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ON (k—1)-CONNECTED (2k+1)-MANIFOLDS

RODOLFO DE SAPIO

1. Introduction.

This paper is concerned with the classification problem for closed,
infinitely differentiable, (k—1)-connected (2k+ 1)-manifolds under the
relation of orientation preserving diffeomorphism. It is assumed that k is
even, k> 2, and that the manifolds are either k-parallelizable or almost
parallelizable. These assumptions permit the application of certain tech-
niques of differential topology that yield a rather simple analysis of such
manifolds. There is also a result for £ odd (Theorem 2).

A preliminary result is the following: for k even there are at most a
finite number of nondiffeomorphic (£ —1)-connected almost parallelizable
(2k + 1)-manifolds with the k-dimensional homology group cyclic and not
zero. In particular, such a manifold is almost diffeomorphic (and hence
homeomorphic) to either the product of spheres S*x S¥+L or the tangent
k-sphere bundle V, ., , to the (k+ 1)-sphere. An upper bound is obtained
here on the number of such manifolds; the exact number has been ob-
tained in most cases in [1]. More generally we have the following.

THEOREM 1. Let k> 2 be even and let M2+ be a (k— 1)-connected, closed,
almost parallelizable (2k+ 1)-manifold. Then M*+ is diffeomorphic to
the connected sum

SkXSk+1+ P +Sk)<kgk+1+ Vk+2,2+ PN +Vk+2,2+MT )

where M p is a (k—1)-connected m-manifold such that H,(My) is a finite
group that is not cyclic and is isomorphic to the torsion part of H;(M).

REMARks. If H,(M?+1) is free, then M, in the above decomposition
must be a homotopy (2k+ 1)-sphere. If k=6 (mod8), then the assump-
tion of almost parallelizability in this theorem may be removed.

The decomposition of this theorem has also been obtained by A. Vas-
quez [9] who also decomposes M, into a connected sum of rather simple
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manifolds. I. Tamura [8] has results in the torsion-free case. The work
of the present paper was done independently and without the knowledge
of [8] and [9]. The approach presented in this paper is somewhat differ-
ent, employing some of the techniques of [4], and results in what the au-
thor believes to be a simpler and more geometric exposition. The most
general and complete study of (k—1)-connected (2k+ 1)-manifolds ap-
pears in the recent paper [11] of Wall.

ADDED 1IN PrROOF. Since this paper was written in 1964 the paper [11]
of Wall has appeared.

It was originally proved by Wall that a (k—1)-connected (2k+ 1)-
manifold M2*+! with H, (M) cyclic and not zero must have H,(M) infinite
cyclic, provided that k is even. This is not the case when k is an odd
integer. In fact, according to [5] there are, for a given prime p, exactly
1984 4-connected 11-manifolds M1 that bound s-manifolds such that
H (M) is cyclic of order p.

We shall use the standard terminology. Differentiable or smooth will
always mean of class U, and all manifolds are understood to be smooth
and oriented. The term diffeomorphism means an orientation preserving
diffeomorphism, and all embeddings are assumed to be orientation pre-
serving whenever this makes sense. A manifold is almost parallelizable if
the removal of a point yields a parallelizable manifold, and a s-manifold
is a manifold with a stably trivial tangent bundle. A manifold is k-paral-
lelizable if the restriction of the tangent bundle to the k-skeleton is trivial.
The unit k-sphere in euclidean (k+ 1)-space R¥*+! is denoted by S* and the
unit (k+1)-disc in R*+! is denoted by D¥*+l, Finally, M denotes the
boundary of a manifold M ; thus S*=oDk+1,

2. A decomposition.
The following proposition follows easily from results of S. Smale.

ProrositioN 1. Let M2+1 pe g closed, (k— 1)-connected, k-parallelizable
(2k + 1)-manifold, where k> 2, and suppose that oy,...,0p,71,...,7, 18 @
set of generators for a direct sum decomposition of H, (M) such that o; is free
and t; 18 of finite order with ¢ minimal for such a decomposition of H,(M).
Then there is a diffeomorphism h of the connected sum of p+q copies of
S* x 8% such that M?*+1 is diffeomorphic to the disjoint union of two copies
of 3P+9(Sk x Dk+1, 8k x Sk), with points identified along the boundary
>PH9(Sk x Sk), under the diffeomorphism h. If k=3,5,6,7 (mods8), then
the above decomposition is valid for any (k—1)-connected (2k + 1)-manifold.
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For the definition of the connected sum along the boundary
SPH(8k x D*+1, 8% x S¥) of p+q copies of S* x Dk+! the reader is referred
to [4].

