AUTOMORPHISMS OF ABSTRACT AFFINE NEAR-RINGS

JOSEPH J. MALONE, JR.

0. Introduction.

Let γ be a homomorphism of the near-ring N into the near-ring M. Then γ carries the maximal sub-C-ring of N into the maximal sub-C-ring of M and carries the maximal sub-Z-ring of N into the maximal sub-Z-ring of M. Moreover, the homomorphism is completely determined by its restrictions to these sub-near-rings. Conversely, one may ask which homomorphisms on the sub-C-ring and which homomorphisms on the sub-Z-ring may be mated to produce a homomorphism on X to X, that is, which such homomorphisms may occur as restrictions. In general, a satisfactory answer has not been given.

This paper investigates the homomorphism construction problem for abstract affine near-rings. In particular, automorphisms of abstract affine near-rings are studied. Information about automorphisms of near-rings seems important as a preliminary to obtaining Galois-like results for near-rings.

1. Preliminaries.

Let M be a left R-module. On $R \times M$ define a coordinatewise addition and define multiplication such that

$$(r_1,m_1)\cdot (r_2,m_2) \,=\, (r_1r_2,\, r_1m_2+m_1), \qquad r_1,r_2\in R \ \text{ and } \ m_1,m_2\in M \ .$$

The system $(R \times M, +, \cdot)$ is an example of the type of near-ring known as an abstract affine near-ring. In [3] it is shown that every abstract affine near-ring arises from such a construction on a module.

Gonshor introduced abstract affine near-rings in [3] and completely described their ideal structure. He generalizes the results in [2] and [4]. In the terminology of [1], an abstract affine near-ring is a near-ring in which the maximal sub-C-ring, that is (R,0), is left-distributive and in which the maximal sub-Z-ring is (0, M). Note that in [1] near-rings are left near-rings whereas in [3] near-rings are right near-rings.

Partially supported by NASA Grant NGR-44-005-037, Supplement 1. Received March 1, 1968.

2. Compatible endomorphisms.

DEFINITION. Let N be a left R-module. If α is a ring endomorphism of R such that

$$(r-\alpha r)n = 0, \quad r \in R \text{ and } n \in N,$$

 α will be called an N-compatible endomorphism of R.

We note in passing that the kernel of an N-compatible endomorphism is contained in the annihilator of N.

Let M and N be left R-modules giving rise to the abstract affine near-rings $R \times M$ and $R \times N$. The following theorems show the manner in which R-homomorphisms on M to N may be extended to near-ring homomorphisms on $R \times M$ to $R \times N$. Essentially, any R-homomorphism may be mated with any N-compatible endomorphism of R.

THEOREM 1. Let M and N be left R-modules, let α be an N-compatible endomorphism of R, and let β be an R-homomorphism on M to N. The map

$$\varphi \colon R \times M \to R \times N$$
 defined by $\varphi(r,m) = (\alpha r, \beta m)$

is a near-ring homomorphism on $R \times M$ to $R \times N$.

PROOF. We verify that multiplication is preserved by φ . The rest is immediate. Consider

$$\varphi((r_1, m_1)(r_2, m_2)) = \varphi(r_1 r_2, r_1 m_2 + m_1)$$

$$= (\alpha(r_1 r_2), \beta(r_1 m_2 + m_1)) = (\alpha(r_1 r_2), r_1 \beta m_2 + \beta m_1)$$

and

$$\begin{aligned} \varphi(r_1, m_1) \; \varphi(r_2, m_2) \; &= \; (\alpha \, r_1, \, \beta \, m_1) (\alpha \, r_2, \, \beta \, m_2) \\ &= \; (\alpha \, r_1 \, \alpha \, r_2, \, \alpha \, r_1 \, \beta \, m_2 + \beta m_1) \; = \; (\alpha (r_1 \, r_2), \, \alpha \, r_1 \, \beta \, m_2 + \beta \, m_1) \; . \end{aligned}$$

The result follows from the compatibility condition.

