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EXTENSIONS TO REGRESSIVE ISOLS
J. BARBACK

1. Introduction.

Let E denote the collection of all non-negative integers (numbers),
A the collection of all isols, A* the collection of all isolic integers, and
Apg the collection of all regressive isols. In [13] and [14], A. Nerode
associated with each recursive function f: £ — E a function D;: 4 - A*
and with each recursive set of numbers x a set x, of isols. D, is an
extension of the function f from F to 4, and xc«,. For « a recursive
set, let ap=Apna,. Let f be a strictly increasing recursive function
and let « be its range. Then by [1, Corollary 4] and [4, Proposition 3]
the following properties are true, D;: Ap -~ Ap and «z=Dy(AR).

In the present paper we wish to associate with each strictly increasing
function f: £ - E, a function E, from a subset of Ay into Az, and
with each set of numbers « a set «, of regressive isols. Let dE, denote
the domain of the mapping E;. Then it will be shown that EcdE,c Ay
and that K} is an extension of the function f from E to JE,. Also, in
the special case that f is a (strictly increasing) recursive function then
0B,=Ap, and E{A)=D/A) for all regressive isols 4. Regarding sets
of numbers, the following properties will be shown,

(a) ogay,

(b) if xis an infinite set of numbers, then «, will have the cardinality
of the continuum,

(c¢) if « is a recursive set, then o, =g,

(d) if «is any set and f§ is any recursive set, then « < 8 implies &, S 5.

REMARK. We would like to mention that we were motivated toward
the idea for the kind of extensions of functions and sets described above
by our interest in two particular questions that are related to regressive
isols and the Nerode extension for recursive sets. We call an infinite
regressive isol 7' forre, if it has the property that for every recursive
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set «, either T'e xp or T'€ (B —«);. The two questions that we were
interested in are:

Q 1. Do torre regressive isols exist ?
Q 2. If « is an infinite recursive set, does «p contain a torre regres-
sive isol ?

It turns out that both of these questions have affirmative answers;
this fact can be obtained almost directly from Theorem 4.1, Corollary 4.3
and Theorem 4.4 of Nerode [15]. Our approach in the present paper
will also lead us to these answers. It is a bit different from the approach
in [15], and may be of interest for its own sake.

2. Background.

Almost all of our notation will be as in the papers [1] through [8].
We will review here some of the principal definitions and properties
which we need.

If f is a function from a subset of Z into E, then Jf will denote its
domain and gf will denote its range. If F is a function from a subset
of A into A4, then éF will denote the domain of F. We let j denote the
familiar recursive function of two arguments defined by

j@y) =z + Hz+y)r+y+1).

We recall that j maps E? onto F in a one-to-one manner. For any
number n, we let »(n)={z |z <n}. For any number n and set §, we
let j(n,8)={j(n,y) |y € 8}. We define the function j of three arguments
by 4 '
j(x7?/:z) = .7(.7(95>?/),z) .

Then j(x,y,z) will be a recursive function and will map E3 onto Z in
a one-to-one manner. We will sometimes write j[x,y,z] for j(z,y,2).
We let ¢ denote the cardinality of the continuum. If « is any set of
numbers, then & will denote the complement of «, that is, a=F —«.
If « is any set then a, and &z will stand for, (&), and (a)g respectively.
If « is an infinite set, then the strictly increasing function with domain
E and range « is called the principal function of «.

Let a,, b, and ¢, denote any functions from Z into E. We write
a,<*b,, if there is a partial recursive function p(x) such that

(11) 04, S 6p and (Vn) [p(an) = bn] .

We write a, xb,, if there is a one-to-one partial recursive function p(x)
such that (1.1) holds. It can be shown that,
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(1.2) (@, =*b, and b,<*c,) = a,<%*c,,

(1.3) (@, <*b, and a,<*c,) = a,<*b,+c, .
n n n n n n

Also, in the special case that a, and b, are each one-to-one functions
then, by [6, Proposition P1],

(1.4) (@, =*b, and b,<*a,) < a,~b, .

