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ON HOMOTOPY INVARIANCE OF THE
TANGENT BUNDLE I

JOHAN L. DUPONT

1. Introduction.

A well-known result of M. F. Atiyah [2] states that if M and M’ are
compact g-dimensional oriented differentiable manifolds and f: M — M’
is an orientation preserving homotopy equivalence, then f* <’ is stably
fibre homotopy equivalent to 7. Here 7 and t’ denote the tangent
sphere bundles of M and M’ respectively. The problem to be studied
in this note is, whether the word ‘“‘stably’ can be cancelled in the above
statement.

This was partly done by W. A. Sutherland [16] and we follow the
line of his paper. Only we use a method of “least indeterminacy’ intro-
duced by W. Browder [5] to define an invariant 4(£) for certain (¢ —1)-
dimensional sphere bundles & over M4, ¢ odd and different from 1,3,7.
This invariant is a substitute for the Euler class in the even case. Un-
fortunately I am not able to show that b(£) only depends on & except
in the case, where t(M9) is stably homotopy trivial, in which case this
is a consequence of the solution of the Hopf invariant one problem.
Therefore, this paper only gives new information for ¢=2¢—1; but
nevertheless I still hope to solve the general case by the same method.

At last we remark that b(7)=y*(M?), the semi-characteristic intro-
duced by M. Kervaire [8].

2. Stably equivalent bundles over a manifold.

SH(n) is the space of maps §7-1 — §7-1 of degree + 1, and B,,=BSH(n)
is the classifying space, defined by J. Stasheff [14], for oriented (n—1)-
dimensional sphere bundles.

Consider a ¢-dimensional manifold M and an embedded disk D?< M
with boundary 8?-1. According to J. Milnor [10, § 8] the triad

After this was written it was pointed out to me that the problem was solved in general
by different methods by René Benlian and John Wagoner in C. R. Acad. Sci. Paris Série
A-B 265 (1967), A 207-A 209.
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(M\D°, 821, F) can be given a ‘‘self-indexing’”’ Morse function with
no points of index g. So N =M \ D° has the homotopy type of a (g—1)-
dimensional CW-complex L, and M has the homotopy type of K=
Luget, where §: 871 -~ N is the injection, and e¢? denotes a g¢-cell.

Pinching S?2-'< M defines a map ¢: M — M v 87, which defines an
action of 7,(X) on [M, X] for any space X (see P. Hilton [6, chapter XV]):
If ve[M,X] and u e m,(X), we denote the composite

M-5>MvS-25% XvX -5 X

by v* e [M,X]. This action has the property that if v,,v, € [M,X]
such that v, and v, restricted to N are homotopic, then there exists
u € my(X) such that v,=v* in [M,X].

Furthermore let »: N — X; W. D. Barcus and M. G. Barratt [3, § 2]
have defined a map «,: 7,(X¥,u) - 7, (X) such that if v: M - X is an
extension of u, then v*=v iff y € Imw,.

Now consider two stably equivalent (¢ — 1)-dimensional oriented sphere
bundles &,,&, over M4,

ProrosrTION 2.1. Let v, and v, be the classifying maps from M into B,.
Then vy =0, in [M, B,], where uy € m,(B,) is in the kernel of

j* : nq(Bq) g nq(Bq+1) .

Here j: B, — B, is the natural inclusion.

Proor. Restricting to N, »; and v, become homotopic, because N
has the homotopy type of a (¢—1)-dimensional complex. Therefore,
vy=v,", where uem,(B,). Without loss of generality we can assume
v, and v, restricted to N to equal a map u: N — B,.

Then j,v,=(jxv,)7**, and according to the g-dimensionality of M,
JxVa=Jxvq, because £, and &, are stably equivalent. So j, peIma,,. It fol-
lows easily (e.g. by using Theorem 22 in Spanier [11, chapter VIL, § 6]) that

Jgt (BN, u) — nl(Bﬁl,ju) is onto .
Using this,
Jutt = )

where z =j,(x) for some xem,(B,N,u). Let u' = o, () and po=p — u’€x,(B,).
Then

vy = v* = (vlu)—u' = vlu—#’ = ",
Finally

Jet' = Jyo,(x) = juj#(x) = Jxl,
8O Jux to="0.
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The following proposition is a well-known consequence of the solution
of the Hopf invariant one problem:

ProrosiTION 2.2. The kernel of jy: my(B,) - 7,(By.,) 18 cyclic generated
by t,, the map classifying the tangent bundle of S<.

Z gq even
Kerj, =10 ¢=1,3,7
Z, q odd q+1,3,7.

Returning to the problem stated in § 1, let & =1, &,=5*t". If », and
v, are the classifying maps, v,=v,", y,€kerj,. So in case ¢=1,3,7
it is trivial that £; and &, are equivalent. Now consider the even case.
Letting E(v;) denote the Euler class of £; evaluated on the orientation
class, it is easily shown that E(v,)=HE(v;)+ E(u,) for v,=v,*. Hence in
the present case E(u,)=0 and consequently u,=0, so also in this case
7 and f*(z’) are fibre homotopy equivalent.

