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EXTREME POSITIVE LINEAR OPERATORS

J. A. CRENSHAW

Introduction.

Suppose that 4 and B are the spaces of real valued continuous functions
on compact Hausdorff spaces and that K(4,B) is the set of all positive
linear operators from A4 into B, then we are going to examine the extreme

points of
K((4,B) = {T e K(4,B): T()s1},

the extreme points of
K,(A,B) = {TeK(A4,B): T(1)=1},

and the indecomposable elements in K(4, B). The multiplicative proper-
ties of these elements are examined in [2], so that, as F. F. Bonsall does
for functionals in [1], we are particularly interested in characterizing
these elements in terms of their order theoretic properties.

Since there are convex sets of positive linear operators mapping B’
into A’ which contain the adjoints of the elements in K (4,B) and
K,(4,B), we shall show that there is a connection between the extremal
character of an operator and its adjoint. Then, since Ellis [5] has already
characterized the extreme points of K,(4,B), we shall extend this
characterization to Ky(A4,B). Before this, however, we shall characterize
the indecomposable operators whenever they are in a setting such that
the space spanned by the positive linear operators is a vector lattice
(although this setting may not include K(4,B), an argument similar to
that in theorem 9 of [2] can be used to extend the characterization to
include K(A4,B)). This will lead to an extension of H. Gordon’s theorem
5 in [7]. In particular, it will lead to the decomposition of the positive
operators into diffuse and atomic components, and we shall show that
the extremal character of the operators in K,(4,B) and K,(4,B) and
their adjoints is usually preserved under the decomposition.

We refer the reader to [12] for the fundamental definitions and nota-
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tions. However, in order that the presentation be somewhat self-con-
tained, we shall list some of the fundamentals and well known results
which we shall need. Besides [12], some of this material can be found
in [3], [4], and [11] as well as [9] and [13].

Our vector spaces will have the field R of real numbers for their scalar
fields, and 0 will denote the additive identity. We shall denote the cone
of all positive elements in an ordered vector space E by E+. If £ is a
vector lattice, then a,b € E are disjoint (a.Lb), if |a|A|b|=0; moreover,
alb if and only if |a|v|b|=|a+b].

Let E be an order complete vector lattice. If E=N®M is an order
direct sum of N and M, then N and M are bands and N=M*. If P,
is the projection of £ onto N which vanishes on N, then

Pyx) =sup{yeN:0<y=<at} —sup{ye N:0y=z}

for all z € E. For each z € B, ({x}')! is the band generated by z, and the
projection P, of E onto this band which vanishes on {z}* satisfies

P.(y) = sup, {(nlz|)"y*} — sup, {(n|2)"y~}

for all ye E. We shall call the projections P, and P, the projections
associated with N and z, respectively.

If E,F are ordered vector spaces, the space of all order bounded
linear operators from E into F will be denoted by L*(E,F); however,
Ly E,R) will be denoted by Eb. If E is a vector lattice and if F is an
order complete vector lattice, then L*(H,F) is an order complete vector
lattice and for 7' € LK, F) we have

T+(x) = sup {T'(z): 0=z},
IT|(x) = sup {T'(2) : —x=zZx}

for all 6<x € E. Moreover, |T'(y)| <|T|(ly]) and T is a lattice homomor-
phism if |T(y)|=T(|y|) for all y € E. The projections P, and P, mentioned
above are lattice homomorphisms.

Let E be an Archimedean ordered vector lattice with an order unit e,
then the order topology 7, is a normable topology with the gage func-
tional of [—e,e] as the norm. We shall refer to this norm as the order
unit norm. If E is also J,-complete, then E(J,) is an (M)-space and, as
such, is isomorphic to a space C(X) of continuous real valued functions
on a suitable compact Hausdorff space X. In fact, X may be identified
with the subset of E(J,)’ consisting of the extreme points of
{f=0:f(e)=1}, that is, the set of extreme points of the positive face in
the dual unit ball. If E(J,) is order complete, then E(Z,) is 7,-complete.
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If F is an ordered vector space, then a convex set B< F+ is a base
for F if 0 ¢ B and if every element in F+\{0} has a unique representation
as a scalar multiple of some element in B. Every B has the property that
whenever Z;;llibi=2]'~”=1yjbj with b;,b;€ B and A,y;eR (i=1,...,n;
Jj=1,...,m), then 37 ;2,=3"y;. Let F be a vector lattice with a base
B. Then the gage functional p of the convex hull of Bu(— B) is a norm
on F, which is called a base norm. The unit ball for the base norm is
solid and the norm itself is additive on F+. If F is complete for this
norm, then F is an (L)-space and F(||-||p)’ = F? is an (M)-space with an
order unit e which satisfies e(b)=1 for all b € B. We shall refer to this
order unit e as the dual order unit.

If £ is an Archimedian ordered vector lattice with an order unit e,
then E(7,)'=E® has a base

B = {feE:0=f and f(e)=1}

which we shall call the dual base of E°. The base is o(£", E)-compact
and convex, so it is the ¢(X£?, £)-closed convex hull of its extreme points.
If b is an extreme point of B, then 0 < <b implies that =15 for some
A€ [0,1], that is, b is indecomposable. Conversely if b € B is indecom-
posable, then b is an extreme point of B. Thus, the indecomposable
elements belonging to B are total over K.

Finally, we remark that an (L)-space E is a band in (£°)*=E" and if
¥, 0 in E, then {y,} converges to 6 in norm. Moreover every positive
linear operator from £ into an ordered locally convex space with a nor-
mal cone (every Banach lattice is such a space) is both topologically
and order continuous.

We shall adopt the notations of rng for range, dmn for domain, and
LH{-} for the linear hull spanned by the elements within the braces.
Moreover, ¢ will always denote the canonical embedding of an ordered
vector space into its second order dual.

1. Indecomposable operators.

If E is an ordered vector space, then O<a e E is indecomposable if
b € [0,a] implies that b=Aa for some 12 0. If E is an order complete
vector lattice, then a is indecomposable if and only if a=b+c with
b=0, c=0, and b1 c implies that b= 0 or ¢=0; moreover, if a is indecom-
posable in E, then it is easily deduced from the form of the projection P,
associated with @ that rngP,=LH {a}. The following is a well known
result (see theorem 3 in [7]).
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(1.1) LEMMA. Let E be a vector lattice and let 0 <f € Eb. Then the follow-
ing statements are equivalent.

(a) f 18 indecomposable in EP.

(b) The null space of f is a maximal lattice ideal in E.

(c) f is a lattice homomorphism.

(d) If x,y € E with x1y, then either f(x)=0 or f(y)=0.

We now give the characterization of the indecomposable linear opera-
tors which we are interested in. We note that, as with the functionals,
the indecomposable linear operators are lattice homomorphisms.

