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SIMPLICIAL DECOMPOSITION OF BOUNDARY
MEASURES ON CONVEX COMPACT SETS

ERIK M. ALFSEN and CHRISTIAN F.SKAU

Let K be a convex compact subset of a locally convex Hausdorff space
E; let M;*(K) be the convex and vaguely compact set of all positive
normalized (Radon-) measures on X, and let M * be the subset of M,*+(K)
consisting of all measures with barycenter « € K. The simplicial measures
on K are the extreme points of the sets M+, x € K.

It was observed by Douglas [10] that a measure u € M,*(K) is sim-
plicial iff the space 4(K) of continuous affine functions on K is dense in
LY(u). (Cf. also Lindenstrauss [15].) It has recently been proved by
Vincent-Smith [19], and independently by Mokobodzki and Rogalski [17]
that every point in K is the barycenter of a simplicial boundary measure
u € M,+(K) (u vanishes off every boundary set B; where fe C(K) [6]).
This result is non-trivial since the set Z, of all boundary measures in
M .+ is non-compact in the vague topology (as well as in any other known
topology). In fact, this result is seen to reduce to a well-known theorem
of Carathéodory if K <R". (Cf. e.g. [8].)

In the present paper we shall give complete proofs of the following
results stated in the note [2]:

TaEorREM 1. The set 9,Z, of all simplicial boundary measures with
barycenter x € K is a (non-empty) Baire space in the vague topology. If K
s metrizable, then 0,7, is a Gy-subset of M +(K); hence it is a Polish space.

TaEOREM 2. There exists a locally convex topology o on M(K)=C(K)*
which is stronger than the vague topology and weaker than the norm topology
and for which

Z, = (convo,Z,), forall xeK .

Specifically, o is the weak topology defined on M(K) by the linear space F
obtained by adjoining to C(K) all envelopes f of functions fe C(K).

CoroLLARY. K ts a Choquet simplex iff every point in K is the bary-
center of a unique simplicial boundary measure.
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The next theorem establishes a decomposition into simplicial com-
ponents within each Z_, v € K. In this connection we recall that a meas-
ure ¢ is said to be pseudo-carried by a set Y if 9, ([Y)=0, where 9, is the
interior Baire measure associated with 9 [6].

THEOREM 3. For every boundary measure ue M,+(K) with barycenter
x € K there exists a positive and normalized measure & on the vaguely com-
pact set M,+(K) such that

wlh) = [ 1) do0)  forall feC(K),

and such that O is pseudo-carried by 9,Z,. If K is metrizable, then
H02,) =1

1. Preliminaries from Choquet boundary theory.

For the sake of convenience we shall list some basic facts which will
be needed in the sequel. Complete proofs can be found in the papers of
Bauer [4], Edwards [11] and [12], Davies [7], and Boboc and Cornea [5].

A cone S of continuous real valued functions on a compact Hausdorff
space X is said to be admassible if it contains the constant functions and
separates points. It is said to be max-stable, if fvg € § whenever f,g € S.
The max-stable hull S of an admissible cone S consists of all f,v...vf,
where f,,...,f, € 8. By Stone’s Theorem, S—S is dense in C(K).

An admissible cone S over X determines the following (partial) ordering
on M,*(X):

(1.1) u<gv <= u(f)sv(f) forall feS.
The S-Choguet boundary dgX consists of all points z € X such that
(1'2) /‘e‘ZIII_'—(X)’ <ght = E=p.

By Bauer’s maximum principle, 0gX is non-empty. In fact for every
fe S there is an xedgX such that f(x)=sup{f(y)|ye X} (cf. [3]).
Clearly also X =05X

If Sis an adm1ss1ble cone over X and f: X — [x, o], then fs is the
pomtw1se supremum of all g€ S, g=f. Similarly, if f: X > [—o0,x],
then fg is the pointwise infimum of all ge — 8, g2 f. Clearly fS is point-
wise limit of an ascending net from S, and fg is pointwise limit of a
descending net from —S. Note also that S-envelopes and S-envelopes
coincide.

It is easily verified that if § is a max-stable cone over X and
u,v € M *+(X), then u<gv iff



64 ERIK M. ALFSEN AND CHRISTIAN F.SKAU

(1.3) Wf) < u(fs) forall feO(K).

