ON A COMPUTATION RULE FOR POLARS

KUNG-FU NG

1.

Let (E, τ) be a locally convex topological linear space over the real field R; and let E^* be the continuous dual space of E. The *polar* of a subset A of E is denoted by A^n and is defined by

$$A^{\pi} = \{ f \in E^* : f(a) \leq 1, \ \forall a \in A \}.$$

Let S and T be convex subsets of E containing the origin. It is well known that if S and T are closed then $(S \cap T)^n$ is the w^* -closed convex hull of $S^n \cup T^n$. In this note, we show that in order to draw the same conclusion the closure of S and T can be replaced by a slightly weaker condition. This generalization yields immediately a unified proof of a theorem of Grosberg–Krein [2] and a theorem of Ellis [1] in the duality theory of partially ordered Banach spaces.

2.

We first prove the following basic lemma:

LEMMA 1. Let S and T be convex subsets of (E, τ) containing the origin. Then the following propositions hold:

- (i) If $\overline{S} \cap \overline{T} = \overline{S \cap T}$ (for example, S and T are closed) then $(S \cap T)^n = \overline{\operatorname{co}}(S^n \cup T^n)$, where $\overline{\operatorname{co}}(S^n \cup T^n)$ denotes the w^* -closed convex hull of $S^n \cup T^n$.
 - (ii) If the origin is an interior point of S and of T, then $\overline{S} \cap \overline{T} = \overline{S \cap T}$.

PROOF. Since \overline{S} and \overline{T} are closed convex sets containing the origin, $(\overline{S} \cap \overline{T})^n$ is the w^* -closed convex hull of $\overline{S}^n \cup \overline{T}^n$ (see, for instance, [3, p. 126]). Thus, if $\overline{S} \cap \overline{T} = \overline{S} \cap \overline{T}$, we then have

$$(S \cap T)^n = (\overline{S \cap T})^n = (\overline{S} \cap \overline{T})^n = \overline{\operatorname{co}}(\overline{S}^n \cup \overline{T}^n) = \overline{\operatorname{co}}(S^n \cup T^n).$$

To prove (ii), let $x \in \overline{S} \cap \overline{T}$. Since S is a convex set containing the origin as an interior point, it follows that $\lambda x \in S$ for each $0 \le \lambda < 1$ (λx is in fact an interior point of S, see [3, p. 38]). Similarly $\lambda x \in T$. Letting

Received December 6, 1968.

 $\lambda \to 1$ in $\lambda x \in S \cap T$, we have $x \in \overline{S \cap T}$. This shows that $\overline{S} \cap \overline{T} \subseteq \overline{S \cap T}$. Consequently $\overline{S} \cap \overline{T} = \overline{S \cap T}$ since it is obvious that $\overline{S} \cap \overline{T} \supseteq \overline{S \cap T}$.

3.

Let X be a Banach space over R with a closed wedge W, let Σ and U denote the closed and open unit ball in X respectively, let $\Sigma^+ = \Sigma \cap W$ and $S = \Sigma + W$, and let X^* denote the Banach dual space of X, with the closed unit ball Σ^* . The dual wedge W^* is defined by $W^* = -W^n$. Let $\Sigma^{*+} = \Sigma^* \cap W^*$ and $S^* = \Sigma^* + W^*$. Since $\Sigma \subseteq S$ and $W \subseteq S$, $\Sigma^* \supseteq S^n$ and $W^n \supseteq S^n$. Similarly, regarding X as the continuous dual space of X^* with the $\sigma(X^*, X)$ -topology, we have $S^{*n} \subseteq \Sigma^{*n} = \Sigma$, and that $S^{*n} \subseteq W^{*n} = -W^{nn} = -W$ (the last equality follows since W is closed). Notice that S^* and S^* are $\sigma(X^*, X)$ -closed. It follows that

$$(S^* \cap -S^*)^{\pi} = \overline{\operatorname{co}}(S^{*\pi} \cup -S^{*\pi}) \subseteq \overline{\operatorname{co}}(-\Sigma^+ \cup \Sigma^+).$$