(1.2) ProprositioN. Let E and F be vector lattices and let F be order
complete. Then T e LY E,F) is indecomposable if and only if mgT =
LH{a} for some indecomposable a € F and T is a lattice homomorphism.

Proor. Let T be indecomposable. Let 6§ <z, € F satisfy T'(x,) > 6, and
define a=T'(x,). Suppose that a=b+c where 6 <b, 0 <c and bLc. Since
T is indecomposable in LbH,F), there exist 8,y € [0,1] such that
PyoT =T and T',o T'=yT where P, and P, are the projections associated
with b and c, respectively. Hence, b=p7(x,) and c¢=yT(x,), but since
blc, we conclude that either b or ¢ is 6. It follows that the only disjoint
decomposition of a is the trivial one where one of the components is 0,
and this implies that a is indecomposable. Finally, if P, is the projection
associated with a, then 6 <P,oT=aT for some «>0. This implies
that rng7 <rng P,, but rngP,=LH {a} since a is indecomposable.

Define f € E® by f(x)=2, where 1, € R satisfies 1,a=T(x). If g € [0,f],
then G e LP(E,F) defined by G(x)=g(x)a satisfies G €[0,T]. Conse-
quently, G =AT for some 12 0 so that g=Af. Therefore, f is indecompos-
able in E° and, by (1.1), f is a lattice homomorphism. Then it is clear
that 7' is also a lattice homomorphism.

Conversely, let rng7=LH {a} for a indecomposable in F and let 7'
be a lattice homomorphism. If G €[6,7], then we have rngG <LH {a}
since a is indecomposable. Moreover, from 7' and G we may define
f.g € E?, as in the above paragraph, with g € [0,f]. Since T is a lattice
homomorphism, f is also and, by (1.1) f is indecomposable. We conclude
that g=of for some « >0 so that G=aT'.

Next, we shall give two more results about indecomposable operators
which will be usefull later.

(1.3) ProrosiTioN. Suppose that E and F are order complete vector
lattices and that T € LY(E, F) is indecomposable. Then T' is order continu-
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ous if and only if there exist indecomposable elements b € E and a € F such
that for x € E
T(x) = ﬂxa’ s

where B, € R satisfies f,b=Py(x) for P, the projection associated with b.

Proor. Since T is indecomposable, there exists an indecomposable
a € F such that rng7=LH{a} by (1.2). Let 7' be order continuous and
let b’ € B satisfy T'(b')=a. We define

B = {ce[0,b']:T(c)=a}.

Clearly B+ and we can order B with the order of E. Let C be any
totally ordered subset of B. Since 7' is order continuous, it can be seen
that "' =inf(C) € B. By Zorn’s lemma we may choose a minimal b € B
and we claim that b is indecomposable. If b=r+s witn 6<r, 6<s and
r1s, then since 7' is a lattice homomorphism with rng7=LH {a}, we
can deduce T'(r)=0 or T(s)=0. For definiteness let 7'(r)=06. Then
T(s)=T(b)=a and s<b=?d' imply that se B. Since b is minimal in B,
it follows that s=5b. Hence, r=0 and b must be indecomposable. Finally
0<ToP,<T, for P, the projection associated with b, implies that
ToPy,=AT for some 1=0. In fact 7o P,(b)=7(b) implies that 1=1.
Thus, for any x € E we have T(x)=f,a where g, € R satisfies §,b = Py(x).

The converse is clear since it is easily seen that P, is order continuous
so that 7' is order continuous.

(1.4) ProposiTioN. Let E, F be vector lattices and let F be a regular order
complete vector lattice. Then T € L*(E,F) is indecomposable if and only if
T* is indecomposable in Lb(F?, EY).

Proor. Let T be indecomposable. Then, by (1.2), T' is a lattice homo-
morphism with rng7=LH {a} for some indecomposable a € F. If we
define f € E® by T'(x) =f(z)a, then we can deduce that f is indecomposable
in E®, Moreover, for x € E and g € F* we have T*g(x)=g(a) f(x), and it
follows that mg7*=LH{f}. If € E+ and g € F®, then

T*(g*)(@) = sup {g(y) : 0Sy<T(2)} = sup {ig(a) : 0=A=f(2)} .
Hence, if g(a) <0, then
0 = T*(g*)(x) = (T*g)*(x),
and if g(a)> 0, then
T*(g*)(x) = f(z) g(a) = T*g(x) = (T*g)*(x).
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Consequently, T'*(g+) < (T*g)+, and it follows that T* is a lattice homo-
morphism since (T*g)* < T*(g+). We conclude that 7'* is indecompos-
able from (1.2).

Conversely, let 7* be indecomposable; by (1.2), T* is a lattice homo-
morphism with rmg7*=LH{f} for some indecomposable fe E°. Let
0 <z, € B satisfy T(x,)>0. Then, since the canonical mapg of F into
(F®)? preserves the lattice operations, for any g € F* we obtain

(P(T(o)), 191> = <T*lgl,woy = {|T*gl, 2
= KT*g,20)| = Ko(T(x0)),9)! -

Thus, it follows from (1.1) that ¢(7'(x,)) is an indecomposable element
in (F®)?, so T'(x,) is indecomposable in F. If T'(y) ¢ LH{T(x,)} for some
y € B+, then there is an h € F? such that A(7T'(x,)) >0 and A(7T(y))=0.
Thus, for 4, € R satisfying 4,f=7"*h we infer that 1,0, so f(y)=0.
However, as for 7'(x,), T(y) must be indecomposable; thus, there exists
6<h’ € F° such that A'(T'(y)) >0 and 2'(T(x,))=0. Hence, f(y)>0, and
this contradiction implies that rng7=LH{T'(x,)}. Finally, for x € E
either f(z+) or f(z—)=0. Therefore, either T*g(x+)=0 for all g € F? or
T*g(z~)=0 for all g e Fo. Consequently, T(xt)=0 or T(x~)=0 and in
either case we have that |T'(x)|=T(|xz|). We conclude from (1.2) that 7'
is a lattice homomorphism.

2. Atomic and diffuse subspaces.

Suppose that F is an Archimedean ordered vector lattice. Let E,*
be the set of all positive elements in E which are either finite linear
combinations of indecomposable elements or are the suprema of subsets
of such combinations. Then E,=E,*—E,+ is the subspace of atomic
elements. Let E;+ be the subset of all positive elements which are dis-
joint from every indecomposable element in E. Then E;=FE;+—E;* is
the subspace of diffuse elements. When no confusion can arise, we shall
refer to K, (respectively, E;) as being atomic (respectively, diffuse). If
E is an order complete vector lattice, then from (4.9) on page 41 in [12] we
infer that £, is a band with Py (¥)= Py (¥+)—Pg,(x~) where for each
0 <y € E we have

Py (y) = sup{h: h is a finite linear combination of
indecomposable elements and 0 <h <y} .