By a standard argument based on the Hahn-Banach Theorem one
obtains the following result, which we state as a proposition for later
references:

PropositioN 1. If S is an admissible cone over X, if fe C(X) and if
u € M+(X), then there is a v € M+(X) such that u<gv and v(f)=p(fs).

CoroLLARY 1. If S is a max-stable admissible cone over X and ue
M, +(X), then p is maximal in the ordering <g iff u(f)=u(fs) for all
JeC(K).

Specializing to one-point measures u=e¢,, and remembering that
0¢X =03X, one obtains the following result, which is independent of
max-stability :

CoROLLARY 2. If 8 is an admissible cone over X and xze X, then
z € 0g X iff f(x)=[s(x) for all fe C(X).

If S is an admissible cone over a metrizable compact Hausdorff space X,
then one may use the density of §—§ in C(X) to construct a sequence
{f.} from S such that ||f,||<1, and

{&fa—Bfm | Mn=12,...;a,8>0}

is dense in C(X), and now it follows from (1.2), (1.3), and from Corollary 2
above that the function f=3%_,2-"f, satisfies

(1.4) redgX < flx)=fs@).

Hence we conclude by the upper semi-continuity of fy that 83X is a
Gy-subset of X if X is metrizable.

Corollary 2 is also the starting point in the proof of the Choquet—
Edwards Theorem stating that dgX s a Baire space (in the relativized
topology) for every admissible cone S over a compact Hausdorff space X
[9; Appendix B.14], [12].

By a straightforward application of Zorn’s Lemma and Corollary 1
above, one can prove the following:

ProrositioN 2. If 8 is a max-stable admissible cone over a compact
Hausdorff space X, then there exists for every x € X a measure u € M,+(X)
such that e,<gp and such that u is maximal in the ordering <g. If X is
metrizable, then p(0gX)=1.

In the general (non-metrizable) case one can prove by means of a reduc-
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tion to the metrizable case, based on an idea of Meyer [16], that a
< g-maximal measure y € M,*+(X) is pseudo-carried by 95 X.

Lemma 1. If 8,T are admissible cones over compact Hausdorff spaces
X, Y respectively, and if ¢ is a continuous map of X onto Y such that
e*(T) <=8, then 0, Y <p(dgX).

Proor. For a given y € 9, ¥ we define S, =8 | p~Y(y). Clearly 8, is an
admissible cone over ¢~!(y), and we claim that every S, -Choquet point
x of p~1(y) is an S-Choquet point of X. In fact if ¢, <qu, then the direct
image of p by ¢ satisfies ¢, <p@(u), and so e,=¢(u). It follows that
Supp (x) <¢~'(y), and hence ¢,=pu, since x is an §,-Choquet point of

P~ Ny).

Lemma 2. If S is an admissible cone over a compact Hausdorff space X
and {f,} is an upper bounded sequence from C(X) such that limsup, f,(x) <
a€R for all x € 93X, then

lim supnfn’ sx) S« forall zeX.

Proor. For an arbitrary point x,e X there exist functions g, €S
such that

(1'5) In § fn’ .?n,S(wo) < gn(xo)'l'n_l .

Define @ : X - R¥® by &(x)={g,(x)}, and write ¥ =D(X), y, € D(z,).
Let T' be the subcone of C(Y) generated by the projections p, of R¥
and the constants. By Lemma 1, &(93X)<0,Y, and hence it follows
from (1.5) that limsup,, p,(y) <« for all y € 0, Y. Applying Proposition 2
to the cone 7', we obtain a measure y € M,+(Y) such that u(6,Y)=1
and such that ¢, <pu. By Fatou’s Lemma:

lim Supnf;,S(xO) = lim SuPngn(xo) = lim Supnpn(yﬂ)

< lim Supn/u(pn) = ,u(hmsupnpn) S,
and the proof is complete.

Prorosition 3. If S is a maz-stable admissable cone over a compact
Hausdorff space X, then there exists for every x € X a measure u € M,+(X)
which is pseudo-carried by 0gX such that e, <g u.