Let ¢, denote any (one-to-one) regressive function. In view of the
definition of the relation =*, it is easy to see that there are exactly
X, functions @, such that t,<*a,. Because {, is a regressive function
we also see that ¢, <*n. It follows from this property that if a, is any
recursive function, then ¢, <*a,. Let T denote an infinite regressive isol.
We write T'<*a,, if there is a regressive function ¢, that ranges over
a set in 7' and such that ¢, <*a,. It is well-known that if ¢, and £,
are two regressive functions that range over sets that belong to the same
isol then ¢, ~f,. Combining this fact with (1.2) and (1.4), it follows that
if T<*a,, then t,<*a, for every regressive function ¢, that ranges
over a set in T'. In view of some of our remarks above, we also have the
following properties,

(1.5) (T s*a, and T £*b,) = T <*(a,+b,),
(1.6) a, a recursive function = T <*a, .

With every regressive isol 7' and function @, from £ into E, J.C. E.
Dekker in [5] associated a particular isol, denoted by >ra, and called
an infinite series of isols. If T is a finite number, suppose T =t¢, then

0, if
Ao+ ...+, if

(1'7) ZTa’n =
In the special case that 7' is an infinite regressive isol, then
(1.8) 2ra, = Req X j(t.,¥(a,) ,

0

where ¢, can be chosen to be any regressive function that ranges over
a set in 7. By [5, Theorem 1], 3,a, is an isol, and its value depends
on the regressive isol 7' but not on the particular choice of a regressive
function whose range is in 7'. In the event that a,, is a recursive function,
then 3 a, is a regressive isol [1, Theorem 1].

Let f: E -~ E be a strictly increasing function. The function e(x)
defined by,

e(0) = f(0), e(n+1) =f(n+1)-f(n),

Math, Scand.25 — 11
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is called the e-difference function of f; we will also write e, for e(n).
It is easy to see that e,=0 for all numbers z, and that

(1.9) f@) =e+...+e,.

In addition,if f is a (strictly increasing) recursive function, then ¢, is
also a recursive function. The following result is a special case of
[1, Proposition 2].

TraEoREM A. Let f: E —~ E be a strictly increasing recursive function
and let e, be its e-difference function. Then for ail regressive isols T,

Df(T) = 3r4+1€n +

3. Six Lemmas.
Lemma 3.1. Let a, be any function from E into E. Then there are c
(¢nfinite) regressive isols T such that T <*a,.

Proor. It is well known that retraceable functions range over sets
that are either recursive or immune. Also, every infinite isol contains
exactly X, sets. By combining these two properties we see that to prove
the lemma, it suffices to show that there are ¢ retraceable functions 5,,
such that £, <*a,. This will be our approach here.

Let the function d, be defined by

— 9l+ap 9l+ay 1+an
d, = 2173 el P,

where p, denotes the (n+ 1)# prime number. It is easy to see that
d, is a retraceable function and d, <*a,. For any retraceable function
t, set

by = J(Cnsdy) -

Then £, is also a retraceable function and f,<*a,. It is easy to see
that different functions ¢, give rise to different functions £,. Because
there are ¢ retraceable functions, and therefore ¢ possible choices for
the function ¢,, it follows that there are ¢ retraceable functions £, such
that £, <*a,. As we noted above, this property gives the desired result
of the lemma.

Lemma 3.2. Let f: E — E be a strictly increasing function, and let e(x)
be its e-difference function. Let T be any infinite regressive isol. Then

(1) T <*f(n) < T <*e(n) .
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Proor. Let ¢, be a regressive function that ranges over a set in 7.
We note that statement (1) is equivalent to

(2 t,=*f(n) < t,=*e(n),

and we will prove statement (2).

Firstly =: Assume that ¢, <*f(n). We wish to prove that ¢, <*e(n).
that is, that the mapping ¢, — e(r) has a partial recursive extension.
For this purpose, let the value of ¢, be given. We wish to find the
value of e(n). From the number ¢, we can compute the number n (since
t, is a regressive function) and the number f(n) (since ¢, <*f(n)). If
n=0, then ¢(0)=f(0), and we are done. If n=1, then using the regres-
sive property of ¢,, we can find the number ¢,_,. From ¢, , we can
then find the value of f(n—1). Since e(n)=f(n)—f(rn—1), it follows
that the number e(n) can then be computed. In view of these remarks
we can conclude that the mapping ¢, — e(n) will have a partial recursive
extension, and therefore ¢, <*e(n).

Secondly <=: Assume that ¢, <*e(n). Then, in view of the regressive
property of the function ¢,, it is easily seen that

t, S*(eg+ ... +e,),

and therefore by (1.9), this means that also ¢, <*f(n). This completes
the proof.