It is easily seen that E;=(E,)* so that E is the order direct sum of
E, and E;.
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We shall assume throughout this section that K, F are vector lattices
and that F is order complete. Then L%(E, F) is an order complete vector
lattice and theorem 5 in [7] can often be extended to Lb(E,F).

(2.1) ProOPOSITION. Let F? contain a family of order continuous linear
Sfunctionals which is total over E. Then T € LP(H, F) is diffuse if and only
if for any >0, x € B+, and order continuous fe F® there exist positive
pairwise disjoint operators T, . . ., T, in LY B, F) such that |T|=T+ ... +
T, ond {f,T;x)y<e for 1<i<n.

We shall omit a proof of this result since it can be proven with the
same argument that H. Gordon gave in [7] by working with the operators
as functionals on EQF°. (We use the order continuity of f to obtain the
fact that for a directed (=) family of operators (¢, in L*(E,F) we have
(inf, @ )(x®f)=inf (G (x®f)) which is needed in the adoption of Gor-
don’s proof.) We remark that every space F' which is the order dual of
a vector lattice will satisfy the hypothesis for F above.

Now let us use the characterization of (2.1) to obtain the mapping
properties of some of the diffuse and atomic operators.

(2.2) PropostTioN. If F® contains a family of order continuous elements
which is total over F, then every diffuse T € LP(E,F) maps each indecompos-
able element of E into a diffuse element of F.

Proovr. Since the diffuse operators form a sublattice, we may assume
that T'> 6. For b € E indecomposable let 7'(b)=a+d where a is atomic
and d is diffuse in F. Assume that a>0. Then by hypothesis there
exists an order continuous 0 <fec F? such that f(a)>0. Now, f=g+h
where ¢ is atomic and % is diffuse, and we claim that k(a)=0. Since a
is atomic and h <f is order continuous it suffices, to show that A(a’)=0
for every indecomposable a’ in F. Let o’ be indecomposable; then since
h e I’ F,R)=F®, we infer from (2.1) that for ¢> 0 there exist positive
pairwise disjoint #,,...,h, in F® such that h=h;+...+h, and
(hya"y < e for 1 <¢<n. Since the h;’s are pairwise disjoint and since a’ is
indecomposable, we can deduce from the definition of A;”%; that at most
one 4, say i=1, satisfies #,(a’)#0. Thus, A(a’)=h,(a’)<e and we con-
clude that (a’)=0. Consequently, g(a)=f(a)>0. Since g is atomic and
bounded above by f, we infer that there is an indecomposable g'<g
which is order continuous and satisfies g'(a) =« > 0. Then, by (2.1), there
exist positive pairwise disjoint 7,...,T, € L*(E,F) such that T'=
Ty+...+T, and {g’,Tyb)y <« for i=1,...,n. Since b is indecompos-
able and 7', T} for i+j, we can deduce that T',(b).LT(b) for ¢+j. Thus,
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by (1.1), we see that g'(7,(b))+ 0 for at most one ¢, say i=1. Then we
have

x 2 (9, T®) =<9, T1(0)) < x.
From this contradiction we conclude that T'(b)=d € F ;.

(2.3) ProrosiTION. Every atomic operator in LP(E,F) maps E into F,,.

Proor. This is immediate from the definition of atomic elements in
terms of indecomposable elements, (1.2), and the fact that F, is a band.

Finally we have the following result for the order continuous linear
operators.

(2.4) ProPOSITION. Let F® contain a family of positive order continuous
elements which is total over F, and let T' € LY(E,F) be order continuous.
Then

i) T is diffuse if and only if T(E,)<F,,

ii) T is atomic if and only if T(E)<F, and T(E,;)={6}.

Proor. If T is atomic, then T(E)<F, follows from (2.3). For any
indecomposable G <|T| we see that G is order continuous since 7' is
order continuous. Hence, by (1.3), G(z)=0 for all x € E;, and this
implies that T'(E;)={6}.

i) If T is diffuse, then 7'(E,) < F; follows from (2.2), the order continu-
ity of 7', and the fact that F; is a band. On the other hand, let T'(E,) <
F;, and let 4 and D be the atomic and diffuse components of 7', re-
spectively. Then for x € E,+ we can see that |T'|(x) € F;. Thus, —|T|(z) <
|4|(z) < |T|(x) implies that |4|(x) e F;. However, from (2.3) we have
that |4|(x) € F,. Thus, A(#,)= {60} and from the first paragraph 4(E;)=
{6}, so it follows that 4=0 and-T=D.

ii) From the first paragraph it remains only to prove the sufficiency.
Let T(E)<F, and T(E;)={0}. We infer that similar statements hold
for T+ and T, so we may assume that 7>60. Let T'=A4 +.D where A
is atomic and D is diffuse. Since § < D=<T, we deduce that D(E,;)={0}
and D(E,)<F,. However, from i) above D(E,)<F;. Thus, D(E,)=
{6}, and we conclude that T'=A.

3. Extreme operators.

In this section we return to the spaces which have order units or bases.
In particular, we shall extend Ellis’ Theorem 1 in [5] and examine the
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connection between the extremal character of an operator and its ad-
joint. Of course, when we say extreme point we mean with respect to
certain convex sets and specifically with respect to the following: If £
and F are ordered vector spaces with order units e and u, respectively,
then

1) LME,F;e,[0,u]) = {T € LYE,F): 0<T and T(e) <u};
2) INE,F;eu) = {Te(B,F): 0<T and T(e)=u}.

If ¥ and F are ordered vector spaces with bases B and B’, respectively,
then

') IME,F;B,[0,B]) = {T e INE,F): 0<T and T(B) < [0,B']}

where
[0,B]={rxeF:02x<b for some be B'};

2') IME,F; B,B') = {Te INE,F): 0<T and T(B)<B'}.

We note that the sets are convex sets of positive operators and if B, F
are the 4 and B, respectively, mentioned in the introduction, then 1)
and 2) correspond to Ky(4,B) and K,(4,B), respectively.

(3.1) LemMA. Let E,F be Archimedean ordered vector lattices with order
units ec B and we F, and let T € L*(H,F;e,[0,u]). If T is a lattice
homomorphism and if T* maps each extreme point of the dual base B’ < F®
into either 0 or into the dual base B< EP, then T is an extreme point of
LYE,F;e,[0,u]).

Proor. Let T=3U+ 4V with U,V € LY(E,F; e,[0,u]) and let u be an
extreme point of B’; then p is indecomposable in Fo, If T*(u)=0, we
have U*(u)=V*(u)=0. On the other hand, let 7*(u) € B. Then, since
U*,V*e Lb(F° E°; B',[0,B]) and since $U*(u)+ 3 V*(u)=T*(u), we infer
from the properties of a base that U*(u), V*(u) € B. Since 1" and u are
lattice homomorphisms, we have T*(u)(|z|)=|T*(u)(x)|; consequently,
by (1.1), T*(u) is indecomposable in £°. It follows that V*(u)=U*(u)=
T*(u), and we conclude that 7'= U=V since the extreme points of B’
are total over F.

