ON POINT REALIZATIONS OF L^{∞} -ENDOMORPHISMS

JØRGEN VESTERSTRØM and WILBERT WILS

Let Z be a locally compact space and μ a positive Radon measure on Z. $M^{\infty}(Z,\mu)$ denotes the set of bounded complex-measurable functions, $N^{\infty}(Z,\mu)$ the set of functions in $M^{\infty}(Z,\mu)$ which are null locally almost everywhere (l.a.e.). $L^{\infty}_{\mu}(Z)$ is the quotient $M^{\infty}(Z,\mu)/N^{\infty}(Z,\mu)$ and is a commutative C^* -algebra with a complete ordering as the dual of the ordered space $L^1(Z,\mu)$.

A *-homomorphism $\Phi: L^{\infty}(Z,\mu) \to L^{\infty}(Z_1,\mu_1)$ is called normal if $\Phi(\sup \mathcal{F}) = \sup \varphi(\mathcal{F})$ for any upwards directed and bounded set $\mathcal{F} \subseteq L^{\infty}(Z,\mu)$. J. von Neumann proved in [4] that such a Φ is implemented by a point map $\eta: Z_1 \to Z$ if Z and Z_1 are metrizable. Applying liftings and disintegration for measures, C. Ionesco Tulcea obtained the result for compact spaces [2]. The purpose of this note is to prove the result in the general case. This will be done only by use of liftings.

A lifting on (Z,μ) is a map $\varrho \colon L^{\infty}(Z,\mu) \to M^{\infty}(Z,\mu)$ such that ϱ is linear, positive, multiplicative, $\varrho(I) = 1$ and $\varrho(\tilde{f}) = f$ l.a.e. where \tilde{f} is the canonical image in $L^{\infty}(Z,\mu)$ of $f \in M^{\infty}(Z,\mu)$. There exists always a lifting for any (Z,μ) [3].

For the sake of completeness, we state a reformulation of (P), Appendix I in [1].

PROPOSITION. Let $\mathscr{F} \subseteq L^{\infty}(Z,\mu)$ be an upwards directed and bounded set and let ϱ be a lifting on (Z,μ) . Then the function $f_{\infty} = \sup \{\varrho(f) \mid f \in \mathscr{F}\}$ is in $M^{\infty}(Z,\mu)$ and $\varrho(\sup \mathscr{F}) \ge f_{\infty}$ and $\sup \mathscr{F} = \mathring{f}_{\infty}$.

THEOREM. Let $\Phi: L^{\infty}(Z,\mu) \to L^{\infty}(Z_1,\mu_1)$ be a normal *-homomorphism with $\Phi(1) = 1$. Then there exists a map $\eta: Z_1 \to Z$ with the following properties:

- 1) If $f \in M^{\infty}(\mathbb{Z}, \mu)$, then $f \circ \eta \in M^{\infty}(\mathbb{Z}_1, \mu_1)$.
- 2) If $A \subseteq Z$ is a null set, then $\eta^{-1}(A)$ is a null set.
- 3) If $f \in M^{\infty}(Z, \mu)$, then $\Phi(\hat{f}) = \widehat{f \circ \eta}$.

PROOF. Without loss of generality we may assume that μ has support Z. Then, denoting the one-point compactification of Z by Z_{∞} , $C(Z_{\infty})$ is imbedded in $L^{\infty}(Z,\mu)$. Let ϱ be a lifting on (Z_1,μ_1) . For $z_1 \in Z_1$, the functional $f \in C(Z_{\infty}) \to \varrho(\Phi(f))(z_1)$ is a character on $C(Z_{\infty})$. Hence there is a unique $z = \eta(z_1) \in Z_{\infty}$ such that

(1)
$$\varrho(\Phi(f))(z_1) = f(\eta(z_1)) \quad \text{for } f \in C(Z_\infty).$$