Lemma 3.3. Let T' be an infinite regressive isol. Let a, by any function
such that T <*a,. Then

(a) T+1edy,

(b) zTﬁaneAR, and

(c) if t, is any regressive function that ranges over a set in T+ 1,
G£,0),. .5 bag=1),§ £,0),. . .,5 81,0, +1),§(£,0),. . .

(here mo terms of the form j t,,y) would appear if a,=0) represents a regres-
sive enumeration of a set belonging to Sp,q a,.

Proor. Part (a) is a well-known result and parts (b) and (c) follow
from the proof of [3, Proposition 5].

REMARK. The next lemma is [3, Lemma 4], and we will state it without
proof.

LemMa 3.4. Let T be an infinite regressive isol. Let a, and b, be func-
tions such that T <*a, and T £*b,. Then
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(a) T =£*(a,+b,),
and
(b) ET+1(an+bn) = ZT+1an+ZT+lbn .

Lrmma 3.5. Let a, be any function from E into E. Let p be a partial
recursive function such that pa <dp. Let T be any infinite regressive isol.
Then

T=*a, = T=z*p(a,).
Proor. Left to the reader.

LemMA 3.6. Let f and g be strictly increasing functions, with g a recursive
SJunction. Let h denote the composition function gof. Let T be any infinite
regressive isol. Then

T=*h(n) < T<*f(n).

Proor. We first note that the direction from left to right follows
from Lemma 3.5 and the fact that the function g-! [the inverse function
of ¢g] will be partial recursive. Finally the direction from right to left
follows directly from Lemma 3.5.

4. Extensions of strictly increasing functions to regressive isols.

We wish to introduce in this section an extension procedure for strictly
increasing functions f (from E into ) to functions E; (from particular
subsets of Ay into Az). We will use the following notations: we write
T <*f to mean that 7' <*f(n), and we write f1 to mean that f is a strictly
increasing function from £ into E.

DeriniTioN D1. Let ft and let e(x) be the e-difference function of f.
Then we define,

0E, =Eu{l'| TeAr—E and T s*f};
and for T' € 6E;, we let
E(T) = Zpi16n -

REMARK. In view of D1 and (1.9) it is easy to see that E, is an ex-
tension of the function f from K to 6E;.

THEOREM 4.1. Let f1 be a recursive function. Then

(&) OE,=Ay, and
(b) E(T)=DAT), for T Ag.
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Proor. Because f is a recursive function, we know that for any infinite
regressive isol 7', one has 7'<*f. In light of D1, it follows then that
0E,;=Ap; and this verifies (a). Part (b) follows directly from D1 and
Theorem A.

THEOREM 4.2. Let f1. Then

(a) the cardinality of 0K, is ¢, and
(b) E;: 0K, Ag.

Proor. Apply Lemmas 3.1, 3.2 and 3.3.

TraEOREM 4.3. Let ft. Let 8 and T' be any regressive isols with S,T € SE,.
Then
E(S)=ET) = S=T.

Proor. Let e(x) denote the e-difference function of f. Because f is
a strictly increasing function it follows that e(x)=1 whenever z21.
Combining this property with the definition of an infinite series of isols,
we see that if X is a regressive isol, then 3 ye, is an infinite isol if and
only if X is an infinite isol. Assume that E(S)=E(T). If ELS) is
a finite isol, then each of the isols S and 7' will also be finite. In this
event

F(S) = Ef(S) = EAT) = f(T),

and the desired result follows from the one-to-one property of the func-
tion f; that is, in this event S=17.

Let us assume now that E(S)=E/(T), and that each of the regressive
isols § and 7 is infinite. Let 3, and ¢, be regressive functions that range
over sets belonging to S+1 and 7'+1 respectively. In view of D1

and Lemma 3.3, it follows that

J(30,0);- - -,J(8p, €9+ 1),5(81,0), - - -, 5(81,6,=1),5(85,0),. . .,
and

j(tO’O)" ¢ "j(t’:)’el)"' 1),]'(5;,0),. . ->j(t~1’el"‘ 1)’j(£2’0)’- ct

represent regressive enumerations of sets belonging to E(S) and E(T)
respectively. Because E/(S)=E(T), it follows that the (regressive)
functions determined by these two enumerations will be recursively
equivalent. Therefore, there exists a one-to-one partial recursive func-
tion p(x) such that, for each number n and number 0<y<e,,

j(gm ?/) € ap and pj(gmy) = J(t.-my) .
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In particular, since e, = 1 for x> 1, we have that for each number » € E,
(1) JBa1,0)€8p  and  pj(8,41,0) = j(£;44,0) .

