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ON GROUP AND NONGROUP PERFECT
CODES IN ¢ SYMBOLS

BERNT LINDSTROM

1. Introduction.

There is now an extensive literature on error-correcting codes (cf.
bibliography in [3]). A brief survey of perfect codes can be found in [2].

In this paper we shall only consider single-error-correcting perfect
codes, called SECP codes for brevity. The first instances of SECP codes
were found about 1950 by E. W. Hamming and M. J. E. Golay as vector
spaces over a finite field (linear codes), and in group theory by E. Mat-
tioli, O. Taussky, J.Todd, J.G.Mauldon and S. K. Zaremba (group
codes). The last five authors did not use the word “code’, which origin-
ates from information theory.

About 1960 Ju. L. Vasilev discovered a large class of SECP codes in
two symbols (see [14]). The construction of Vasilev was generalized by
J. Schénheim in [9] and independently by the author.

In this paper we shall apply Veblen—-Wedderburn systems from the
theory of finite projective planes to the construction of SECP codes.
There is a close connection between group SECP codes of length g+1
and Veblen-Wedderburn systems of order ¢. Any Veblen—-Wedderburn
system, which yields a non-Desarguesian plane, can be applied to con-
struct a group code, which can not be obtained from a linear code by
permutations of symbols or coordinates.

SECP codes were studied in [10] by R. G. Stanton and J. D. Horton
in connection with a covering problem by O. Taussky and J. Todd (see
[18, p. 204]). This covering problem was also studied by J. G. Kalb-
fleisch and R. G. Stanton in [6], [11] and in a series of forthcoming papers.

I take the opportunity to acknowledge my sincere gratitude to Pro-
fessor Kalbfleisch, who let me see papers by him and his colleagues before
they were printed. I am also indebted to Dr. Mattson and J.-E. Roos
for ‘valuable information on perfect codes.

Received November 21, 1968; in revised form March 3, 1969.
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2. Definitions and notations.

Let F be a finite set of ¢ symbols, ¢=2. Define F* as the set of all
n-tuples of elements of F. For any two n-tuples s=(s,8,,...,8,) and
t=(t,5,. - .,t,) define the distance g(s,t) to be the number of places 7
where s;%t;,, I1=i<n.

A code C on F, which corrects e errors, is a subset of some F such that
o(s,t) = 2¢+1 for any two distinct n-tuples s and ¢ of C. For brevity we
shall say that C is a (n,e,q) code. An element s in C is the centre of a
sphere of radius e, which consists of all elements of F'* at the distance at
most e from s. If all these spheres exhaust F», we shall say that C is a
perfect code. We shall only consider single-error-correcting codes for
which codes e=1. The number of elements in a sphere of radius 1 in F»
is 14+n(g—1). It is necessary for the existence of a perfect (»,1,q) code
in F» that 1+n(g+ 1) divides ¢”, and if ¢ is a power of a prime it follows
that n=(¢"—1)/(g—1) for an integer r>1. For n=1, ¢=2 we have only
trivial perfect codes with one element. Nontrivial (n,1,q) perfect codes
exist when ¢ is a power of a prime and n=(¢"—1)/(g—1), r=2 (see
H-Golay codes in [2]). By Theorem 7 in [10] there is no perfect (7,1, 6)
code. It is not known if perfect (»,1,q) codes exist when n>1 and ¢+ 6
is not a power of a prime.

Let F be an abelian group and F» the direct product » times of F.
We shall say that a code C in F* is a group code, if C is a subgroup of F~.

Let F be a finite field and F» the vector space of dimension n over F.
A code C in F ig a linear code, if C is a subspace of F.

A simple method to find a new perfect (n,1,q) code from a given per-
fect (»,1,q) code, is to permute components or symbols in the n-tuples
of the code. An n-tuple (s;,8,,...,s,) is then mapped on

((sil)nl’ ('siz)nza LR (sin)nn) ’

where iy,1,,. . .,?, is a permutation of the places 1,2,...,n and 7y, 7,,. . .,
n,, are permutations of . The new code is said to be equivalent with the
old one. More generally, the set of symbols need not be the same for both
codes, if 7,,7,,. . .,n, are assumed to be bijective functions.