3. Definition of b(§) in the stably trivial case.

In this section M is a g-dimensional manifold, ¢ odd and different
from 1,3,7, and we assume 7(M) to be stably fibre homotopy trivial.
Let & denote a stably fibre homotopy trivial bundle over M. This means
that for k large there exists a Thom map

n: S8tk o T(yy) ~ k(M) = T(E+k),
that is, a map inducing isomorphism by taking Hy,,.(¢,Z). Let
Ug: T(¢) — K(Z,,9)
denote the map representing the Thom class. Put
0 = 3*U; 0 : S¥+k > SkK(Z,,q) .
DEFINITION 3.1. b(§) =8¢,2+1 (3*) € H+¥(S2a+k,Z,) = Z,.

Here 1€ HYK(Z,,q)) and b(§) is defined as the functional Steenrod
square. (See W. Browder [5, §1].)

ProprosITION 3.2. b(£) 18 independent of the choice of k and
n: Sk~ T(E+E).

Proor. Suspending n we evidently get the same b(¢), and thus it is
sufficient to prove the last part of the proposition.
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Let %’ :8%+k — T'(£+k) be another map of degree one. Then n=7'+y
in n2,1+k(2" T(&)), where p: S2a+k — SkT(£). Consider the cofibration
() —> T(§) £> 52 .

Using the covariant Puppe sequence for stable homotopy, we see that
y=(3¥*)oy’ for k large, where y': S%a+k T(y). In fact (Z¥p)oy has
degree 0.
&y is trivial and the trivialisation defines a map g: 7T'(§y) - 8% Let
1: 82— K(Z,,q) be such that [*1=q,, the generator of H%(8%). Then
Ugor = log: T(§y) ~ K(Zy,9) -
Putting
0 =3Ugon, & =3*Ueoq’, B = (ZFg)oy,
we have
0 =0+ (Z)of.

Hence by Lemma 1.6 in Browder [5]

Sget+te = Sqp®+te+8q%it.pt -
According to Adams [1]

Sq%-;c-}oﬁt = SQﬂq-H(Zqu) =0
when ¢ is odd +1,3,7.

ProposITION 3.3. Let &5, &, be stably fibre homotopy trivial bundles over M,
and { a third such over S%. Assume the classifying maps vy, v, and p,
satisfy vy,=wv".

Then b(&,)=b(&;)+b(E).

Proor. If ¢: M — M v 87 is the pinching map and &, v { denotes the
bundle over M v 89, which is & over M and ¢ over 89, then c*(§,v()=&,
and so there is a natural map

h: T(§x+k) > T((5r+K) v (E+F)) -
This is equivalent to a cofibration with cofibre S2¢+%, which we for con-
venience write
gy + ) > T((E1+5) v (C+F) E» S0tk
By the Thom isomorphism theorem,
H2q+k(T(52+k)y Z) = Z(dy) ,
Hppi((E1+E) v (E+F) = Z(d) @ Z(dy) ,
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and
k* d2 = dl + do .
Consider
S+ 4, Qea+ky Spa+k YO e k) T(E 4 k)

14 g

— T((&,+k) v (E+K)).

Here A is the usual pinching map.
ny: 8% > T(& +k), n: Stk > T +k)
are maps of degree one, and g is induced by the map
MuS?T—>MvSe.

Under this map g the bottom cells of the two Thom complexes are
identified. Further
Va0 = di+dg,

so poy has degree 0. Again by the covariant Puppe sequence there
exists a map
gt 82k > T(&,+k)

such that hony,=y. Clearly 5, has degree one. The proposition follows
from an easy computation using the commutative diagram:

v kU, vZEU
S2ask y Gtk U0 SUp(g )y SRT(E) © LTt SRE(Z, q) v SEK(Zy,q)

Lo |

A ‘T—_’ sz(Sl v C) EkUEIVC - sz(qu)
2q+k I
Srar ™ T(&;+k) kU,

ProrosiTION 3.4. Let M be a g-dimensional compact differentiable
manifold, q odd+1,3,7. If the tangent sphere bundle v is stably fibre
homotopy trivial, then

(g—D)/2
b(zr) = y*(M) = > dimHYM,Z,) (mod2).

+=0

Proor. Choosing a tubular neighborhood of the diagonal in M x M
we get a map
j: MxM—>T(z)

by pinching everything outside. Let oy, € HYM,Z,;) be the generator.
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Following E. Thomas [17, § 4] we choose a basis {«,,...,04,84,--.,01}
for H*(M,Z,) such that if

deg o +deg f; = ¢,
then

a;UB; = 00,
where
d = y*(M) (mod2).