It follows from (1), that §(5,.1,0) = j(f,.1,0), and hence also that

(2) t'S:n+l = t~n+1 .

The function §,,, ranges over a set in S, since the function §, ranges
over a set in §+1; and similarly the function ¢, ,, ranges over a set in 7'.
We can therefore conclude from (2) that S=7', and this completes the
proof.

CoroLLARY 4.1. Let ft. Then the cardinality of the collection E(0E,)
8 C.

Proor. Combine Theorems 4.2(a) and 4.3.

THEOREM 4.4. Let ft and gt. Then

(&) (f+91,
(b) SE,NOE, < OF,.,,
(©) Hy(T) = E{T)+E,T), for T cdE,nSE,.

Proor. Part (a) of the theorem is clear. Regarding part (b), let
T € dE,;ndE,. If T is finite, then T € 0E,,, by the definition of the set
0E;,,. Assume now that 7' is an infinite regressive isol. Then 7' <*f
and T'<*g. By (1.5), this property implies that 7'<* f+g¢; and there-
fore also that T' € 6E;,,. This verifies property (b).

To prove part (c), let T'e€ dE;ndE,. If T is finite then the desired
result is readily seen to be true. Let us assume now that 7' is an infinite
regressive isol. Let e, e, and e;,, denote the e-difference functions of
the functions f, g and (f+g) respectively. It is an easy computation
to show that, for ne £

(1) er4p(n) = exn) + e,(n).

Because T' € dE;nJE,, we know that both T'<*f and T'<*g. By Lemma
3.2, it then also follows that

(2) T <*e¢ and T s%*e,.
Combining (1), (2) and Lemma 3.4 gives
Trlrig(n) = Zpiredn) + Zpie(n);

and therefore also,
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B o(T) = BAT) + BE/T).

This is the desired result and completes the proof.

THEOREM 4.5. Let ft and g1, and with g a recursive function. Let h
denote the composition function gof. Then

(a) ht,

(b) OE,=0E,,

(¢) EW(T)=E[ELT)], for T € 8K,

RemArk. Regarding the proofs of the three parts of the theorem,
parts (a) and (b) have short proofs and part (c¢) has a long proof. In
order to avoid some additional comments that would be needed in the
course of proving part (c), we will use the following notation: we let
the two symbols 000 and 00 play the role of numbers and imagine that
the natural enumeration of £ would look like 000,00,0,1,2,... .

Proor. We observe that part (a) of the theorem is clear. Regarding
part (b), we first note that, by D1,
E c 0B, n oK, .

Hence to prove (b), it suffices to show that if 7' is an infinite regressive

isol, then
T ek, < Tedk,,

or equivalently,
T *h < T £*f;

and this particular relation follows directly from Lemma 3.6.

Proor oF (c): Let T'e 6E,. If T is finite then the identity
1) Ey(T) = E[ELT)]

is easily seen to hold. Let us assume how that 7' is an infinite regressive
isol. Let u, ¢ and r denote the e-difference functions of the functions
S g and h respectively. We wish to prove the identity of (1), and this
is equivalent to proving that

T+1 4z, 1%

We note that e, is a recursive function since g is a recursive function.

Remark. We wish to give an expression for r, in terms of values
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of u,, and e,. It can be readily shown using the definition of the e-dif-
ference function and some easy computation, that

To = €+ ... +e,,
i = Cygreeogupg i1t oo Flyppeniyy,  fOr k21,

c

@)

We will omit the details that verify the identities of (3).
Let ty,t5,85,. .., and fg,%,t,,t,. .. denote regressive enumerations of
sets belonging to 7" and 7'+ 1 respectively. Then

(4) Jteor?(70)) + 2 J(ti¥(riny)) € X7
0 T+1

Because T' € 0K), we know by Lemma 3.2 that
(5) t, <*r,.

Consider the set appearing in (4); its member are listed in the following
array.

Array 1.
Row 00 j(tooao); LS 9j(t007r0'.” l) )
Row 0 J(t9:0)s « o o, Jltgs 1= 1) ,
Row 1 J(t1,0), o b= 1),

.....................