Ju. L. Vasilev constructed in [14] perfect (n,1,2) codes, which are not
equivalent with group codes for n=27—1, r>4. S. K. Zaremba proved
that every perfect (7,1,2) code is equivalent with a group code [15,
Prop. 7]. A shorter proof was given in [11, Theorem 5]. O. Taussky and
J.Todd observed that every (4,1,3) perfect code is equivalent with a
group code (in [12], see also [6, Theorem 4]). It would be interesting to
know if every perfect (¢+1,1,9) code is equivalent with a group code.
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We shall need an important kind of ternary system in projective
geometry called Veblen—Wedderburn system or VW system for brevity.
A VW system consists of elements (a,b,¢, etec.), two distinguished ele-
ments 0 and 1, and has a well-defined addition e +b and multiplication
ab (or occasionally aob), which satisfy (cf. [4, p. 180]):

VW 1. Addition yields an abelian group with zero 0.

VW 2. 0a=0a0=0, la=al=a.

VW 3. In xy=z2, if any two of z,y,z are given and different from 0,
the third is unique and different from 0.

VW 4. (a+b)c=ac+be.

VW 5. If r=s, ar=xs+b has a unique solution z.

VW 5 is a consequence of the other axioms if the number of elements
is finite. Multiplication on the right by a nonzero element is an auto-
morphism of the abelian group. It is easy to prove that the abelian
group is of type (p,p,...,p) if the VW system is finite. Hence the order
of a finite VW system is a power of a prime p.

If the order of the VW system is a prime, we have a prime field. If the
order is 4 or 8 we also have a finite field. For every finite projective plane
of order at most 8 is Desarguesian (cf. [5]) and the ternary systems are
then finite fields (cf. [1, p. 77]). If ¢ is a proper power of a prime differ-
ent from 4 and 8, one can find VW systems, which are not fields
(cf. [4, pp. 181-185]).

We shall introduce an auxiliary notion. A perfect system of automor-
phisms of an abelian group F of order ¢ is a set of ¢— 1 automorphisms
&1,69,. « >0y Of F' such that (x)x;= (z)x; for xe F, x+0 and i+j.

The nonzero elements of a finite VW system yield a perfect system of
automorphisms of the abelian group. Conversely, if we have an abelian
group with a perfect system of automorphisms, we can define multiplica-
tion such that it becomes a VW system. Introduce the label 1 for any
of the nonzero elements of the abelian group. If (1)x;=a; we shall use a;
as a new label for «;. If «, is the identity automorphism, «; is now label-
led by 1. If «, is not the identity we can use another perfect system of au-
tomorphisms, viz. ay(x,)"1,t=1,2,...,9— 1. Define a0 =0 and write ab in-
stead of (a)b. It is now easy to see that we have a VW system.

3. On perfect (q +1,1,q) group codes.

LemMA 1. Let F be an abelian group of order ¢= 2 and let &y, y,. . ., %51
be a perfect system of automorphisms of F. Then the (q+ 1)-tuples
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(B.1)  (wn gy + s Uy, ZIj Uy DI (w)ery),  UpUg,. . Uy, EF,

yield a perfect (g+1,1,q) group code.

Proor. The number of (¢+1)-tuples (3.1) is ¢2-1. The number of
(g+1)-tuples in a sphere of radius 1 is ¢2. If we can prove that the
distance between different (g+ 1)-tuples (3.1) is at least 3, it follows
that the spheres of radius 1 with centre in points (3.1) cover the entire
space Fe+l that is, the code is perfect.

Let «' be another (g+ 1)-tuple (3.1) with «;" in place of u; everywhere.
Assume u, +u;’ for a fixed k and u,=wu,’ for every 1+%. Then we have
ou,u')=3.

Next assume w; +wu;” and w; +u;’ for fixed j and k, j+k. If p(u,u’) =2,
we find, after subtraction of equal terms in both members, the equations

wi+ g = u +uy’
(uj)oc; + (ug)ory, = ()" Yors + (uy,)oxy, -

It follows from these equations (u; —wu;")x; = (w; —u;")x;,, which is a con-
tradiction since u; —u; +0 and j+k. Hence g(u,%')= 3 for any two dif-
ferent (¢ 1)-tuples (3.1). It is easy to see that we have a group code;
and the lemma follows:

If we have a VW system, then the nonzero elements of F' yield a per-
fect system of automorphisms of the additive abelian group. In this
case we shall say that (3.1) defines a first order F-code.