Proor. According to Smale [7, Theorem 6.1] there is a real valued C_
function f on M?*+! with only nondegenerate critical points such that at
each critical point § € M2*+1, f(B) is equal to the index of f at . Fur-
thermore, f has the property that the number m, of critical points of
index 7 is such that my=mgy ., =1, m;=0forO<i<kand k+1<i<2k+1,
and m;=m; ,=p+q. It follows that M2*+! may be constructed in the
following manner. There is an embedding
PHq
g U 81 x Dk+1 _, S2k
i=1
of p+ ¢ copies of S*¥-1 x Dk+1 disjointly in §2¢=9D%*+1 and an embedding

ptq
g2 U 8, x D ~ oHe+1
j=1
of p+gq copies of S*x D* disjointly in the boundary of the handlebody
H¥+1= D2+l g, (UPH{ D}, x De+1). Finally, there is a diffeomorphism

gs: S > JLHeHL Y, (URHD b+l x Dh]

of §% onto the boundary of H*+1y, (UPt{D*+1x D) such that M+
is diffeomorphic to the latter manifold with D%+ attached along the
boundary S2¢ under the diffeomorphism g;.
We shall show that H?*+! is diffeomorphic to 37+9(S* x Dk+1, 8k x Sk),,

which is also a handlebody determined by some embedding

PHq

g: U 81 x Dk+1 5 g2k

i=1
In view of dimension considerations it is clear that the restricted em-
beddings ¢|U?*484-1x0 and g,|UF*{S¥-1x 0 are diffeotopic (deform
the embeddings g, | ;-1 x 0 into ¢ | S;¥~1 x 0 respectively, one at a time),
and hence by diffeotopy extension we may assume (cf. [6]) that the
embeddings g and g, coincide on UZ*?8#-1x 0. At this point it is clear
that H2+! ig determined merely by the product structure chosen on the
normal bundle of g|UZ+?.8%-1x 0 in §%; that is to say, by the extension
of g|UPtI8k-1x0 to UPt?S+-1x D+, and this will be the embedding
g, This product structure must be chosen so that H*+!is parallelizable
and hence is unique, as follows. The embedded sphere g(S;*-! x 0) bounds
a smooth k-disc B in D%+ such that B#n 8% =0B* and B/* is unique



184 RODOLFO DE SAPIO

up to diffeotopy. There is a unique (up to orientation) product struc-
ture on the normal bundle of ¢g(S;*-1x0) in 82 that extends to a
product structure on the normal bundle of B in D%+1; letting

wi: 81 x Dk+1l —» §2k

denote this unique product structure we have y,=g|8;%-1x D¥+1. Now
given any other product structure @; on the normal bundle of ¢(S/*-1 x 0)
in S%, then, by application of the tubular neighborhood theorem,
@;(8%1 x D*¥+1) may be deformed onto ,(S;*~1x D¥+1) under a diffeo-
topy leaving ¢,(S;%-1x 0) pointwise fixed such that, after the diffeotopy

Piu,v) = pi(w,0-a(w)) ,

where «: S¥-1 > 80,,, is a smooth map and v-«(u) denotes the usual
action of SO, ., on D*+', The homotopy class of « in m;_,(80;,.,) classi-
fies the normal bundle of the k-sphere B/u(D/®x 0) (which may be
assumed to be smoothly embedded) in the handlebody D*+wy
(D x D+1), If this handlebody is to be parallelizable, then this normal
bundle must be trivial (cf. [4, Lemma 5.3]). It follows that « may be
taken to be the constant map: «(u)=1 for each « € 8¥-1, and hence g, =¢
as desired.

It is easy to see that the closure cl(M2+1 — H2+1) jg diffeomorphic to
H#+1, Tn fact, if in the preceding argument the function f is replaced
by —f, then the manifold M2*+! js turned ‘‘upside down” by applying
handlebody theory to —f. It is sufficient to observe that the type num-
bers m;’ of —f are same as those of f since m; =mg;4_;.