In view of (4) and (5), it follows that the natural enumeration of the
numbers appearing in Array I (by this we mean the enumeration obtained
by listing the elements in the array first by rows from top toward bottom
and then in each row from left to right) will be a regressive enumeration
of a set belonging to X,,,7,. We now wish to construct a set that
belongs to

(*) > ey
WZp 1%,
‘We first observe that
(6) j(too""(uo))+zj(tis"’(ui+1)) € 2 Uy, «
0 T+1

We now list in the following array, the members of the set that appears
in (6).
Array I1.
j(tOO’ 0)) e 9j(t00’u0':' 1) )
j(to,O), e ’j(to’ul'.' 1) H
j(tbo), e ’j(tl’uz; 1) ’

.....................
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We know that T € 0E; and hence also that

(7) ty S*u, .

It follows from (6) and (7) that the natural enumeration of the numbers
appearing in Array IT will be a regressive enumeration of a set belonging
to Spyi%,. Let t,, be a number that does not appear in this set
(there will be such a number because the set is isolated). We adjoin
tooo at the beginning of our enumeration of Array II; it is then easy to
see that this new enumeration will be a regressive enumeration of a set
belonging to 1+Y,,,%,. Let us now consider the following array of
numbers.

Array 111.
J(t00050); - - - J(fog0s €= 1) ,
Jto0: 0,01, ..., 5[tg0, 0,6, = 1],
Group 00 Jltoo, 1,01, .. ., jltoe 1,65 =117,
Jltoos % =1,0], ..., jltoos 2= 1,64, 1],
jlty, 0,07, .. .,j[to,(),euoﬂé 1],
Group 0 j[to’.‘l)O]! s '3][t01lae.uo+2; l] ’
Jlhesur=1,0], ..., g, U= 1, €400y =11 ,
j:[tl,O, 0], .. .,j[tl,O,euowlﬂé 1],
Group 1 j[tl!_lso]: e )J[tl’ 17e.uo+u1+2; l] ’
j[tl’u2;" 1’0]’ . -;j[tp“z':' l’euo+1t1+u,':' l] >

....................................

It follows from our previous remarks and the definition of an infinite
series of isols, that the set whose elements are listed in Array III,
belongs to the (regressive) isol given in (*).

We have up to this point obtained two particular sets that we are
interested in; the first is given in Array I and belongs to X;,,7,, We
let w denote this set; and the second is given in Array III and belongs to

> e
W Zp 1%
and we let 1 denote this set. We wish to prove the identity of (2), and
therefore it suffices to prove that

(8) o2,
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Consider the Array I, and let the set of numbers of w that appear in
the nth row be denoted by w,. Consider the Array III, and let the set
of numbers of 4 that are listed in the nth group be denoted by 4,. We
see that each of {w,} and {,} is a sequence of mutually disjoint sets,
and

w=2w, and i=31,.
00 00

In addition, in view of (3), it also follows that, for each number
n=200,0,1,...,

cardinality w, = cardinality 4,, .
Consider the enumerations of the sets w and A that are obtained from
the natural enumerations of the Arrays I and III, respectively. Let ¢
denote the mapping of w onto 4 that is order preserving with respect
to these enumerations. Then

g: w—> 1 onto,
in a one-to-one manner, and for each number »=00,0,1,...,
q: w, >4, onto,
in a one-to-one manner. Let ¢! denote the inverse function of ¢; then
g': 2->w onto,

in a one-to-one manner. In view of (1.4), we see that to prove (8), it
suffices to show that both

(A) ¢ has a partial recursive extension, and
(B) ¢! has a partial recursive extension.

This will be our approach here. We will verify (A); and leave the details
for (B) to the reader because these are similar to those for (A).

Proor orF (A). We may assume without any loss of generality that
the value of #,y, is known to us. Let the number z=j3(¢,,y) € w be given.
We wish to find the value of g(z). Since j is a one-to-one recursive
function and ¢, is a regressive function, we can find the numbers,
n,t, and y. Then z € w,,; and hence also ¢(z) € 4,. We consider separately
two cases.

Case 1. n=00. Then 0=Zy=r, [we note that at this point we have
not computed the value of r,]. In view of (3), we see that

To=€+...+¢,,
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[also at this point we have not computed the value of u,]. Because e,
is a recursive function, we can find the value of ¢, for any number x. If
0=y <e, then ¢() = jloo¥),

and we are done (recall that the value of ¢y, is known to us). Otherwise,
we can determine the numbers k£ and m such that

et ... te S Y < e+ ... +ete,
and
Y =¢e+...+e+m.
In this event, then
Q(z) = j[too’k’m] =j[tn7k:m] )

and the value of ¢(z) can be found.

