A NOTE ON A PROBLEM OF BUSEMANN

M. GIERTZ

Let K and K' be two bodies in n-dimensional euclidean space E^n , $n \ge 3$, which are convex and centrally symmetric about the origin. For any unit vector u in E^n , the (n-1)-dimensional measures (or areas) of the intersection of K or K' and the hyperplane (x,u)=0 are denoted by A(u) and A'(u), respectively. The volumes of K and K' are denoted by V and V'. The problem in question [1] is:

Does $A(u) \ge A'(u)$ for all unit vectors u imply $V \ge V'$?

Although easily stated, this important question seems remarkably difficult to answer. Much effort has been spent in trying to establish an affirmative answer, or to find a counterexample. The answer is, indeed, affirmative if K' is an ellipsoid, or if A'(u) = cA(u) (see [1] for references), but no other special case seems to have been settled. The purpose of this note is to show that the answer is yes also if K and K' are 3-dimensional bodies of rotation with a common axis.

In a plane equipped with polar coordinates r, ψ we consider continuous closed curves represented by π -periodic expressions $r(\psi)$ of the following type: For $0 \le \psi \le \frac{1}{2}\pi$ we have $r(\pi - \psi) = r(\psi) > 0$, and as ψ increases from 0 to $\frac{1}{2}\pi$, $r(\psi) \sin \psi$ is nondecreasing, i.e. any line parallel to the polar axis meets the curve in at most two points or segments. When such a curve is rotated around the polar axis we shall call the result a central symmetric monotonic body of rotation generated by $r(\psi)$. The set of all such bodies is denoted by M. Clearly, all central symmetric convex bodies of rotation belong to M.

Given a body B in M, let $A_B(\varphi)$ denote the area which B cuts out of a plane through the center, whose normal makes an angle φ , $0 \le \varphi \le \frac{1}{2}\pi$, with the axis of rotation. We then have the following

THEOREM. If for two bodies 1 and 2 in M it is true that $A_1(\varphi) \ge A_2(\varphi)$ for all φ in $[0, \frac{1}{2}\pi]$, and $A_1(\varphi) > A_2(\varphi)$ for some φ in this interval, then the volume of 1 is greater than that of 2.

Received June 15, 1969.

146 M. GIERTZ

PROOF. With the notation used in the accompanying figure, we have $\sin \gamma \sin \varphi = \cos \psi$. For a body B, generated by $r_B(\psi)$, this relation gives us

$$A_B(\varphi) = 2 \int_0^{\frac{1}{2}\pi} r_B^2(\psi) d\gamma = \int_0^{\varphi} r_B^2(\psi) f(\varphi, \theta) d\theta ,$$

where $\psi = \frac{1}{2}\pi - \theta$, and

$$f(\varphi,\theta) \,=\, (\sin^2\!\varphi - \sin^2\!\theta)^{-\frac{1}{2}} \cos\theta, \quad \ 0 \leqq \theta < \varphi \leqq \frac{1}{2}\pi \;.$$

Let the two bodies be generated by $r_1(\psi) = r(\theta) + \varrho(\theta)$, and $r_2(\psi) = r(\theta)$. Then by assumption

$$A_1(\varphi) - A_2(\varphi) = 2 \int_0^{\varphi} (2r\varrho + \varrho^2) f(\varphi, \theta) d\theta \ge 0$$

for all φ in $(0, \frac{1}{2}\pi]$, and positive for some φ .

Assuming first that the number of intervals in which ϱ is positive (or negative) is finite, we let (θ_k) , $0 = \theta_0 < \theta_1 < \ldots < \theta_N = \frac{1}{2}\pi$, be a sequence dividing $[0, \frac{1}{2}\pi]$ into intervals where ϱ has constant sign. Clearly ϱ can not be negative in $[\theta_0, \theta_1]$, so ϱ is nonnegative in $[\theta_{2k}, \theta_{2k+1}]$ and nonpositive in $[\theta_{2k-1}, \theta_{2k}]$. Thus

$$A_1(\theta_n) - A_2(\theta_n) = 2 \sum_{k=0}^{n-1} (-1)^k \int_{\theta_k}^{\theta_{k+1}} |2r\varrho + \varrho^2| f(\theta_n, \theta) d\theta, \quad n = 1, 2, \dots, N.$$

Putting

$$\sigma_{k} = \int_{\theta_{k}}^{\theta_{k+1}} |2r\varrho + \varrho^{2}| \ d\theta$$

= twice the area enclosed by $r+\varrho$ and r in the interval $[\theta_k, \theta_{k+1}]$,

we have

$$\int_{\theta_k}^{\theta_{k+1}} |2r\varrho + \varrho^2| f(\theta_n, \theta) d\theta = \alpha_{k,n} \sigma_k,$$

where

$$\alpha_{k,n} = f(\theta_n, \xi_{k,n}) \quad \text{ for some } \xi_{k,n} \text{ in } [\theta_k, \theta_{k+1}] \; .$$

For any φ , $0 < \varphi < \frac{1}{2}\pi$, the function f is strictly increasing in θ , so

$$0 < \alpha_{0,n} < \alpha_{1,n} < \alpha_{2,n} < \dots$$

But our assumption

$$\sum_{k=0}^{n-1} (-1)^k \alpha_{k,n} \, \sigma_k \ge 0, \quad n = 1, 2, \dots, N,$$

then implies (by Abel's formula for partial summation)

$$\sum_{k=0}^{n-1} (-1)^k \beta_k \sigma_k > 0 ,$$

for any decreasing sequence (β_k) . This proves that $V_1 > V_2$ since $V_1 - V_2$ can be written as a sum of this type, with $\beta_k = \pi y_k$, where y_k is the distance from the axis of rotation to the center of gravity of the region with area σ_k .

If $r+\varrho$ and r intersect at infinitely many points, we still must have $\varrho(\theta)>0$ in some interval $\theta'<\theta<\theta''<\frac{1}{2}\pi$. Denote the area enclosed by $r+\varrho$ and r in this interval by σ . Let p be any outer polygonal approximation to $r+\varrho$, and q any inner polygonal approximation to r. Let θ_k , σ_k and β_k be defined as above for p and q. For some even number n the interval $[\theta_n,\theta_{n+1}]$ contains $[\theta',\theta'']$, and $\sigma_n \ge \sigma$. There must also exist a positive δ , independent of p and q, such that $\beta_n-\beta_{n+1}>\delta$. Since (again using partial summation)

$$V_p - V_q = \sum_{k=0}^{N-1} (-1)^k \beta_k \sigma_k > (\beta_n - \beta_{n+1}) \sigma_n > \delta \sigma$$
 ,

we conclude that

$$V_1 - V_2 \ge \delta \sigma > 0.$$

This completes the proof.

It was recently brought to the author's attention by J. Schaer (Calgary) that H. Hadwiger (Bern) has obtained by different methods a very similar result, as a special case of a theorem appearing in volume 23 of this journal [2]. Neither result contains the other. The author also wishes to express his gratitude to Professor Hadwiger for pointing out that a certain condition assumed in the first draft of this note was redundant.

148 M. GIERTZ

REFERENCES

- 1. H. Busemann and C. M. Petty, Problems on convex bodies, Math. Scand. 4 (1956), 88-94.
- H. Hadwiger, Radialpotenzintegrale zentralsymmetrischer Rotationskörper und Ungleichheitsaussagen Busemannscher Art, Math. Scand. 23 (1968), 193–200.

ROYAL INSTITUTE OF TECHNOLOGY, STOCKHOLM, SWEDEN AND UNIVERSITY OF CALIFORNIA, LOS ANGELES, U.S.A.