(3.2) ProposrTioN. Suppose that E is an Archimedean ordered vector
lattice with an order unit e, and that F=C(Y) where Y is a compact Haus-
dorff space. If T e Lb’(E,F;e,[0,1]), then T is an extreme point of
LYE,F;e,[0,1]) if and only if T is a lattice homomorphism and T™* maps
each extreme point of B’ < F? into either 0 or into an extreme point of B < EP.
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Proor. Let T be an extreme point of L*(E,F;e,[6,1]). Since E can
be canonically identified with a dense subspace M of C(X) for some
compact Hausdorff space X and since 7' is continuous for the order unit
norms on F and ¥, we may regard 7' as a mapping on M and extend 7'
to all of C(X). We note that 7 is then an extreme point of
L¥C(X),F;e,[0,1]). Therefore, by theorem 3 in [2], 7' is multiplicative
on C(X) and for ¢ € £ we have

IT(@)* = (T(@)* = T(a®) = T(laf*) = (T(la])?.

Thus, |T'(a)|=1(|a]), so that T is a lattice homomorphism. If u is an
extreme point in B’, then, as for 7" above, u is multiplicative and we have

T*p(e) = T*p(e-e) = T*u(e) T*u(e) -

Consequently, 7*u(e)=0 or 1 and it follows that 7*u=0 or T*ue B. If
T*ue B, then since 7' and u are lattice homomorphisms, we deduce
that 7*u is indecomposable in E® by (1.1). Hence 7*y is an extreme
point of B.

The converse follows immediately from (3.1).

Now let us show that there is usually a connection between the ex-
tremal character of an operator and its adjoint for operators in the con-
vex sets defined above.

(3.3) ProposiTiON. Let E,F be vector lattices with bases B,B’, respect-
ively. Let F be order complete and full in the completion F of F for the base
norm topology. Then T e LX(E,F; B,[0,B']) is an extreme point of this
set if and only if T* is an extreme point of LO(F®, EY; u,[0,e]) where u
and e are the dual order units of F® and EP, respectively.

Proor. Since F is an (L)-space, it follows that g, } 0 in F implies that
{y,} norm converges to 6 in F, and since F is full in F, {y,} norm con-
verges to 6 in F. By Theorem (39.1) in [10], we see that the canonical
image @(F) of F is full in F(||-||)’’. Since the unit ball in F is full in F
and since F(||-]))’ is an (M)-space, it follows that

(&2 < (F-I)) = FI-1)" -

Hence, ¢(F)< (F?)® is a full subset of (F?)b.

Let T be an extreme point of LYE,F; B,[0,B']). Then it is easily
seen that 7'* ¢ LY(FP E°; u,[0,e]). Let T*=3U+4V where U,V e
Lb(F°, E?; u,[0,e]). Then

0 < 1U%(o() = T**(g(2)) = ¢(T'(x))
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for all x € E+. Since @(F) is full in (F*)?, we have that U*(p(x))=g(y)
for some y € F+. Therefore, we define U’ on E+ into F+ by U'(z)=y.
Since @,p~! and U* are all positive linear maps, we can extend U’ to
all of £ by U'(x)=U’(x*)— U’(z~) and conclude that U’ e L*E,F)*.
Similarly, we define V'e L(E,F)+ by V'(z)=¢ Y V*(p(zx)). Since we

have G, U'(B)y = CU*(p(®)uy = CUw),bY < (e,b) = 1

for b € B, it follows that U’ and, similarly, V' is in LY(E,F; B,[0,B’]).
Moreover, for any x € £ and f e F? it can be seen that

fiT(2)-3U'(x) - 1V'(x)) = 0.

Consequently, 7=31U"+4V’. Hence, T*=U'*=V'*. But again, for
x € E and fe F® we can obtain ((U*-U)f,z)=0, so that U=U"*=T*
and, similarly, V=V"*=T1%*. We conclude that T* is an extreme point
of Lb(FY EY; u,[0,€]).

Conversely, let 7* be an extreme point of Lb(F? Eb; v,[0,e]). Then
Telb(E,F; B,[0,B']),andif T=3U+ 3}V with U,V in L E,F; B,[6,B'])
then we deduce that 7* = 1U* + 1 V* with U*, V* in L¥(F? E®; u,[0,¢]);
whence T*=U*=V*, and it follows that T’=U=7V.

(3.4) ProposiTiON. Let E be an Archimedean ordered vector lattice with
an order unit e, and let F=C(X) where X is a compact Hausdorff space.
If B and B’ are the dual bases of E® and F°, respectively, then the following
statements are equivalent:

i) T is an extreme point of LY(E,F;e,1);
ii) T™* is an extreme point of LP(F° E°; B’,B);
iii) T** is an extreme point of LY((E)?,(F°)°; p(e), ¢(1)).

Proor. From the definition of the dual bases B and B’, we can deduce
that the following are equivalent:

T eLME,F;e,l),
T*e L¥FE°; B',B),
T*% e Lo((BoY, (F¥)°; g(e), (1)) -

As in (3.2), it suffices to assume that B =C(Y) for some compact Haus-
dorff space Y.

To show that iii) follows from i), it suffices, by Theorem 1 in [5] to
show that T** is a lattice homomorphism. Now, we recall that E’=E°
and E" = (E®)®; moreover, we note that the topology in (11.2) and (11.3)
of [8] is exactly the o(E",E’) topology (see [12]). Thus, from Theorems
(11.2) and (11.3) in [8] we conclude that ¢(E) is o(E"',E’)-dense in E"
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and the lattice operations are o(E",E’)-continuous. The same results
hold for (F*)>=F", so, by (3.12) page 177 of [12], T** is continuous on
E"[o(E",E")] into F"[o(F",F')]. Now, if a € E"”, then there is a net
{#,} <E such that {p(x,)} o(E",E')-converges to a. Since 7' is a lattice
homomorphism by theorem 1 in [8], we obtain

|T**(@)] = |T**(lim,p(z,))] = lim,¢(|7'(x,)])
= lim,p(7(|z,]))
= T**[lim,(p(x,))] = T**(al) .

It follows that T** is a lattice homomorphism.
The fact, that iii) implies ii) follows from (3.3), and an argument
similar to that in the last paragraph of (3.3) shows that ii) implies i).

4. Decomposition of the extreme points.

Now, we shall decompose the space of linear operators into its atomic
and diffuse subspaces and show that the components of the extreme
points of the convex sets mentioned above are extreme points of the
appropriate convex sets.