COROLLARY 1a. Let β be an R-homomorphism on M to N. Then $\varphi': R \times M \to R \times N$ defined such that $\varphi(r,m) = (r,\beta m)$ is a near-ring homomorphism.

PROOF. The identity map on R is N-compatible.

COROLLARY 1b. Let α be an N-compatible endomorphism of R. Then $\varphi'': R \times N \to R \times N$ defined such that $\varphi(r,n) = (\alpha r,n)$ is a near-ring endomorphism.

Proof. The identity map on N is an R-homomorphism.

Theorem 2. Let φ be a near-ring homomorphism on $R \times M$ to $R \times N$.

Math. Scand. 25 - 9

Let α be the restriction of φ to R, let β be the restriction of φ to M, and let β be onto N. Then α is an N-compatible endomorphism of R iff β is an R-homomorphism on M to N.

PROOF. As remarked before, these restrictions determine the homomorphism. Consider

$$\varphi(0,rm) = \varphi((r,0) (0,m)) = \varphi(r,0) \varphi(0,m) = (\alpha r, 0) (0, \beta m) = (0, \alpha r \beta m)$$

and

$$\varphi(0,rm) = (0,\beta(rm)), \quad r \in R \text{ and } m \in M.$$

Hence

$$\alpha r \beta m = \beta(rm)$$
.

If β is an *R*-homomorphism, $\alpha r\beta m = r\beta m$ and $(r-\alpha r)\beta m = 0$. Since an arbitrary element of *N* can be put in the form βm , α is an *N*-compatible endomorphism of *R*. Conversely, if α is compatible we have $(r-\alpha r)\beta m = 0$. Thus $r\beta m = \alpha r\beta m = \beta(rm)$ and β is an *R*-homomorphism.

Turning to automorphisms we find that the mating process described above yields all of the automorphisms for certain abstract affine nearrings $R \times M$, i.e. every near-ring automorphism of $R \times M$ is an extension of an R-automorphism of M. This is the case, for instance, for a trivial module or if R is the ring of integers and operator multiplication is the taking of natural multiples. On the other hand, consider the abstract affine near-ring arising from the module for which R is the field of complex numbers and M is the additive group of complex numbers. Let each of α and β be the map which takes an element into its conjugate. Define

$$\varphi \colon R \times M \to R \times M$$
 such that $\varphi(r,m) = (\alpha r, \beta m)$.

Then φ is a near-ring automorphism of $R \times M$ but α is not compatible. This may be seen by taking r = i and m = 1. So not every automorphism of an abstract affine near-ring has restrictions which are, respectively, M-compatible and an R-automorphism.

3. Non-compatible automorphisms.

In this section we investigate the manner in which non-compatible automorphisms of R and non-R-automorphisms of M are mated to yield the remaining near-ring automorphism of $R \times M$.

Theorem 3. With M as a left R-module, let α be a ring automorphism of R and let β be a group automorphism of M. Then the map

$$\varphi \colon R \times M \to R \times M$$
 defined by $\varphi(r,m) = (\alpha r, \beta m)$

is a near-ring automorphism of $R \times M$ iff $\alpha r \beta m = \beta(rm)$, $r \in R$ and $m \in M$.

PROOF. This theorem is immediate from the proofs of Theorems 1 and 2.

We have seen that any compatible automorphism of R may be mated with any R-automorphism of M. We now discuss the uniqueness of extensions as it concerns non-compatible automorphisms of R and non-R-automorphisms of M.

Theorem 4. With M as a left R-module, let A be the group of all ring automorphisms of R and let X be the subset of compatible ring automorphisms of R. Then congruence modulo X is an equivalence relation on A.

PROOF. Since a subgroup of a group induces an equivalence relation on the elements of the group, we only need show that X determines a subgroup of A.