The final statement of the proposition follows from the above proof by
noting that n;_,(80,,,)=0 for k=3,5,6,7 (mod 8).

3. Classification.

Let M%+1 be a (k—1)-connected, closed, almost parallelizable (2k+ 1)-
manifold such that k>2 is even. We shall first assume that H (M) is
cyclic and not zero. Specifically we shall show the following.

ProposITION 2. Assume that k> 2 is even and let M¥+! be a (k—1)-
connected, closed, almost parallelizable (2k + 1)-manifold such that H (M) is
cyclic and not zero. Then M2+l {s homeomorphic to either S¥x Sk+l or
Vise,o. In particular, there is a homotopy (2k+ 1)-sphere Z%*+1 such that
M2+ is diffeomorphic to either (S% x Sk+1)4 X%+l or Vo o+ X241,

REMARKS. Since there are only a finite number of homotopy spheres
(in dimension #3) there are only a finite number of such manifolds
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M2+, 1t is a result due to I. M. James and J. H. C. Whitehead that
Sk x Sk+1 and V., , have different homotopy types when k0,2, 6.

Proor. According to the preceding section M?*+! may be constructed
by taking the manifold 8% x D¥+! (an orientation is chosen on S x Dk+1
and held fixed throughout) and first attaching the handle D%+ x D¥ by
means of an appropriate embedding

@: Skx Dk — Sk x Sk;

@ determines an embedding of S* in S* x §* with a trivial normal bundle
and a product structure on the normal bundle. Pick a fixed p, e S*.
Then H,(S*x S¥) is the free abelian group generated by the homology
classes 4 and u represented by the respective embedded spheres S* x p,
and py x Sk. Thus @(S* x 0) represents a homology class ad+bu, a and b
integers, with normal bundle classified by an element «(al+bu)e
75,-1(80,,) which must be zero. If ¢: 7, (S¥) - n,._,(S0,) is the boundary
homomorphism of the fibration §*=80,_,/SO,, then

a(ad+bu) = ab o,

(cf. [10, Lemma 2]), where ¢, € 7;(S¥) is the class of the identity map.
Hence we must have
ab oy, = 0.

Since k is even, 0y, has infinite order and it follows that either a =0 or 6=0.

Case 1. The case b=0 will be considered first. Then @(S* x 0) repre-
sents the homology class al. Now the embedding ¢ determines a spherical
modification of 8% x 8% and the result of this modification must be S§%
(in order to attach the last cell, the (2k+ 1)-disc.D?+1)., That is, the
spherical modification determined by ¢ must have the effect of killing
the entire homotopy group m,(S* x S¥) and this is the case if and only if
al is indivisible (i.e. a= + 1), for otherwise the modified manifold would
have an element of finite order a in its homology in dimension k (the veri-
fication of this is left to the reader). It follows that (S*x D*+l)u,
(D*¥+ x D¥) is contractible and hence the manifold is a homotopy sphere.

Case 2. If a=0, then by exactly the same argument as in Case 1 we
have b= + 1. We shall assume that b=1 since the case where b= —1
reduces to this. By application of the embedding theorems of Haefliger
[2] it may be assumed that ¢(u,0)=(p,,%) for each (u,0)eS8¥x0. It
remains to determine the product structures that are possible on the
embedding ¢|S%1x0. In any case it is clear at this point that
H,(M?*+1) ig infinite cyclic.

Let
y: Skx Dk — Skx Sk,
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such that u(w,0)=(p,,u) for all (u,0) e S*x 0, be the unique product
structure on p,x S¥ in S* x S*¥ that extends to a product structure

$: D1y Dk 5 Sk Dk+1

on the (k+ 1)-discp, x D¥+! in S* x D¥+1, By the tubular neighborhood
theorem and diffeotopy extension we can assume that