Let £ and F be Archimedean ordered vector lattices with order units
e and wu, respectively. Then for u, the atomic component of u we define

1) L2 (E,F;e[0,u,]) = {T'eLb,(E,F): 0T and T(e)Su,};
2) Lo (E,F;eu,) = {T e LP(E,F): 0T and T(e)=wu,} .

We also replace a with d in the above to define sets 3) and 4), respectively,
for the diffuse component sets. We note that each of the sets is convex
and that 4, and u, are order units for ¥, and F;, respectively.

(4.1) ProprosITiON. Let E and F be order complete vector lattices with
order units ec B and we F, and let T € L¥(E,F; e,[0,u]). Then T is an
extreme point of LY(E,F; e,[0,w]) if and only if the atomic component A
of T is an extreme point of LP(E,F;e,[0,u,]) and the diffuse component
D of T is an extreme point of LPy(E,F; e,[0,u,]).

Proor. Let T be an extreme point of L¥X,F;e,[0,u]). By (2.3), we
have A(E)<F,, and we claim that D(F)<F;. In fact, assume that
there exists an z € B+ such that D(z)=a-+d where a >0 is atomic and
d 20 is diffuse. Then there is an indecomposable b € F such that b=<a.
Let P, and P, be the projections associated with x and b, respectively.
Since F is an order complete vector lattice, we can see that if we equip
it with the order unit norm, then it can be represented as a C(X) space
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for some compact Hausdorff space X. Therefore, by (3.2), T is a lattice
homomorphism. Hence, D is also a lattice homorphism by lemma 1
in [56]. Since P, and P, are lattice homomorphisms, we see that if @ is
defined from E into F by G(z) =Pb(D(Pm(z))), then @ is a lattice homo-
morphism. Moreover, since rng <rng P, =LH {b}, it follows from (1.2)
that @ is indecomposable. It is clear that G <D, but this contradicts
the fact that since D is diffuse, D1 G’ for every indecomposable G’.
Thus, we conclude that D(E)<F,. Since

Ugtug = u z T(e) = A(e)+D(e),

it follows that A4 e L’ (E,F;e[0,u,]) and De L2 (E,F;e,[0,u;]). If
A=3U+3}V with U,V € L¥E, F; e,[0,u,)), then T=3U + D)+ }V + D).
Since it is easily seen that U+D and V+ D are in L¥(E, F; e,[0,u]), we
deduce that A=U=V. Hence, 4 is an extreme point of L, (H,F;e,
[6,%,]); similarly, D is an extreme point L(E,F; e,[0,u,]).

Conversely, let 7'=A4 + D with 4 an extreme point of L,(E, F'; e,[0,u,])
and D an extreme point of LP;(E,F;e,[0,u,]). If T=34S+1W with 8
and W in LYZ,F;e,[0,u]), then we decompose S and W into their
atomie (S,, W,) and diffuse (S;, W;) components. Then because of the
uniqueness of the decomposition of 7' into its atomic and diffuse compo-
nents and because of the extremal character of 4 and D, we can deduce
that A=8,=W, and D=8,=W,, so that T is an extreme point of
LYE,F;e[0,u]).

For the situation where E and F have bases, we first prove the follow-
ing lemma before defining the component sets.

(4.2) LEmMa. Let B and F be Archimedean ordered vector lattices with
bases B and B’, respectively. If T is an extreme point in L*(E,F; B,[0,B']),
then T maps each extreme point of B into O or into an extreme point of B'.

Proor. Let ¢ be an extreme point of B; then ¢ is indecomposable.
Then for each §<x e E let P, (x)=sup,o{Ac:Ac<x}. Since ¥ is archi-
medean ordered, P,(x) is well defined. For any z,y € E+ we see that
P(x)4+P,(y)<P,(x+y). On the other hand, let Ac< P (x+y). Since E
is a vector lattice, Ac=a+b for some a € [6,z] and b € [0,y]. Then, since
¢ is indecomposable, a=A,c and b=1,c for some 2,20 and 1,20. We
conclude that P,(x+y)< Pyx)+Pyy). Clearly P, is positive homoge-
nous, so we may extend P, linearly to all of B by P(x)=P(x*)—P(x").
For each x € E we define 4, € R by 4,c=Px).

Now ¢ e B implies that 7'(c) € [0,B'], so T(c)=»2b for some be B’
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and 0=1,=1. If ;=0 we are finished; therefore, let 1,>0. Assume
that b=}r+ }s with r,s € B’, and define U,V from E into F by

Ula) = Aodor + To(I-Py)(x),
V(x) = 2,248 + To(I—P,)(x) .

It is not difficult to see that U,V € L¥E,F)+. If t € B, then t=4c+yv
for A;,7 €[0,1] and some v € B with v1c. From the properties of bases,
y=(1-4,). Thus,

U) = 42r)+(1=24)T(v),

and since T'(v),Ayr €[0,B'], it follows that U and, similarly, V is in
LYE,F; B,[0,B']). Finally, T'(x)=4$U(x)+ 3V (z) for all x € E which im-
plies that U=V since 7 is an extreme point of L¥#,F; B,[0,B']).
Hence, r=s=>5, and it follows that b is an extreme point of B. To com-
plete the proof we must show that 1=1. However, if 1;< 1, then there
exists an « € (0,1) such that A+ aly< 1. Hence, by defining U,V from
E into F by

Ulx) = (L+)ToPyx) + To(I-P)),
V(@) = (1-a)ToPy(a) + To(I-P,)@),

and by arguing as above we may again deduce that U=V =7 which
contradicts the fact that « € (0,1).

Let £ and F be vector lattices with bases B< E and B'’<F. Then,
we define

1) L*,(E,F; B,,[0,B]) = {T' € L?,(E,F): 0<T and T(E,nB)<[0,B']};
2) L (E,F; B,,B') = {T e L*,(E,F): 0<T and T(E,nB)<B'}.

We also define sets 3) and 4) of diffuse operators by replacing @ with d
in 1) and 2) respectively.

(4.3) ProrosrTioN. Suppose that E is an order complete vector lattice
with a base B and that F is an (L)-space with a base B'. If T is an order
continuous element in LY(E,F; B,[0,B"]), then T is an extreme point of
this convex set if and only if T=A+D where A is an extreme point of
LY (E,F; B,,[6,B']), D is an extreme point of Lby(E,F; Bg,[0,B']), and
D (Ea)={0}'

Proor. Let T be an extreme point of L*(E,F; B,[0,B’]), and let 4
and D be the atomic and diffuse components of 7', respectively. Since
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A,D € [0,T] and T is order continuous, it follows that 4 and D are order
continuous. Furthermore, since F is an (L)-space, there is a family of
positive order continuous linear functionals in F® which is total over F.
Thus, by (2.4), we have D(E,)<F;. On the other hand, for each
indecomposable b € £ we have 6§ < D(b) < T(b), and since each indecom-
posable b is a scalar multiple of an extreme point of B, we have 7'(b) € F,
by (4.2). Thus, we can deduce that D(¥,)<F,, and it follows that
D(E,)={0}. Hence, if be BnE,, then A(b)=T(b)e[0,B’] so that
Aelb(E,F;B,[0,B']). Let A=3U’'+1V’ with

U, V'e Lt (E,F; B,,[0,B]).

