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ON POINT REALIZATIONS OF L*-ENDOMORPHISMS

JORGEN VESTERSTROM and WILBERT WILS

Let Z be a locally compact space and u a positive Radon measure
on Z. M*®(Z,u) denotes the set of bounded complex-measurable func-
tions, N*(Z,u) the set of functions in M*(Z,u) which are null locally
almost everywhere (La.e.). L3(Z) is the quotient M*(Z,u)/N*(Z,u)
and is a commutative C*-algebra with a complete ordering as the dual
of the ordered space LY(Z,u).

A x-homomorphism @: L®(Z,u) - L*(Z,u,) is called normal if
D(supF)=supp(F) for any upwards directed and bounded set F <
L®(Z,u). J. von Neumann proved in [4] that such a @ is implemented
by a point map 7: Z; - Z if Z and Z, are metrizable. Applying liftings
and disintegration for measures, C. Ionesco Tulcea obtained the result
for compact spaces [2]. The purpose of this note is to prove the result
in the general case. This will be done only by use of liftings.

A lifting on (Z, u) is a map ¢: L*(Z,u) - M*(Z, u) such that g is linear,
positive, multiplicative, o(I)=1 and o(f)=f l.a.e. where f is the canonical
image in L™(Z,u) of fe M*(Z,u). There exists always a lifting for any
(Z, 1) [3].

For the sake of completeness, we state a reformulation of (P), Appen-
dix I in [1].

Prorosrition. Let & < L®(Z,u) be an upwards directed and bounded
set and let ¢ be a lifting on (Z, ). Then the function f,=sup {o(f) | f€ F}
is in M*®(Z,u) and o(supF)=f, and supF =f,.

TrEOREM. Let @: L*(Z,u) — L®(Zy,1t,) be a normal *-homomorphism
with ®(1)=1. Then there exists a map n: Z, —~ Z with the following proper-
ties:

1) If fe M™(Z,u), then fon € M*(Zy,umy).

2) If A<Z is a null set, then n‘l(A) 18 @ null set.

3) If fe M™(Z,u), then @f) fon
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Proor. Without loss of generality we may assume that u has sup-
port Z. Then, denoting the one-point compactification of Z by Z_,
C(Z,.) is imbedded in L*®(Z,u). Let o be a lifting on (Z,u,). For 2, € Z,,
the functional fe C(Z,) — o(®(f))(2,) is a character on C(Z,). Hence
there is a unique z=n(2,) € Z, such that

(1) o(D(f))(z1) = f(n(z)) for feC(Z,).

In other words,  is a map Z, — Z_, such that o(D(f))=foy for f € C(Z,).
Let now g be lower semicontinuous (l.s.c.), positive, bounded, and real
on Z. Then g=sup{fe Cy%)|0<f<g} and J=supf. Hence, by nor-
mality,

®(§) = sup®(f) = sup fory
= (sup o(fon)) = (sup fon) = gon

where we agree that any function g on Z is extended to Z_, by g(cc)=0.
Here we used the proposition; we get also go#n <o(®(g)). In particular,
we have

-

I = &(1) = (Izom)” = (1,,,)

Hence Z,\ C is a local null set, where C'=%"1(Z). Adding constants, we
remove the condition that g is positive to the effect that the following
holds:

(2) e(®(9) = gon onC,
(3) P(g) = gon .

Let now h € M*(Z,u) be real and
Z,=1{9| glsc.,greal, g=h}.

Then h=infZ,, hence ®(h)=inf &(Z,). Let

9, = info(9(7)) .
Then, by the proposition, ¢, is measurable and by (2)
(4) @y 2 infgon on C;
therefore ¢, = ho7 on C and, by the proposition,
(5) ¢ = (infe(P(9))” = infO(G) = O(h) .
In the same way, replacing » by —h, we find a ¢, € M*°(Z,, 1) such that

(6) ¢ Shoy onC,
(7) o = D).
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Consequently we have ¢,=®(h)=¢, and @, <hon<gp, on C. Hence
hon is measurable and m=¢(ib).

Finally, we modify % on 7~1(c0) to take some fixed value 2z, in Z. The
relation ¢(ib)=m is still true. From this we easily infer the three

statements of the Theorem.
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