CasE 2. n20. Then 05y <r,,,, and by (3),

Tn+1 = euo+...+u”+1+ R +ezto+...+un+un+1 .
Since the value of ¢, is known, we can compute the numbers £,,?,,. . .,t,
and therefore also, in view of (7), the numbers ug,u,,...,u%,. We then

can find the numbers
Up+ .. U, +1 and e, p . gy -

If y<eyyr...+upr1» then q(z)=j[t,,0,y], and we are done. Otherwise,
we can compute the numbers &£ and m such that

Cuptontugtl oo Tl tugth = Y < CygrtugirT o F eyt tunthtl
and

Yy = euo+...+u“+1+ s +euo+...+u“+k+m .

Also, in this event,

q(2) = j[tn’k:m];
and therefore the value of ¢(z) can be found. In view of our remarks
above we can conclude that the mapping

q: w—>4,

will have a partial recursive extension; and this verifies (A).

As we remarked earlier, we will omit the details for (B). Combining
(A) and (B) implies the desired result of (8). This verifies part (c) of
the theorem and completes the proof.
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5. Extensions of sets to regressive isols.

We wish to introduce in this section an extension procedure for any
set of numbers « to a particular set «, of regressive isols.

DEerFINITION D2. Let a € E be any set of numbers. If « is a finite set,
then we let «y =x. If & is an infinite set, then we let

Kx = Ef(aEf) ’

where f denotes the principal function of the set .
THEOREM 5.1. Let o be a recursive set of numbers. Then oy =o0p.

Proor. If « is a finite set then the desired result follows from the
well-known property that « =« ,=xg.

Assume now that « is an infinite set. Let f denote the principal
function of x. Then f is a recursive and strictly increasing function.
By [4, Proposition 3], it follows that

(1) Xr = Df(AR) .
In addition, by Theorem 4.1, it also follows that 6E;=/Aj and
(2) Ef(AR) = Df(AR) .

Combining (1), (2), and D2 gives the desired result; and this completes
the proof.

THEOREM 5.2. Let o be an infinite set of numbers. Then

(a) xcoxsAg, and
(b) cardinality of xy=c.

Proor. The first inclusion in (a) follows from the Remark that appears
after D1 in § 4, and the second inclusion follows from Theorem 4.2(b).
Part (b) of the theorem follows from D2 and Corollary 4.1.

THEOREM 5.3. Let « be any set and f a recursive set. Then
xS P = ax S fBr-
Proovr. Let us assume that a <. If « is a finite set then it is easy
to see that «, = f5.

Let us assume now that «, and hence also 8, are infinite sets. Let
f and g denote the principal functions of the sets « and g, respectively.
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Then g is a recursive function. Let k denote the strictly increasing
function such that

(1) f(n) = g(k(n)), for nek.
By Theorem 4.5, we then have from (1) that

0E; = K, ,
and

(2) E(T) = E[E,(T)], for TedE;.

Let Sexy. Then S=ELT), for some regressive isol T € 6E;. Set
Q@=E, (T); then @Q is a regressive isol since T' € 6E,,. In view of (2) and
the fact that ¢ is a recursive function, it follows that

(3) S = E{T) = E(Q) = DyQ).

Because frp=D,(Ag), we can conclude from (3), that §epfg. This
completes the proof.

6. Torre regressive isols.

We call an infinite isol T torre, if for each recursive set «,
Tex,Uay,.

It follows from the definition of «p, that an infinite regressive isol 7'
is torre, if for every recursive set «,

TEOCRU&Ro

It is an easy consequence of Theorem 4.1, Corollary 4.3 and Theorem 4.4
of [15], that torre regressive isols exist. We wish to give another proof
of this fact. We recall from [16, p. 231], that a set 0 is cohesive if

(i) ¢ is infinite, and
(ii) for each recursively enumerable set f, either dng is finite or
onp is finite.
The existence of cohesive sets is proved in [16]. In addition, the fol-

lowing properties are also known [16, p. 231],

(6.1) cohesive sets are immune, and
(6.2) every infinite set possesses a cohesive subset.

We state next two lemmas; the first follows in an easy manner from
the definition of a cohesive set and we will omit its proof.
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LeMMA 6.1. Let 6 be a cohesive set and let 8 be any recursive set. Then
etther
0 & B+A, for some finite set A,
or
8 < B+2, for some finite set A .