We note that each &' € B can be written in the form Aa+ (1 —21)d where
acBnE,, de BnE; and A€[0,1]. Also, since §<3U’'< 4 <T implies
that U’ is order continuous, we infer that U'(E;)= {0} from (2.4). Thus,
we have that

(U’ + D)) = AU'(a)+ (1 —A)D(d) .

Since U’(a) and D(d)(£7'(d)) are in [0,B’], it follows that U’+.D and,
similarly, V'+ D is in L¥E,F; B,[6,B']). Since T is an extreme point
of this convex set and since 7= }(U’+ D)+ }(V'+ D), we conclude that
U'=V'=A. By a similar use of (2.4) we can also conclude that D is an
extreme point of Lby(#,F'; B, [0,B"]).

Conversely, let T'=A+D where A is an extreme point of
L) (E,F; B,,[6,B']), D is an extreme point of L%(E,F; B, [0,B']), and
D(E,)={6}. Then, as for U’'+ D’ above, we have T € L*(E,F; B,[0,B']).
Let T=31U+4V with U and V in L*E,F; B,[0,B']), and decompose U
and V into their atomic (U,, V,) and diffuse (Ug, V;) components. Now,

A+D =T = }(Us+ Vo) +3Ua+Va)

and since the decomposition of 7' into its components is unique, we have
that A=3U,+V,) and D=}U;+V,). Let 0zxzeck,; then 0=
U (x) < D(x)=6 implies that Ug(E,)={0}. Similarly, V(E,)={0}.
Thus, for be E,nB we have that U,(b)=U(b) € [0,B'] and V,(b)=
V(b)e[6,B’). Hence, U, V,cLP(E,F;B,[0,B]), and A=U,=V,
since A is an extreme point of this convex set. On the other hand, by
(2.4), U,(B;)=V,(Ez) ={0}. Therefore, by similar arguments, we infer
that Uy=V,;=D, and we conclude that U=V =T.

(4.4) CoroLLARY. Let E and F be (L)-spaces with bases B and B,
respectively. If T € LP,(E,F; B,,[0,B']), then T is an extreme point of this

Math.Scand.25 — 14
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convex set if and only if T maps each extreme point of B into either 6 or an
extreme point of B’.

Proor. Since F is an (L)-space, 720 is order continuous. Thus,
since 0 is an extreme point of Lb;(E,F; B,[0,B']), the necessary condi-
tions are immediate from (4.3) and (4.2). To show the sufficiency we
note that if =3U+ 4V with U,V e Lb,(E,F; B,,[6,B']), then T, U,
and V will agree on the indecomposable elements of £. We conclude
that 7=U=V from the fact that 7', U, and V agree on E, since they
are order continuous, and they agree on E, since they map E,; into 6 by
(2.4).

We shall conclude this section by investigating the relationship be-
tween the extremal character of the atomic and diffuse operators and
their adjoints. In the case where the underlying spaces E and F each
have an order unit we have difficulties, for it is not necessarily true
that a diffuse operator will have an adjoint which is diffuse. For example
it is not difficult to see that L>(R) is diffuse and, therefore, that the
identity operator I on L®(R) is diffuse by (2.4). However, the adjoint I*
is not diffuse, by (2.4), since L*(R)" contains indecomposable elements
and I* does not map these elements into diffuse elements. In the case
where £ and F are (L)-spaces with bases the situation is as we would
expect.

(4.5) ProrosiTiON. Let B and F be (L)-spaces with bases B and B',
respectively. If T is an extreme point of L*(E,F; B,[0,B']), then (T,)*=
(T*), and (T3)* = (T*),; where the subscripts a and d denote the atomic and
diffuse components of the corresponding operators.

Proor. We recall that 7', T,, and 7T'; are order continuous as are
fe€ Eband g € Ft. By (4.3), T, is an extreme point of L?,(E,F; B,[0,B']),
T,; is an extreme point of Lb;(E,F; B,;[0,B']), and T4(¥E,)={0}. There-
fore, T(E,)=T,E, <F, by (2.4). Moreover, by (2.4), T,(E;)={0} so
that T'(E ;) =T 4(E,)-

Let T*=(T%),+ (T*); be the unique decomposition of 7™* into its
atomic and diffuse components. We need only show that (7,)* is atomic
and (7';)* is diffuse. Since 7', is atomic, it is the supremum of all finite
sums H of indecomposable G € L*(E,F) which are majorized by 7.
By (1.4), for each G we have that G* is indecomposable in L°(F®, E?)
and is majorized by 7'*. Thus, since (7'*),, is also the supremum of finite
sums of indecomposable elements in LP(F®, £%) which are majorized by
T* and since the elements in F? are order continuous over F, we may
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deduce that (7',)* < (7'%),. It follows that (7',)* is atomic since L (F?, EY)
is an order ideal. Next, let us assume that (73)* is not diffuse. Then there
is an indecomposable 4 € L°(F?, EP) such that A =P 4((T3)*). By (1.2),
mgA=LH{a} for some indecomposable a € B°. For z e F’ let A, R
satisfy 1,0=A(x). Since T4(E,)= {0}, we have that

0 = (A@),y) = A(Te*)y) = <@, Taly)) = 0

for all 0<x e F? and 6<yec E,. On the other hand, if <z e F® and
ye€ By, then by replacing F with R in (2.4) we infer that (a,y)=0.
Hence, 0=21,a,y)=(A4(x),y). Consequently, A=0 which contradicts
the fact that A is indecomposable, and we conclude that (7';)* is diffuse.

(4.6) CoroLLARY. Suppose that E,F are (L)-spaces with bases B< K and
B'cF. If TelLb,(E,F; B,,[0,B']), then T is an extreme point of this
convex set if and only if T* is an extreme point of L, (F® E®; u,[0,e,])
where u and e are the dual order units of F° and EP, respectively. More-
over, the same sort of equivalence is valid for the diffuse operators.

Proor. Since 6 is an extreme point of LY, (E,F; B,,[0,B']), we infer
from (4.3) that 7' is an extreme point of L° (¥, F; B,,[0, B']) if and only if
T is an extreme point of L*(E, F; B,[0,B']). Thus, the result follows from
(8.3), (4.1), and (4.5). The argument for the diffuse operators is similar.

We conclude these last two sections by remarking that the results
which were given in terms of the convex sets occurring in 1), 1), or 3)
in the definitions can be established for the convex sets occurring in 2),
2"), or 4) in the definitions, respectively.