Proor. To show that the <g-maximal measure u of Proposition 2 is
pseudo-carried by d¢ X, it suffices to show that u(C) =0 for every compact
G,-set, C such that CnogX =¢. This follows by application of Lemma 2
and (the dual of) Corollary 2 of Proposition 1 to a bounded sequence
{f.} from C(X) converging pointwise to the indicator function y.

Math. Scand.26 — 5



66 ERIK M. ALFSEN AND CHRISTIAN F.SKAU

2. Unilateral representation theorems in ordered convex compacts.

We shall use the term ordered convex compact to denote a convex com-
pact subset K of a locally convex Hausdorff space £ provided with a
(partial) ordering defined by a cone E+ which is closed and proper
(that is, E+n(—E+)={0}). The isotone (order preserving) functions in
A(K) form a cone, which we denote by L(K), or briefly by L. It follows
by a standard separation argument (based on the Hahn-Banach Theo-
rem) that L determines the ordering of K, in that

(2.1) 2=y < l(x)sly) forall leL.

In particular, L separates the points of K.

The set of all maximal points of an ordered convex compact K will be
denoted by Z(K) or briefly by Z. It follows by a standard application
of Zorn’s Lemma that there exists for every point € K a maximal
point z € K such that x <z. In particular Z+¢. It is also easily verified
that Z is a union of faces. (It is a “o-face” in the terminology of Goullet
de Rugy [14].) Hence, if Z is convex, then it is a face of K.

The L-envelopes of functions on an ordered convex compact K will
be called monotone convex and concave envelopes. They are related to
the customary convex and concave envelopes by the inequalities

(2.2) fosfsrsfsh.

The ordering < defined on M,+(K) by the max-stable cone L will
be denoted by <<. It is related to the customary ordering of Choquet
by the formula
(2.3) u<v => u<<v.

Observe that if u<<v and if z,,z, are the barycenters of 4 and » res-
pectively, then for every l e L we shall have l(z,) = u(l), l(x,)=»(l), and
hence also l(z,) <l(z,). By virtue of (2.1) this gives the implication

(2.4) u<<Lv => x, = z,.

LemmA 3. A point x of an ordered convex compact K belongs to Z iff
ar(x)=a(x) for all a € A(K).

Proor. Assume first that x € Z, and consider an arbitrary a € 4(K).
By Proposition 1 there is a pe M,+(K) such that e,<<p and u(a)=
dr(x). By (2.4) and by the maximality of x, this gives x=z,. Since
a € A(K), we obtain a(x)=u(a)=a(z).

Assume next that ¢ Z, say x <y € K. By (2.1) there is an [ € L such
that I(z) <l(y). Now
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Uo) < Uy) < Iply) = @),
and the proof is complete.

ProprosITioN 4. The set Znd,K of maximal extreme points of an ordered
convex compact K ts equal to the L-Choquet boundary o, K.

Proor. Assume first that xeZng,K, and consider an arbitrary
Ji’ € C(K). By Corollary 2 to Proposition 1 it suffices to prove that
Jr(@)=f ().

By a known characterization of extreme points due to Hervé [13],
there is, for given ¢> 0, an @ € 4(K) such that

(2.5) f=a, oa@) <f(x)+ie.

By the Lemma &, (x) =a(x); and by the definition of monotone envelopes
there is an l € — L such that

(2.6) a =1, lz)<alx)+ie.

Combining (2.5) and (2.6) we obtain f<! and l(x) <f(x)+e¢. Since ¢>0
was arbitrary, this gives fL(x) =f(z).

Assume next that « € ;K. Consider first an arbitrary y € K such that
x <y. Observing that every function in L is isotone, we obtain e,<<e, .
By assumption z € 0, K =0; K, and so x=y. This proves x to be a maxi-
mal point of K.

Consider next an arbitrary u € M,*(K) such that x=x,. Now ¢, <y,
and it follows by (2.3) that e,<<u. Since x € d; K, we obtain ¢,=pu.
This shows that z is an extreme point of K, and the proof is complete.

REMARK. It follows from Proposition 4 that Zno, K +¢. It is also
possible to give a more direct proof of this statement. In fact, Moko-
bodzki and Rogalski [17] have shown by a direct argument that
Zno, F=+0 for every closed face ¥ of K which is “hereditary” in the
sense that

zel,ye K, x=y = yel.