LEMMA 6.2. Let x and f be two infinite recursive sets and let A be a finite
set such that,
(1) x=p+4.

Let T be an infinite regressive isol. Then
(2) Teoap<>Tepp.

Proor. Let f and g denote the principal functions of « and g8 respec-
tively. Then f and ¢ will be strictly increasing recursive functions and
(3) op = DfAp) and Bg = D,(Ag).

Combining (1) and the fact that A is a finite set, we see that there will
be numbers p and ¢ such that

(4) f@+p) =g@+q), forazeck.
By a well-known theorem of Nerode, it follows from (4) that,
(5) DX +p) = Dy(X+gq), for Xed.

To prove (2), let us assume first that 7' € xp. By (3), we then have that
T = Dg8S), for some SeAy.

Because 7' is an infinite regressive isol, § will also be an infinite regres-
sive isol. Let §=8—p. Then S € A5 and from (5) we have that

(6) T = DiS+p) = Dy(S+7q).

Since §+¢€ Ay, we can conclude from (3) and (6) that
T € Dy(Ag) = fr -

We have therefore proved that
Teoagp = TepPy.

The implication in the other direction can be also proved in a similar
manner and we will omit the details. Together they give the desired
result of (2), and this completes the proof.
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THEOREM 6.1. Let & be a cohesive set. Let T be an infinite regressive
1sol. Then

Ted, = T 1isatorre regressive 1s0l.

ProoF. Assume that T €6,. Let B be any recursive set. We wish
to prove that either 7' € 8y or T' € fr. By Lemma 6.1, we know that
either

1) 0 < f+4, for some finite set 4,
or
(2) 8 < B+4, for some finite set 1 .

We consider separately the two possibilities:

Case 1. (1) is true. Then f will be an infinite set and g+ will be
a recursive set. In this case, we have

by Theorem 5.3. Also, because 7' is an infinite regressive isol and 7' € 4,
it follows from (3) and Lemma 6.2 that 7' € 5.

CasE 2. (2) is true. Here one can proceed as in the previous case,
to show that in this event 7 € f5; we will omit the details.

In view of the previous remarks, we see that if (1) holds then 7 € g5,
and if (2) holds then 7 € fy; in any event it follows that

T e Brupr-

We can conclude therefore that 7 is a torre regressive isol. This com-
pletes the proof.

CoROLLARY 6.1. T'here exist ¢ torre regressive isols.
Proor. Combine Theorems 5.2 and 6.1.

COROLLARY 6.2. Let « be any infinite recursive set. Then xp contains
¢ torre regressive isols.

Proor. By (6.2), x contains a cohesive subset. Let J be a cohesive
subset of x. Then d,<ap, by Theorem 5.3. The desired result now
follows from this property and Theorems 5.2 and 6.1.

REMARK. We wish to close the paper with some observations related
to torre isols that arise naturally. Let A, denote the collection of all
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isols that are either finite or are infinite and torre. For any recursive
set «, let
( *) Kp = Ky n AT .

We call «y the torre extension of x. Regarding the Nerode extension
for recursive sets, the following properties are well-known:

(1) ¢4 = @ [where ¢ denotes the empty set],

(2) &g ay,

B) acf = a4 By,

(4) (xnNP)g=xsNPy,

(5) (xUp), need not equal x, U B,.
In view of (), it is easy to see that each of properties (1), (2), (3) and (4)
will have analogues involving the torre extension of recursive sets;
these are

6) ¢r =9,

(1) «<oap,

(8) s B = ap < fyp,

(9) (xnP)p = xp N fr.

In addition, the following property will also be true,
(10) (xUB)p = ap U Bp.
To verify (10), let « and § denote recursive sets. The inclusion

xpUBp S (xUB)p,

follows readily from (8). To verify the inclusion in the other direction,
let X € (wUB)p. If X is a finite isol, then X € «UpB. This fact follows
from the well-known property that, if n € B, then nex, < nex.
In view of (8), it follows in this event that X € apUfB,. Let us assume
now that X is an infinite torre isol. Consider the following implications,

Xe(@uf)y => X¢@uf)r = X &@nf)y
= X¢&TOBT = .XEOCTUﬂT-
The first implication follows from (6) and (9). The second one is clear,

and the third follows from (9). Finally, the last one follows from the
torre property of X. Together they imply,

Combining our previous remarks, we can conclude that the desired
relation of (10) holds.
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