Let t: M x M -~ M x M be the transposition map, and put

d
A=3wx®p; € H(MxM).
=1

Then
A U t*A = d(TMXM a:nd j* U., = A+t*A o

Now let g: Se+k —~ SkM  be a map of degree one. The map
gag: S+ 3% (M x M,)

defines an S-orientation of M x M, in the sense of Browder [5, § 1]
(S is the sphere cospectrum). This defines an operation

v: H(MxM)—~>Z,.
The map
n: Spavse 900, s (3f ) 2, sok(7(q)

has clearly degree one. By Theorem 1.4 in Browder [5], it follows that
b(r) = y(j*U,) = y(4d+t*4)
= p(d) + p(t*4) + (gag)*(Aut*4).
From the commutativity of the diagram
S2a+2k 929, S%H(MxM,)
i l;ﬂkt
S2a+2h ——s 32 (M x M ,)
it follows that y(4)=y(*A). Hence
b(z) = (gag)* (AUt*4) = doggg -
CoRrROLLARY 3.5. Let  be a stably fibre homotopy trivial (q— 1)-dimen-
sional sphere bundle over §8?. t,=1(89). Then
t=1, <> b({)=1, q odd + 1,3,7.
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Proor. b(z,)=1 according to Proposition 3.4. It follows from Pro-
position 2.2 that either  is trivial or { =7,. If { is trivial, b({) = 0 accord-
ing to Proposition 3.3.

Using b in stead of £ in the concluding remarks of § 2, we get

THEOREM 3.6. Consider M, M’ q-dimensional oriented compact differ-
entiable manifolds, q odd +1,3,7. Assume the stable fibre homotopy classes
of the tangent sphere bundles are trivial. Let f: M — M’ be an orientation
preserving homotopy equivalence.

Then f*t' and v are fibre homotopy equivalent.

In fact, v is fibre homotopy trivial iff x*(M)=0.

Finally we remark that, if we use BSO(n) instead of BSH(zn) in
Section 2, then we can prove in the same way

TurOREM 3.7. Consider M, M' and f: M — M’ satisfying the conditions
of Theorem 3.6. Let T and " denote the tangent g-plane bundles of M
and M’ respectively, and assume further v and f* 1’ to be stably isomorphic.
Then t and f*' are isomorphic.

Especially we get the following corollary implicitly proved in G.Bredon
and A. Kosinski [4].

CoroLLARY 3.8. Let M and M’ be m-manifolds and f: M — M' a homo-
topy equivalence. Then f*t' and T are isomorphic.
In fact, for ¢ odd+1,3,7 7 is trivial iff y*(M)=0.

4. Remarks concerning the general case.

In this section we will explain the difficulty in the general case.
First we recall some notation of W. Browder [5]: We assume ¢ odd.

vq+1 : Bn g K(er Q+ 1)
represents the Wu class v,,,. Consider the fibration
Bn<vq+1> _ﬂ> Bn
induced by v,,, from the path fibration over K(Z,, ¢+ 1) with fibre
QK(Z,, q+1) = K(Z3,9)

and let 7, = n*(y,) denote the pull back of the universal sphere bundle
over B,. Further Y,=7(7,) defines a Wu spectrum, and {X,} is the
dual Wu cospectrum.
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Now consider M? a compact differentiable oriented manifold with
normal bundle » and let £ be an oriented (¢—1)-dimensional sphere
bundle over M9% Choose a bundle & such that &+ ¢& is trivial (such
one exists according to M. Spivak [13] or C.T. C. Wall [18]), and as-
sume that the classifying map ¢: M — B, (n large) for »+ &' is given
a specific lifting ¢’ through n. Then p=n¢" and v+ & =¢'*($,). This
defines maps 7'(v+¢&') - Y, and thus dual maps

X _pgi = SHT()
for k large such that

gk. : H2q+k(X—2q—k> Z) - H2q+k(sz(§)’ Z)

is an isomorphism. Such a system of maps we call an X-orientation
for &.

Let U,e HYT(&), Z,). Assume ¢,*(3*U,)=0. (Using S-duality, see
E. Spanier [12], this is seen to be equivalent to the following condition:
If 4;4...+i,=q, then w;(»+&)U...Uw,;(v+¢&')=0. This is clearly
fullfilled if £ is stably equivalent to 7.) Consider the map

0= kus /) X—2q—k -~ 3*K(Z,,q)
and define
by(§) = Sq,2+ 1 (Z*e) € HM+K(X 5, ;) = Z,.

As in Browder [5] the indeterminacy is 0. A priori b,(&) might depend
on the orientation g,. In fact it does for ¢=1,3,7.
In turn the orientation depends on the following choices:

I a) »and the trivialization of v+ 7.
b) & and the trivialization of &+ &',
IT The lifting ¢’ of ¢.

It turns out that II is not very serious, and the problem concerning I
can be reduced to the following:
Let y: M x 81> M xSk1 be a fibre-homotopy equivalence. This
induces a map
a=T@dDy): T(E+k) > T(E+k),

and g, =wxog, defines a new orientation for &.

If b,(¢)=b,(¢), then Section 3 goes through with minor changes,
and proves the conclusions of Theorems 3.6 and 3.7 without the assump-
tion on the stable fibre-homotopy class to be trivial. However, as pointed
out by the referee there are examples where £ = ¢ contradicting Proposi-
tion 3.3 but not 3.6 and 3.7. Is this the only case? Or stated in another
way: If there is a map
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X oq s~ T(E+ k)

with a non-zero functional Sg2+1, is it true then that &7=§£? We will
discuss this in a later paper.
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