@(u,v) = p(u,v- «(u))

for all (u,v) € 8% x D¥*, where «: 8% — SO,, is a smooth map. We can also
take the (k- 1)-sphere p, x D¥+1)y (D*+1x 0) to be smoothly embedded
in the manifold (8% x D¥+)y,(D¥*+! x D¥); then this (k+ 1)-sphere has a
normal bundle classified by the homotopy class [x] of « in the group
7,(80;). But the manifold (S x D¥+1)y, (D¥+1 x D) is parallelizable and
hence the normal bundle of any embedded sphere is stably trivial. It
follows that the element [x] lies in the kernel of the homomorphism
7, (80,) - 7;(SO) induced by the natural injection SO, <S80, where SO
is the infinite special orthogonal group. Now this kernel is of order four
when k is even (cf. [3]) but it turns out that the four elements of this
kernel determine exactly two distinct manifolds of the form (8% x D¥+1)u,
(D¥*+1x D¥). These two manifolds are S*x S*¥+! and V,,, ,, each with
the interior of a (2k+ 1)-disc removed. In fact, let «: §* — SO, be a
smooth map representing an element in the kernel of x,(SO,) - =, (SO)
and let E(x) denote the total space of the k-dise bundle over S%+! that is
classified by «. Let Sy: 7,(S0;) — 7,(S0,..,) denote the homomorphism
that is induced by the natural inclusion SO, <S80, ,. Then the total
space of the k-sphere bundle that is classified by S,[«] € 7,(80,.,) is
exactly the double D(E(x)) of E(x). (Observe that D(E(x)) is two copies
of E(«) pasted together along the boundaries under the identity map.)
If the interior of a (2k+ 1)-disc is removed from D(E(cx)), then the result
is clearly the parallelizable manifold (S*x D¥+1)u (D¥+! x D), where
@: Sk x D* - 8k x Sk is defined by ¢(u,v) =vy(u,v-x(u)) (recall how y was
defined above). It remains to show that the bundle D(E(x)) which is
classified by S,[«] is either trivial or is the tangent k-sphere bundle to
Sk+1 Now if S;,,1: (SO 41) - 7,(SO) denotes the homomorphism that
is induced by the natural injection SO, ., =SO, then of course the com-
position S, ., 0 S, is the homomorphism 7,(80,) — 7,(SO) that is induced
by the injection SO, <SO and hence S,[x] lies in the kernel of §,,;.
But, as is well known, the kernel of S,,,; is the subgroup of order two
(when k is even) that is generated by the element ot;,, which classifies
the tangent bundle of S*¥+1, and the proof of Proposition 2 is complete.
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If k=6 (mod8), then the condition of almost parallelizability in Propo-
sition 2 may be removed. In fact, recall the final statement of Proposi-
tion 1 and then apply the argument given in Case 2 of the proof of
Proposition 2 above, recalling that x,(SO)=0 for k=6 (mod8). More
generally, one may prove the following, noting that

7,(80) = 0 for k=5,6 (mod8).

ProrositioN 3. If k=5,6 (mod8), then a (k—1)-connected (2k+1)-
manifold is a n-manifold.

Proor. The only obstructions to making M?*+! a z-manifold lie in the
groups m(BSO), m,.,(BSO), and =, ,(BSO), which are all zero if
k=5,6 (mod8). Since M2*+! has the homotopy type of

(V; 8% u (U; D}+1) u D41

the classifying map M?*+! — BSO of the stable tangent bundle is homo-
topically trivial.

We are now prepared to prove Theorem 1 stated in the introduction.

Proor or THEOREM 1. It is well known that M2+l may be reduced
to a homotopy sphere by a sequence of framed spherical modifications
of type (k+1,k+1). (M2+1 is a z-manifold since it is almost paralleliz-
able; see the remark following Lemma 2 of [1].) For convenience we shall
be specific about those modifications that we shall begin with. By
Proposition 1 M2*+1 js the disjoint union of two copies of

(1) (8% x DR+, Sk x S),

identified along the boundaries; choose one copy and hold it fixed
throughout. Here p and ¢ are those integers defined in Proposition 1
and hence we can suppose that the first p embedded spheres (S*x 0);,
j=1,...,p, in (1) represent a free set of generators for the free part of
H,(M). Then in order to reduce M2*+! to a homotopy sphere we may
begin the modifications with the spheres (S* x 0);,j=1,...,p. The prod-
uct structures that are to be chosen on each of these k-spheres may differ
from the obvious one (given by