The following theorem establishes a close connection between perfect
(¢+1,1,9) group codes and VW systems. -

THEOREM 1. A first order F-code of (q+ 1)-tuples is a perfect (7+1,1,q)
group code. A perfect (g+1,1,q) group code C is equivalent with a first
order F-code. If a perfect (g+1,1,q) linear code ts equivalent with a first
order F-code, then F is the finite field GF (q).

Proor. The first part of the theorem was proved in Lemma 1.

Let C be a perfect (g+1,1,¢) group code. Since the distance between
different (¢+ 1)-tuples in C is at least 3, it follows that there is at most
one (g+ 1)-tuple in C for which the first ¢—1 components are given in
advance. Since the number of (g+ 1)-tuples in C is ¢2-1, it follows that
all combinations of values occur in the ¢—1 first components of (g—1)-
tuples in C.

Let u; be the ith component of a (¢+1)-tuple in C, 15i2q+1. If
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1<k<q—1 and u;=0 for 1<i<qg—1 except possibly when ¢=Fk, we
define ¢, and 7, by

Uy = (ug)ogs Ugir = (W) Ty -

o, and 7, are permutations of F, for the distance between different
(g+1)-tuples in C is at least 3. Since C is a group it follows that o, and
7, are automorphisms of the additive group F. If C is linear over F =
GF(q), then ¢, and 7, mean muiltiplication by two nonzero elements of F'.

If we apply o; to the ith component of every (g+ 1)-tuple in C' for
1£¢=<q¢-1, we find an equivalent group code C' and corresponding
automorphisms o;" and 7;" such that ¢, is the identity and ;"= (0;)17,.
We can assume that 7," is the identity, for in other case we apply (z,’)!
to the (¢ + 1)st component of every word in C. With the aid of the group
property of C’ it is now easy to see that the general element in C’ has
the form (3.1), if a;=7," for 1<9<q-1.

We shall prove that ,’,7,/,.. .,r;_l is a perfect system of automor-
phisms. Since 7,’ is the identity, it follows then that multiplication can
be defined in F such that F becomes a VW system (cf. the end of sec-
tion 2).

Put ;=2 and u,= —x for two fixed indices j and k, 1Sj<k=q-—1,
and put u;=0 when i+j,k, 1 <i<g—1. From (3.1) it follows that u,=0
and wu,,, = (¥)7;/ — (v)7;’. Since the distance between distinct words in C”
is at least 3, it follows that w,,,+0 if +0. Hence 7,',7,,...,7, is &
perfect system of automorphisms, and we have proved that C' is a first
order F-code. If C is a linear code over GF(q), we find easily that ¥ is
GF(g).

Note that we did not permute coordinates when we passed from the
group code C to the first order F-code C’ in the above proof.

Assume that a perfect (¢+1,1,q) linear code C is equivalent with a
first order F-code K, where F is a VW system with multiplication de-
noted by aob to distinguish it from multiplication in GF(g), which is
denoted by ab.

After permutation of coordinates in C' we have a linear code C’, which
is equivalent with K even without assuming permutations of coordinates
when passing from ¢’ to K, that is, we need only permute symbols in
each coordinate. By a remark is ¢ equivalent with a first order GF (g)-
code even without permutations of coordinates. Hence a first order
GF(¢)-code C" is equivalent with a first order F-code even without
permutations of coordinates. Let (u;,u%,,. . .,%,;) be the general element
in K and (9y,%,...,0,4;) the general element in C”. We know that
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there are permutations z; such that v,=(u,)z, for 1£i<q+1. We now
find by (3.1)
(32) (zg:] u’i)” = 23;11 (ui)ni’ Uy Ugs - - - ;uq-—l eF ’

(3.3) (I o x)mgyy = S (wmaay, Uy Uy, .Uy EF,

where a,,a,,...,a, ; are the nonzero elements of GF(¢) and «;,«,,...,
®g_y aTe the nonzero elements of the VW system F.