In other words, η is a map $Z_1 \to Z_\infty$ such that $\varrho(\Phi(f)) = f \circ \eta$ for $f \in C(Z_\infty)$. Let now g be lower semicontinuous (l.s.c.), positive, bounded, and real on Z. Then $g = \sup\{f \in C_0(Z) \mid 0 \le f \le g\}$ and $\tilde{g} = \sup \tilde{f}$. Hence, by normality,

$$\Phi(\tilde{g}) = \sup \Phi(\tilde{f}) = \sup \widehat{f \circ \eta} \\
= \left(\sup \varrho(\widehat{f \circ \eta})\right)^{\sim} = \left(\sup f \circ \eta\right)^{\sim} = \widehat{g \circ \eta}$$

where we agree that any function g on Z is extended to Z_{∞} by $g(\infty) = 0$. Here we used the proposition; we get also $g \circ \eta \leq \varrho(\Phi(g))$. In particular, we have

$$\widetilde{1_{Z_1}} = \Phi(1) = (1_Z \circ \eta)^{\tilde{}} = (1_{\eta - 1(Z)})^{\tilde{}}.$$

Hence $Z_1 \setminus C$ is a local null set, where $C = \eta^{-1}(Z)$. Adding constants, we remove the condition that g is positive to the effect that the following holds:

(2)
$$\varrho(\Phi(\hat{g})) \ge g \circ \eta \quad \text{on } C$$
,

$$\Phi(\hat{g}) = \widetilde{g \circ \eta} .$$

Let now $h \in M^{\infty}(Z, \mu)$ be real and

$$\mathcal{F}_u = \{g \mid g \text{ l.s.c., } g \text{ real, } g \geqq h\}$$
 .

Then $\tilde{h} = \inf \widetilde{\mathscr{F}}_u$, hence $\Phi(\tilde{h}) = \inf \Phi(\widetilde{\mathscr{F}}_u)$. Let

$$\varphi_{\boldsymbol{u}} = \inf \varrho (\Phi(\tilde{g})).$$

Then, by the proposition, φ_u is measurable and by (2)

$$\varphi_n \ge \inf g \circ \eta \quad \text{on } C;$$

therefore $\varphi_u \ge h \circ \eta$ on C and, by the proposition,

(5)
$$\widetilde{\varphi_u} = \left(\inf \varrho(\Phi(\tilde{g}))\right)^* = \inf \Phi(\tilde{g}) = \Phi(\tilde{h}).$$

In the same way, replacing h by -h, we find a $\varphi_1 \in M^{\infty}(Z_1, \mu_1)$ such that

(6)
$$\varphi_1 \leq h \circ \eta \quad \text{on } C ,$$

$$(7) \qquad \qquad \widetilde{\varphi_1} = \varPhi(\tilde{h}) .$$

Consequently we have $\underline{\widetilde{\varphi_1}} = \Phi(\tilde{h}) = \overline{\varphi_u}$ and $\varphi_1 \leq h \circ \eta \leq \varphi_u$ on C. Hence $h \circ \eta$ is measurable and $h \circ \eta = \Phi(\tilde{h})$.

Finally, we modify η on $\eta^{-1}(\infty)$ to take some fixed value z_0 in Z. The relation $\Phi(\tilde{h}) = h \circ \eta$ is still true. From this we easily infer the three statements of the Theorem.

REFERENCES

- 1. A. and C. Ionesco Tulcea, On the lifting property. II, Representation of linear operators on spaces L_E^r , $1 \le r < \infty$, J. Math. Mech. 11 (1962), 773-796.
- 2. C. Ionesco Tulcea, Sur certains endomorphismes de $L_C(Z,\mu)$, C. R. Acad. Sci. Paris 261 (1965), 4961–4963.
- 3. D. Maharam, On a theorem of von Neumann, Proc. Amer. Math. Soc. 9 (1958), 987-994.
- J. von Neumann, Einige Sätze über messbare Abbildungen, Ann. of Math. 33 (1932), 574–586.

UNIVERSITY OF AARHUS, DENMARK UNIVERSITY OF NIJMEGEN, NETHERLANDS