ProrositioN 5. If K is an ordered comvex compact, then Zno K is a
non-empty Baire space in the relativized topology. If K is metrizable, then
Zno,K is a Gy-subset of K. For every maximal point z € Z there exists a
measure p € M,+(K) pseudo-carried by Zno, K such that

(2.7) a(z) = f adu forall ae A(K).

If K is metrizable, then u(9,K)=1.
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THE PROOF is a direct application of the results of Section 1, in par-
ticular of Proposition 3. Note that ¢,<< u implies z<z, by virtue of
(2.4). By maximality z=x,, which gives formula (2.7).

3. Simplicial boundary measures.

The following proposition was proved by Douglas in a slightly different
setting [10]. For the sake of completeness we give the proof.

ProposITION 6. If K is a convex compact set in a locally convex Haus-
dorff space and p € M, H(K), then u is simplicial ¢ff A(K) is dense in L (u).

Proor. Assume first that 4(K) is non-dense in L(u). We shall show
that p is non-extreme in M,* where z=x,.

By assumption there is a non-zero element 2 of L*®(u) such that
[2llo=1 and u(ah)=0 for all a € A(K). The measure v defined by dv=
hdu, satisfies —u=<»<u. Hence the two measures y,=u+v, yp=p—v»
are positive and non-equal. Moreover, ua)=p(a)=a(x) for i=1,2
and a € A(K). Hence u,,u, € M,*, and p=3}u; + 3y, is non-extreme.

Assume next that x4 is a non-extreme point of M _*, say u=3u, + u.
where py, 1, € M, * and p, = u,. Now 0= u, <24, and so du, =hdu, where
heL>(u)and 0=h<2a.e. (). Also 1—h is a non-zero element of L™(u)
since u; # u,, and 1 — A annihilates 4(K) since pu(a(1—h))=u(a)— u,(a)=0
for all @ € A(K). This proves that 4(K) is non-dense in L(u).

ProrosITION 7. Let K be a convex compact set in a locally convex Haus-
dorff space and let ye M,*(K) be a measure of finite support, say p=
2j 1256z, Then p is simplicial iff {xy,...,2,} is an affinely independent
set of points.

Proor. Assume first that {,,...,z,} is affinely dependent, say
(31) z;;lﬂjxj = O) 2‘?=1ﬂj =0 ’
where {fy,...,8,}#{0,...,0}. Define h e L®(u) as follows:

_ [ Bild i y=m;, je{l,...,n},
h(y) = 101 if y¢{x1,---7xn}°

Clearly h is a non-zero element of L>(u) and for every continuous linear
functional @ on the given locally convex space,

mlah) = 37 fialx;) = a(35_, ;%) = 0, u(h) = 27,6 =0,

and so u((a+ «)k)=0 for all x € R. By density u(a’h)=0 for all a’ € A(K).
It follows that A(K) is non-dense in L(u), and by Proposition 6, u is
non-simplicial.
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Assume next that u is a non-extreme point of M+ where x=x,=
2i12;%;, say w=3%u,+4u, where u,,up € M,* and u; +p,. Necessarily

/‘i=2?=10‘ij€xi’ where 0<«,; <21, for j=1,...,n and ¢=1,2. Also z=
Siqo%; for i=1,2, and so
(3.2) i1 (g —og)w; = 0.

The coefficients of (3.2) have zero sum, and they do not all vanish since
U1+, Hence {x;,...,x,} is affinely dependent.

ProrosiTiON 8. If K is a convex compact subset of R* and u € M,+(K),
then u is stmplicial iff u ts supported by an affinely independent set of
(at most n+ 1) points.

Proor. By Proposition 7 it suffices to assume that u is simplicial and
to show Supp () affinely independent. To this end we define F to be
the affine span of Supp (), and we consider an affinely independent sub-
set J={x,,...,%,} of Supp(u) such that F is the affine span of J.
Now we assume that there is a point y € Supp(u) \J, and we shall show
that this contradicts the simpliciality of u.