Define =n;" by (u)w, = (u)m;— (0)n; for 1<i<q+1. If we substitute
this into (3.2) and (3.3), we find two equalities of the same type with z,’
in place of 7; everywhere, 1<4¢<¢g+1. Observe that (0)z,/=0. By
putting u,=0 for every ¢ except one in 1 £¢<q¢—1, we have by the first
equality ;' =n," for 1<9¢<¢—1, and it follows that =, is an automor-
phism of the abelian group. From the second equality we find similarly

(3.4) (wo )y, = (wmja;, welF, 15i<q—1.
Put =1 in (3.4). We find

(3‘5) (O‘i)nlq-i-l = (l)nq'ai’ 1 §i§q_ 1 .

If x;,=1, we have by (3.4)

(3.6) (u)nq+1 (w)m, a, welF.

From (3.4), (3.5) and (3.6) it follows that

((1)”;+1)((u°0‘t)7"q+1) = ((u)”;n)((“i)”;n)a uelF.

Since 7, , is an automorphism of the additive group F, we find that the

q+

mapping
% = (g )((1)rgy)

is an isomorphism between the VW system F and the finite field GF(g),
and the theorem is proved.

With the aid of Theorem 1 and well-known properties of VW systems
(cf. section 2), we find the following corollary.

CoROLLARY 1. Perfect (¢+1,1,q) group codes exist if and only if q is a
power of a prime. If q is a prime or 4 or 8, such a code must be equivalent
with a linear code over GF(q). If q is neither a prime nor 4 or 8, there is at
least ome perfect (q+ 1,1,q) group code which 13 not equivalent with any
linear code.

Proor. A perfect (¢+1,1,9) group code is equivalent with a first
order F-code for some VW system F of order ¢ by Theorem 1. Hence ¢
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is necessarily a power of a prime. If ¢ is a prime or 4 or 8 F must be a
finite field and the code is equivalent with a linear code over GF(q).
If ¢ is not a prime and g4 and 8, one can find a VW system of order g,
which is not a field. In this case a first order F-code can be found, which
is not equivalent with a linear code by Theorem 1.

4. On nongroup perfect single-error-correcting codes.

We shall prove a theorem, which generalizes theorems by Ju. L. Vasilev
in [14] and J. Schénheim in [9].

We define two functions m(r,q) and n(r,q) for integers r,q=2 by

(4.1) m(r,q) = (" 1=1)/(g—-1), =(r,q) = (¢"-1)/(g-1).

In the proof we shall write m instead of m(r,q) and = instead of n(r,q)
for brevity.

THEOREM 2. Let F be a Veblen—Wedderburn system of order q. Given a
perfect (m(r,q),1,q) code C and a function A defined on C with values in F,
one can find a perfect (n(r,q),1,q) code K. Distinct pairs (C,1) will yield
distinct codes K. If g=2 and r2 4 or ¢= 3 and r 2 3, one can find a perfect
(n(r,q9),1,9) code K, which is not equivalent with any group code.

Proor. If w e F™ let p(u) be the sum of all m components in u. Let

®1,0g,. - ., 0,1 be all nonzero elements in F. Write
(4.2) w o= (U, g, - -5 Uy, ZITT 5 ST P(0)0rs)
p(u) = (P(r), P(Us); . - ., P(tg1), TI7P(%s), ZIp(w)exs) ,
v = (0,0,...,0,w,A(w)), UyUy,..., 4, €F™, wel,

where the (¢—1)m first components of » are 0.

Let K be the set of all sums v +v. Both » and » have dimension
gm+1=n. The number of elements of C' are ¢™~"+1, for C is a perfect
single-error-correcting code. The sums w+v are different. It follows
that the number of n-tuples in K is gm@-Dgm-r+1=¢n-r, It follows that
K is a perfect code, if we can prove that the distance between distinct
elements in K is at least 3. We shall prove this now.

Let u+v and 4’ +v’ be two distinct elements of K. We consider three
cases.

