner and Rohlin.
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