5. Mapping an (L)-space into an (M)-space.

Let us now examine the atomic operators mapping an (L)-space L
with a base B and equipped with the base norm topology into an order
complete (M)-space M with an order unit e and equipped with the order
unit norm.

(5.1) ProposrrioN. LY(L, M)(T,) ts an (M)-space with an order unit K,
and L¥(L, M)(Ty) = L(L, M\(T") where L (L, M) is the space of all continu-
ous linear operators from L into M and T is the uniform operator topology.

Proor. Since M is equipped with an order unit norm, it is clear that
L(L,M)<L¥L,M). On the other hand, it is easily deduced from (2.16)
page 86 of [12] that Lb(L, M)< £ (L, M). Thus, from [6], £ defined from
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L into M by E(x)=|jzt|le— [lx~|le is an order unit for L*(L, M). Moreover,
L>(L, M) is Archimedean ordered since M is. Therefore, 7, is a normable
topology with [—E,F] as the unit ball. If 7 e[—E,E] and z € I with
llz]] 1, we have

IT@N = NT1(Dl = IEQeD] = 2] ]| = 1.

Hence, [— E,E]< U where U is the unit ball for #(L, M) equipped with
the uniform operator topology. On the other hand, for 7€ U and z= 6
we have that — E(x)=T(x)< E(x), so U<2[—E,E]. We conclude that
LAL, M) (Ty) =ZL(L,M)(T), and since J is complete, it follows that
IXL,M)(T,) is a Banach space. Moreover, for the order unit norm
LYL,M)(T,) is an (M)-space.

We shall continue to denote the order unit of L?(L, M) by E. Thus,
E, (respectively, E;) will denote the atomic (respectively, diffuse) com-
ponent of K.

(5.2) REMARK. Let X be a compact Hausdorff space.

i) Since X is completely regular, it is easily deduced that ¢ is in-
decomposable in C(X) if and only if there is an isolated point z e X
such that g(x)>0 and g maps X \ {z} into zero. Moreover, if 1 is the
order unit of C(X), then f e [0,1] is an extreme point of [§,1] if and only
if rngf<{0,1}.

ii) If 0(X) is order complete, then by arguments similar to those in
the latter parts of (4.1) we may deduce that f € [0,1] is an extreme point
if and only if the atomic component of f is an extreme point of [0,1,]
and the diffuse component of f is an extreme point of [6,1;] where 1,
and 1, are the atomic and diffuse components of 1, respectively.

iii) Let C(X) be order complete. Since an element d € C(X) is diffuse
if and only if it is disjoint from all the indecomposable elements of C(X),
it is clear that d is diffuse if and only if d(x)=0 for every isolated x € X.

On the other hand, an element a € C(X) is atomic if and only if the
only nonisolated y for which a(y) + 0 are those which are in the closure of
Y where

Y = {x € X : x is an isolated point of X and a(x)=+0} .

In order to see this, let a be atomic and let a(y,) & 0 for some nonisolated
Yo € X. If y,&ClY, then there exists an open set U <X such that y,e U
and UnY =¢. Hence, if x € U is an isolated point of X, then a(x)=0.
Let

@ = {g:g=|a| and g is indecomposable} .
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Then |a|=sup{g € G} and it is clear that every g € G is supported on an
isolated #,€ Y <X\ U. Choose %€ [6,1] such that A(X\U)=1 and
h(yo)=0. Then 0<#h|a|<|al, but since kla|2g for all g € @, we conclude
that Ala|=|a|. It follows that |a|(y,)=0, so that a(y,)=0.

Conversely, assume that a(y)+0 only if yeClY, and let a=a’+d’
where d’ is diffuse. We infer from above that d’(x)=0 for all isolated
z€ Y. By continuity d'(z)=0 for all e ClY. Since [a|=]a’|+|d’| and
la|(y)=0 for all nonisolated y € X\ ClY, we see that d’ also maps such
y’s into zero. Finally, since from above d’ is already zero on the isolated
points, it follows that d’=0, so a=a’.

The following corollary is an immediate consequence of (5.1) and
(5.2) (ii).

(5.8) CororLARY. Let T' € Lb(L,M)(T,). Then T is an extreme point of
[0,E] if and only if the atomic and diffuse components of T are extreme
points of [0,E,] and [0, E ], respectively.

We remark that there is an algebraic isomorphism between L M’
and Z(L,M) where ¥ (L, M) is L(L, M) equipped with the topology
of simple convergence (see corollary 4 page 139 in [13]). In particular,
forze B, fe M, and T € £ (L, M) we have (zQf)(T)=f(T(x)). Thus, in
preparation for a description of the extreme points in [0, E,] we establish
two results dealing with the indecomposable elements in the dual space
of I’(L,M)=%(L,M).

(5.4) PROPOSITION. Let x be indecomposable in L and let f be indecom-
posable in M'. Then xQf is an indecomposable element in L*(L,M)(T,) .

Proor. We note that &£ (L, M) < L (L, M)(T,) =L*(L,M)(T,)". Since
INL,M)(T,) is an (L)-space (as the dual of an (M)-space), we have
LAL,MY <IML,M). For T e L*(L, M) we have (xQf)(|T])={f,|T|(z)>-
However, |T|(x)=sup{T'(y):ye[—=,2]} implies that |T|(x)=|T(x)|
since z is indecomposable. Thus, since f is indecomposable, we have from
(1.1) that

@RNT)) = {L1T@)) = KAT @) = [@f T .
Consequently, by (1.1), z®f is indecomposable in

INL, M = INLM)T,) -

(5.5) ProposITION. Let 2 (L, M)’ be ordered with the order induced
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from LML, M. If xQf is indecomposable in L (L, M), then either x and
[ or their negatives are indecomposable elements in L and M', respectively.

Proor. If <0, we claim that f<0; for if y € M+ and f(y) >0, then
we choose an &> 0 in L? such that A(x) <0. Then for z € L define T' on. L
into M by 7T(z)=h(z)-y. Clearly 7 e L®(L,M)*, but (xQf}T)=
f(@)-h(x) <0 which contradicts the fact that x®f is indecomposable.
Similar arguments yield the following: if f<6, then x<0; if £ 0, then
x=0; and if f£0, then f=6. Thus, either x>0 and f=0, or <0 and
f=0. Since zQf=(—z)Q(—f), we may assume that 0<x and 6<f.
Then for 6 <g=<f we have that  <zRg=z®f. Since zQf is indecom-
posable, there is a y = 0 such that x®g=y(z®f). Hence, xQ(g—yf)=0,
and since x = 0, it follows that g=9f. Consequently, f is indecomposable,
and by a similar argument we conclude that z is also indecomposable.