On the other hand, let $x \in \Sigma^+$. Let $f \in S^* \cap -S^*$. Then there exists h in Σ^* such that $f \le h$. Hence $f(x) \le h(x) \le 1$. This shows that $x \in (S^* \cap -S^*)^n$ and hence that $\Sigma^+ \subseteq (S^* \cap -S^*)^n$. Since $(S^* \cap -S^*)^n$ is symmetric, convex and closed, it follows that $\overline{co}(\Sigma^+ \cup -\Sigma^+) \subseteq (S^* \cap -S^*)^n$. Therefore

$$(1) (S^* \cap -S^*)^{\pi} = \overline{\operatorname{co}}(\Sigma^+ \cup -\Sigma^+).$$

Similarly, by lemma 1, we have

$$(S\cap -S)^\pi = \overline{\operatorname{co}}\,(S^\pi\cup -S^\pi) \subseteq \overline{\operatorname{co}}\,(-\varSigma^{*+}\cup\varSigma^{*+}) = \operatorname{co}\,(\varSigma^{*+}\cup -\varSigma^{*+})\;.$$

(The last equality holds since $\operatorname{co}(\Sigma^{*+}\cup -\Sigma^{*+})$ is $\sigma(X^*,X)$ -compact.) Further, by an argument similar to the one above, we can verify that $\operatorname{co}(\Sigma^{*+}\cup -\Sigma^{*+})\subseteq (S\cap -S)^{\pi}$. Consequently,

$$(S \cap -S)^{\pi} = \operatorname{co}(\Sigma^{*+} \cup -\Sigma^{*+}).$$

Definition. Let c be a positive constant. W is said to be c-normal if

$$S \cap -S \subseteq c\Sigma$$
,

equivalently,

$$x,y,z \in X, x \leq y \leq z \Rightarrow ||y|| \leq c \max\{||x||,||z||\}.$$

W is said to be c-generating if

$$c^{-1}\Sigma \subseteq \operatorname{co}(\Sigma^+ \cup -\Sigma^+)$$
.

We now give an alternative proof of the following theorem:

16 KUNG-FU NG

THEOREM (Grosberg-Krein [2] and Ellis [1]). Let X be a Banach space with a closed wedge W. Then:

- (i) W is c-normal if and only if W* is c-generating.
- (ii) W^* is c-normal if and only if W is $(c+\varepsilon)$ -generating for each $\varepsilon > 0$.

Proof. (i) By simple computation rules for polars and formula (2), we have

$$S \cap -S \subseteq c\Sigma \iff (S \cap -S)^n \supseteq c^{-1}\Sigma^* \iff \operatorname{co}(\Sigma^{*+} \cup -\Sigma^{*+}) \supseteq c^{-1}\Sigma^*.$$

(ii) Since X is a Banach space, it follows from a theorem of Klee (cf. [1, lemma 7]) that $co(\Sigma^+ \cup -\Sigma^+)$ contains every open ball in which it is dense. Thus it follows from (1) that

$$\begin{split} S^* \cap -S^* &\subseteq c \varSigma^* \iff (S^* \cap -S^*)^{\pi} \supseteq c^{-1} \varSigma \\ &\Leftrightarrow \overline{\operatorname{co}} (\varSigma^+ \cup -\varSigma^+) \supseteq c^{-1} \varSigma \\ &\Leftrightarrow \operatorname{co} (\varSigma^+ \cup -\varSigma^+) \supseteq c^{-1} U \\ &\Leftrightarrow \operatorname{co} (\varSigma^+ \cup -\varSigma^+) \supseteq (c+\varepsilon)^{-1} \varSigma \quad \text{for each } \varepsilon > 0 \;. \end{split}$$

REFERENCES

- A. J. Ellis, The duality of partially ordered normed linear spaces, J. London Math. Soc. 39 (1964), 730-744.
- J. Grosberg and M. Krein, Sur la décomposition des fonctionnelles en composantes positives, Doklady Akad. Nauk SSSR (N. S.) 25 (1939), 723-726.
- 3. H. H. Schaefer, Topological vector spaces, Macmillan, New York, 1966.

UNIVERSITY COLLEGE OF SWANSEA, U.K.

AND

UNITED COLLEGE, THE CHINESE UNIVERSITY OF HONG KONG, HONG KONG