Casg 1. Assume v=v" and p(u)+ p(v’). From Lemma 1 in section 3
it follows that o(p(w), p(w')) 2 3. Then o(u,u’)23, and g(u+v,u'+v)23
follows since v=7".
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CasE 2. Assume v=v" and p(u)=p(w’). If w,+u, for only one ¢,
1<i2q—1, we have p(u;) =p(u;’) and p(u;,u,") 2 2. Hence o(u,u’)=4 by
(4.2). If u;+u,; for at least two 4’s, then p(u,;,u,;") = 2 for these ¢’s, and we
find p(u,u’) = 4 again. Hence p(u+v,u’+v') 2 4.

CasEe 3. Assume v=v’. Since C is a single-error-correcting code, we
have g(w,w')=3. Put

’

(4.3) o((wg, Ug, . 5 g—q), (uy" 05, . . .,uq_l)) =Fk.
We conclude from (4.3)
o(Zi T uy, 3N w) S k&,
and then, since o(w,w’) =3,
(4.4) o(w+3 T uy, w +370w)) 2 3-k.
From (4.2), (4.3) and (4.4) it follows that o(u +v,u'+2") 2 3.

Hence g(u+v,u’+v")2 3 in all cases, and we have proved that K is a
perfect (n,1,q) code.

It is easy to see that u+v determines u, w and A(w) uniquely. It
follows that distinet pairs (C,1) yield distincet codes K. )

Beginning with a trivial code, the construction yields, if it is repeated,
perfect (n(r,q),1,9) codes for every r =2 2. The first nontrivial instance is
the first order F-code, which was studied in section 3.

We shall prove the existence of codes K, which are not equivalent
with group codes. Assume that ¢=2 and r=4 or ¢23 and r=3. Let C
be any perfect (m,1,q) code. Choose the function 4 such that it does not
take every value in its range the same number of times. This is possible
if C has at least 3 elements, which is granted by the assumptions on g
and 7.

Define K as before and assume that K is an equivalent group code.
If %+v is an element of K, the corresponding element in K is denoted
u+v. We shall use the same symbol 0 for the zero in F and for m-tuples
and n-tuples of this zero. The meaning of 0 will be clear from the con-
text. Assume that 4(0)=0, and 0 € C. It follows then 0 e K. It is easy
to see that the set G@={5—0; w e C} is a subgroup of K. The last com-
ponent in v is A(w) and the corresponding component in @ is denoted by
A(w). The set ‘

H = {i(w)—-(0); we O}

is a subgroup of F and the mapping
50 ~ A(w) - 4(0)
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is a homomorphism of G on H. Hence A(w) takes every value in its range
the same number of times, a contradiction.
Theorem 2 is proved.

Let G be an abelian group and 4, B two subsets of G such that every
element in @ can be written uniquely as a+b with a € A and b e B.
Then it is customary to write G =4 + B and call this a factorization of G
(cf. [8]). If G is an abelian group with n base elements g,,9g,,. . .,g, each
of order p (a prime), define

(4'5) 8= {0191’291’- . '!(p_ 1)91)92’2g2,' . "(p_ l)g2" P l)gn} .

Let C be a subset of @ such that @=8+ C is a factorization, then C is
evidently a perfect single-error-correcting code. In [15] S. K. Zaremba
posed the question if C is equivalent with a subgroup of @. By Theorem 2
it is seen that this is not in general the case, but it leaves undecided the
cases ¢=2, n=3, 7 and p=3, n=p+1. In the first three cases the
answer is positive as S. K. Zaremba [15] and O. Taussky-J. Todd [12]
showed.

By Theorem 2 there are at least two equivalence classes of perfect
(n(r,q),1,9) codes if ¢=2 and r=4 or ¢=3 and r23. By Theorem 1
this is also the case if r=2 and q is not a prime and ¢+4, 8. It is easy
to prove that the number of equivalence classes tends to infinity with 7.
For the number of codes in an equivalence class is at most n!(g!)* <
g™atlogn) (g-logarithm) and the number of different codes K for different
2 is at least ¢¢°, where u=(n—1)/g—%ogn, by Theorem 2.

If G=A + Bis a factorization of @, an element g € G such that g+ 4 =4,
g=+0 is said to be a period of 4. The codes constructed in Theorem 2
have a large number of periods. It would be interesting to know if there
are perfect (n,1,q) codes with a small number of periods. There is an
interesting theorem by J.-E. Roos (Theorem 4 in [7]) from which it
follows that every perfect (n,e,2) code has at least one period.
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