Let U be a bounded neighbourhood of 0 in R® such that the sets
zo+U,...,2;,;+U; y+ U are pairwise disjoint. By Proposition 6 there
exists a sequence {a,} from A(F) which converges in L'(u) to the indica-
tor function of the set y+ U. Writing W= U;?:O (2;+ U), we obtain

(3.3) [ 1aal du 0,
w
and
(3.4) f a,du > u(y+U) .
y+U

(For brevity we write p(4) in the place of u(AnK) for A<R") We
claim that the functional

p:a9fla|d[u
W

is a norm on A(F). Clearly, it is a semi-norm, and if p(a)=0, then
a(xy)=...=a(x,)=0 since a is continuous and x; € Supp(u) for j=
0,...,k, and this in turn implies =0 on F since a is an affine function
and F is spanned by x,,...,z;.

The norm p on the finite dimensional space A(F) must be topologically
equivalent to the supremum norm over KnF. Hence {a,} converges
uniformly to 0 on K by virtue of (3.3). However, u(y+ U)+0 since
y € Supp (u), and hence (3.4) gives a contradiction.
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CoroLLARY. If K is a convex compact subset of R™, then a simplicial
boundary measure y € M,+(K) is supported by a set of at most n+ 1 extreme
points.

4. Completion of the proofs of the main theorems.

Theorem 1 and Theorem 3 follow easily from the results of Section 2,
while the proof of Theorem 2 requires a separate argument based on
Bauer’s maximum principle. The specialization to the classical Cara-
théodory Theorem is evident by the results of Section 3.

Proor or THEOREM 1 AND THEOREM 3. The set M+ is an ordered
convex compact in the vague topology and in the ordering of Choquet.
Specifically, the positive cone of M(K)=C(K)* for this ordering consists
of all u such that u(f)=0 for every convex function fe C(K). By a
known characterization [6] of boundary measures, Z, is the set of maxi-
mal elements of M, *. (Z,is a face of M+ in the present case.) Now an
application of Proposition 5 completes the proof.

Proor or THEOREM 2. The set Z, consists of all u e M+ such that
u(f—f)=0 for all fe C(K) [6]. Hence Z, is closed in the topology o.
To prove that Z, is contained in the o-closed convex hull of 9,Z_, we
assume the contrary, say

(4.1) U € Zy\(convd,Z,),.

Now there exists (by Hahn-Banach separation) a function k€ F such
that
(4.2) 8UD,e5,7,(K) = & < (k) .

By the definition of F,
k= Bo+ 3518l

where f,. . .,f, € C(K) and f,,...,8, € R. All measures occuring in (4.2)
are boundary measures, and therefore one may replace the function &
by the continuous function

kK = By + 371815 -
Next we may replace k' by its (l.s.c.) convex lower envelope K. By a
well-known theorem (based on the Hahn—Banach Theorem [6]) there is
a net {g,} of continuous convex functions on K such that g,/ k. Hence
there is a continuous convex function ¢ on K such that g <k’ and such
that
(4.3) SUP,¢,2,7(9) = & < pu(g) .
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Now v b »(g) is a continuous, affine and isotone function on M, +. By
Bauer’s maximum principle it attains its maximum value at the Choquet
boundary defined by the cone of such functions. By Proposition 4 this
Choquet boundary is equal to the set Z,no, M, *=0,Z,. (Recall that
Z, is a face of M_*.) By (4.3) this is a contradiction, and the proof is
complete.

ReMAREK. The conclusion of Theorem 2 does not subsist if ¢ is replaced
by the vague topology or by the norm topology. In fact let K=
conv(DuUL) where D is a plane disk in R3 and L is a line segment orthog-
onal to D which meets D in a point y €9, Dn(L\0,L). The set Z,
determined by the center x of D is non-closed in the vague topology;
and the set 0,Z, consists of measures supported by at most four points
(Proposition 8), hence the norm closed convex hull of 9,Z, consists of
discrete measures only. Thus we shall have

< Z, < (convo,Z

(COnV ae ZI x)vague )

)norm

and both inclusions are strict.
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After the present paper was submitted, we have become aware that
the result quoted in the Remark of Section 2 above has already been
proved by G. Lumer in 1963 [21]. Also we take the opportunity to
mention Andenss’ forthcoming paper [20], where Vincent-Smith’s con-
struction of simplicial boundary measures is presented in a more gene-
ral setting.
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