(5.6) LEMMA. Suppose that B is the base for L, X is the set of extreme
points in the dual base in M', and Y is the set of extreme points in the dual
base in L¥(L,M)(Z,). Then there is an isolated point u € Y if and only if
there exists an extreme point b of B and an isolated f € X such that bQf= u.

Proor. We note that M ~C(X) and L¥*(L,M)(Z,) ~C(Y). Let u be an
isolated point of Y. By (5.2)(i), we define an indecomposable G € C(Y)
such that G(u)=1 and G(Y \ {u})=0. Then, as an element of L*L, M),
G is positive on L and is, therefore, order continuous. Consequently, by
(1.3), there exist indecomposable elements b € L and a € M such that
G(x)=41,0 where 1,€R is defined by 1,b=P,(x) for P, the projection
associated with b. By choosing a suitable multiple of b if necessary, we
may assume that b € B and is, therefore, an extreme point of B. Now
G £ E, since E corresponds to 1 and G <1. Therefore, G(b)=a < E(b)=e.
If |ja|| <1, then we have ||G(x)||=2,/la| < |lz| since A,=|x||. This implies
that ||G)<1 which contradicts the fact that G(u)=1; hence, |ja||=1.
Since a is indecomposable, we infer from (5.2)(i) that there is an isolated
f € X such that {f,a)=1 and {g,a)=0 for all g € X \ {f}. We claim that
bRf=u. Since bRQf(G)=1=u(G), we need only prove that the null
space of u is contained in the null space of bQf. Let u(T)=0 for
T e I¥L,M). Then for P, the projection associated with G, we have
w(Pg(T))=0; hence, T1@Q. Since b is indecomposable, we can deduce
that T'(b)LG(b). Hence, since f is indecomposable and f(G(b))=1, we
infer from (1.1) that f(7'(b))=0, and we conclude that 7' is in the null
space of bQf.

Conversely, let b be an extreme point of B and let f be an isolated
point of X. Then, by (5.4), b®f is an indecomposable element in B, and
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we have bQ®f e Y because (bQf)(E)=|b||f(¢e)=1. Since f is an isolated
point of X, there is an indecomposable @ € M such that (f,ad=1. Let
G be defined on L into M by G(z)=2A,a where A, R is defined by 1b=
Py(z). Then from (1.2) it is easily deduced that @ is an indecomposable
element of LY L,M). Since bQf(G)=1, it follows from (5.2)(i) that
b®f is an isolated point of Y.

We conclude our discussion of the space L?(L, M) with the following
description of the atomic operators which are extreme points of [0, ,].

(5.7) ProposiTION. Let B, X, and Y be as in (5.6) and let Y, be the set
of all weak* isolated points of Y. Then A € LP,(L, M) is an extreme point
of [0,E,] if and only if A maps every extreme point of B into an exireme

point of [0,e,].

Proor. As noted in (5.6) we have M ~C(X) and L¥L,M)~C(Y).
Let 4 be an extreme point of [0, E,,] and let b € B be indecomposable in L.
Since for any fe X we have b®f € Y, it follows that f(A(b)) € {0,1} for
all fe X. Thus, by (5.2)(i), A(b) is an extreme point of [0,e¢]. Finally,
since, by (2.3), A(b) € [0,¢,], we conclude that 4(b) is an extreme point
of [0,e,].

Conversely, let A(b) be an extreme point of [0,e,] for each be B
which is indecomposable in L. Then f(A4(b)) € {0,1} for all fe X. Since
for each u € Y, we have that u=bQ®f for some extreme point b of B and
some f € X by (5.6), it follows that A(Y,)<{0,1}. By the continuity of 4
we have A(C1Y,)<{0,1}, and since A is atomic, we infer from (5.2)(iii)
that A(Y \ClY,;)={0}. Thus, A(Y)<{0,1} and it follows from (5.2)(i)
that 4 is an extreme point of [0,E,].

6. The space L°(M,L).

We now turn to the remaining case where the domain space has an
order unit and the range space has a base. In particular, we shall briefly
examine L*(M,L) where M and L are as in section 5 above except that
M need not be order complete.

(6.1) ProrosiTioN. There exists a base B’ in L*(M,L) and for the base
norm topology Lb(M,L) is an (L)-space.

Proor. It is easily seen that B'={T"e L¥(M,L):0<T and T'(e) € B}
is a base in L? since B is a base in L. We equip L*(M,L) with the base
norm topology ||+ || and note that this norm is additive on the positive cone
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Lbd(M,L)+. Thus, it remains only to show that Lo(M,L)(||-||) is complete.
If U is the unit ball, then it is clear that U is solid and that L*(M, L)+
is a strict b-cone. Hence, by (1.12) page 146 in [12], to show the complete-
ness, it suffices to show that ||-|| is coarser than the order topology 7
and that every monotonically increasing sequence in L?(M, L) which is
norm bounded has a supremum. Since LP(M,L)(||-||) is a locally convex
lattice, it follows from (1.17) page 124 of [12] that ||-||=Z;. Now let
{T,.} be monotonically increasing in L*(M,L) and let {T',} <« U for some
o«>0. Since U is solid, we have {T',*},{T,~}<«U, so for each n there
exist 1,,y,€[0,1] and B,,C, € B’ such that 7,*=«4,B, and T, =
oay,C,. Hence,

T.[—ee] < «B,[—e,e]l+aC,[—ee] = 2oU’

where U’ is the unit ball of L. If 6 <x € M, then {T',(2)} is monotonically
increasing in L and {7T',(x)} = 2«|lz||U’. Since, by (1.8) on page 145 of [12],
the canonical images {¢(7'(x,))} =L’ have a supremum in L" and since
L is a band in L”, it follows that sup,{7',(x)} exists in L. For each
x € M+ let y,=sup,{T,(x)} and define 7'y on M+ into L by Ty(x)=y,.
Since L is an (L)-space, we infer that (7',(a)—T(a))} 0 for a € M+ im-
plies that {7 (a)} norm converges to Ty(a). Consequently, for a,b € M+
an any ¢> 0 there exists an N >0 such that n > N implies that

I7o(@ +b) — To(a) — To(b)]|
= [[To(@+b)=Tyla+b)|+[To(a) = Tp(@)l| +1To(0) — T, < & .

It follows that T, is additive on M+, and since it is clearly positive
homogenous, we extend 7', linearly to all of M by defining 7y(x)=
To(xt)—Ty(x~). Finally, since we have (Ty—T;)(x)=0 for all xe M+,
it follows that T,—7; is order bounded, and, therefore, 7', is order
bounded since it is the sum of two order bounded linear operators. We
conclude that L*(M,L)(||-||) is an (L)-space.

As a last remark, we note that the indecomposable elements of Lb(M, L)
are scalar multiples of the extreme points of the base B’ and that each
such extreme point is indecomposable.
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