(Sk x D¥+1), = P(Sk x Dk+1, Sk x 8k),)

by actions of SO, ., on the fibers D¥+! for each j=1,. . .,p. Then according
to [4, Lemma 5.7], by performing these p modifications we shall obtain
a manifold M,’ that is (k—1)-connected and with H;(M ;') isomorphic
to the torsion part of H,(M). Now H,(M;') is generated by the ¢ em-
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bedded k-spheres (8*x0);, j=p+1,...,p+¢, and according to [4, proof
of Theorem 5.1 for k£ even], M’ may be reduced to a homotopy sphere
U?%*+1 by a finite sequence of modifications (in fact, by exactly 2¢ modifi-
cations). It follows that the original manifold M%+! may be obtained
from the homotopy sphere U2:+1 by performing p+ 2¢ modifications on
U%*+1, In fact, the first p modifications to be performed on U2+ may
be taken to be the ones that remove the k-spheres (p, x 8%);, j=1,...,p,
where p, € S* is a base point.

Assertion. The first p k-spheres (p, x S¥);, j=1,...,p, that are to be
removed from U?%+! are not pairwise linked in U2*+1, nor is any one of
them linked with the remaining 2q k-spheres that are to be removed
from U2k+1,

To prove this assertion let the homology class of (8% x 0); be denoted
by «,; for each ¢=1,...,p+q. Choose a fixed integer j such that 1 <j=<p.
Then «; is free and hence by the Poincaré duality theorem there is a
class ;€ H; (M) such that the intersection number «;-f;=0,;;, the
Kronecker delta. It follows from the theorems of Hurewicz and Haef-
liger that §; may be represented by an embedded sphere 8%+ < }f2k+1
such that S+ intersects (8% x 0); in exactly one point (p,,0) € (S* x 0);
and is disjoint from (8*x 0), for i+j. (Proof: Since M+ is (k—1)-
connected, the Hurewicz homomorphism s (M) -~ H,,_ (M) is surjec-
tive and hence ; may be represented by a map g: S¥+1 - M?*+1 Then
by an embedding theorem of Haefliger [2] the map g is homotopic to an
embedding ¢: Sk+1 - M2+l (since k=4). But since «;*f;=4;;, we can
arrange matters so that g(S*+1)=_8k+! intersects (S* x 0); in exactly one
point and is disjoint from (S* x 0), for ¢4j5. This is done essentially by
Whitney’s method as described in [12].) Furthermore, we can assume that

S#+1n (8% x Dk+1), = (pyx DE+L);

and hence (p, x S¥); bounds a disc in the complement of (S* x D¥+1); in
M?2e+1 that is disjoint from (S*x 0); for ¢+j. We can also assume that
this disc is disjoint from (p,x S¥), for each i+j. Thus the k-sphere
(po % 8¥); bounds a disc in U+ that is disjoint from the sphere (p, x S¥);
for each ¢=j since we can perform all of the required modifications
(on M2k+1 in order to obtain U2+l) away from this disc. That is, the
k-sphere (py x S*); is not linked with (p, x 8¥); in U%+1 for each ¢ +j and
thus the assertion follows.

It now follows easily from the above assertion that M?¥+1 is a connected
sum of p+ 1 manifolds that are (k— 1)-connected, such that each of the
first p of these manifolds has an infinite cyclic kth homology group and
the last manifold is M, with H,(M,') a torsion group that is not finite
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cyclic. Up until now the assumption of k-parallelizability (in place of
almost parallelizability) was actually sufficient in all of the arguments.
But since M%+1 is assumed to be almost parallelizable, it follows from
Proposition 2 that each of the first p manifolds in the decomposition ob-
tained is either (S¥xS*+1)+Z or V,,, ,+Z, where Z is a homotopy
(2k + 1)-sphere. The theorem now follows easily.

The above proof actually establishes the following more general result
for any k = 4 (the application of [4, Lemma 5.7] in the above proof is valid
for any k-parallelizable manifold and any integer k> 1).

THEOREM 2. Let k=4 and let M%*+1 be a (k—1)-connected, closed,
k-parallelizable manifold. Then M2+1 is diffeomorphic to the commected
sum of p+1 (k—1)-connected manifolds

M~ Mi+... My+ M, ,

such that Hy(M,) is infinite cyclic for i=1,...,p and Hy(M,,,) is a finite
group. If k is even, then H (M, ;) is not cyclic.

It is possible to apply the methods of [4] in order to decompose the
manifold M, of Theorem 1 into simpler manifolds.
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