We know that the identity map on R is compatible. Let $\alpha \in X$. Then

$$(r-\alpha r)m = 0, \quad r \in R \text{ and } m \in M.$$

For $r \in \mathbb{R}$, there exists $r_1 \in \mathbb{R}$ such that $\alpha^{-1}r_1 = r$. Hence

$$(\alpha^{-1}r_1 - \alpha(\alpha^{-1}r_1))m = (\alpha^{-1}r_1 - r_1)m = 0$$

 \mathbf{or}

$$(r_1 - \alpha^{-1}r_1)m = 0, \quad r_1 \in R \text{ and } m \in M.$$

Hence $\alpha^{-1} \in X$. Let $\alpha, \gamma \in X$. Then each of these may be mated with the identity map on M. (We will use the notation $\varphi = [\alpha, \beta]$ to indicate a near-ring automorphism of $R \times M$ whose restriction to R is α and whose restriction to M is β .) Consider $\varphi = [\alpha, \iota]$ and $\varphi' = [\gamma, \iota]$, ι the identity map on M. Then $\varphi \varphi' = [\alpha \gamma, \iota]$ is a near-ring automorphism of $R \times M$. Since ι is an R-automorphism, $\alpha \gamma$ is a compatible automorphism of M. Hence the theorem follows.

THEOREM 5. Let $\varphi = [\alpha, \beta]$ and let $\gamma \equiv \alpha \pmod{X}$. Then $[\gamma, \beta]$ is a nearring automorphism of $R \times M$. If $[\alpha, \beta]$ and $[\gamma, \beta]$ are near-ring automorphisms of $R \times M$, then $\gamma \equiv \alpha \pmod{X}$.

PROOF. By hypothesis, $\gamma \alpha^{-1} \in X$. Then $[\gamma \alpha^{-1}, \iota]$ is a near-ring automorphism and $[\gamma \alpha^{-1}, \iota][\alpha, \beta] = [\gamma, \beta]$ is a near-ring automorphism of $R \times M$ as desired.

The product of the near-ring automorphisms $[\gamma, \beta]$ and $[\alpha^{-1}, \beta^{-1}]$ is the near-ring automorphism $[\gamma \alpha^{-1}, \iota]$. Hence $\gamma \equiv \alpha \pmod{X}$.

Thus we see that, if one element of a coset of $A \pmod{X}$ can be mated with a β , then so can all the members of the same coset. Moreover, only the members of this coset may be mated with β . Since each coset \pmod{X} has the same cardinality as X, we have that, if a non-R-automorphism of M can be extended to an automorphism of $R \times M$, it has as many extensions as an R-automorphism of M.

We have viewed the near-ring automorphism of $R \times M$ as extensions of the group automorphisms of M. We may also view the near-ring automorphisms as extensions of the ring automorphisms of R. The following theorems are analogous to those just stated. Proofs will not be given.

Theorem 6. With M as a left R-module, let B be the group of all group automorphisms of M and let Y be the subset of all R-automorphisms of M. Then congruence modulo Y is an equivalence relation on B.

THEOREM 7. Let $\varphi = [\alpha, \beta]$ and let $\delta \equiv \beta \pmod{Y}$. Then $[\alpha, \delta]$ is a nearring automorphism of $R \times M$. If $[\alpha, \beta]$ and $[\gamma, \delta]$ are near-ring automorphisms of $R \times M$, then $\beta \equiv \delta \pmod{Y}$.

REFERENCES

- 1. G. Berman and R. J. Silverman, Near-rings, Amer. Math. Monthly 66 (1959), 23-34.
- 2. D. W. Blackett, The near-ring of affine transformations, Proc. Amer. Math. Soc. 7 (1956), 517-519.
- 3. H. Gonshor, On abstract affine near-rings, Pacific J. Math. 14 (1964), 1237-1240.
- K. G. Wolfson, Two-sided ideals of the affine near-ring, Amer. Math. Monthly 65 (1958), 29-30.

DEPARTMENT OF MATHEMATICS, TEXAS A & M UNIVERSITY, COLLEGE STATION, TEXAS 77843, U.S.A.