MEASURE THEORY FOR C* ALGEBRAS IV

GERT KJÆRGÅRD PEDERSEN

This paper deals with the problem of finding for a self-adjoint bounded functional on a C^* algebra A, or more generally for a self-adjoint C^* integral on A, a unique decomposition into mutually singular positive parts. For bounded functionals this is of course not new, but our proof has the merit of avoiding von Neumann algebra techniques, working within A itself. However, for the unbounded case we shall need the enveloping von Neumann algebra A''. We assume first that A has an identity element.

Proposition 1. If f and g are bounded positive functionals on A, the following conditions are equivalent:

- (1) ||f-g|| = ||f|| + ||g||.
- (2) For any $\varepsilon > 0$ there exists $z \in A$, $0 \le z \le 1$, such that $f(z) < \varepsilon$ and $g(1-z) < \varepsilon$.

If f and g are extended to A'', these conditions are again equivalent to:

- (3) There exists $z \in A''$, $0 \le z \le 1$, such that $\tilde{f}(z) = \tilde{g}(1-z) = 0$.
- (4) f and g have orthogonal supports in A".

PROOF. (1) \Rightarrow (2). For $\varepsilon > 0$ there exists $x \in A$, $-1 \le x \le 1$, such that

$$f(1) + g(1) = ||f-g|| < \varepsilon + (f-g)(x)$$
.

We put $z = \frac{1}{2}(1-x)$, $1-z = \frac{1}{2}(1+x)$ and have

$$f(z)+g(1-z) < \frac{1}{2}\varepsilon.$$

(2) \Rightarrow (1). Since $-1 \le 1 - 2z \le 1$, we have

$$||f-g|| \ge (f-g)(1-2z) = f(1-2z) + g(1-2(1-z)) \ge ||f|| + ||g|| - 4\varepsilon$$

 $(2) \Rightarrow (3)$. Let $\{\varepsilon_n\}$ be a sequence tending to zero. Since the positive part of the unit ball of A'' is compact, we can choose a weak limit point z of the corresponding sequence $\{z_n\}$. As \tilde{f} and \tilde{g} are normal on A'', we have $\tilde{f}(z) = \tilde{g}(1-z) = 0$.

Received February 10, 1969.

(3) \Rightarrow (4). If p and q are the supports of f and g respectively, we have $z \le 1 - p$ and $1 - z \le 1 - q$ hence $p + q \le 1$ and $p \perp q$.

(4) \Rightarrow (1). With p and q as above we have

$$||f-g|| \ge (\tilde{f}-\tilde{g})(p-q) = ||f|| + ||g||.$$

When f and g satisfy the conditions of the proposition we call them mutually singular and write $f \perp g$.

Proposition 2. For any self-adjoint bounded functional h there exists a unique decomposition

$$h = f - g$$
, $f \ge 0$, $g \ge 0$, $f \perp g$.

Proof. The existence part of the proposition is [3, Corollaire 2.6.4]. We prove the uniqueness assertion [3, Corollaire 12.3.4]. Suppose therefore

$$f-g=f'-g', \quad f\perp g, \quad f'\perp g'$$
.

Since obviously ||f|| + ||g'|| = ||f'|| + ||g||, we get by condition (1) in proposition 1 that ||f|| = ||f'|| and ||g|| = ||g'||. For $\varepsilon > 0$ we choose z to f and g satisfying condition (2) in proposition 1. Then

$$||f'|| \ge f'(1-z) \ge (f'-g')(1-z)$$

= $(f-g)(1-z) \ge f(1) - 2\varepsilon = ||f'|| - 2\varepsilon$.

Hence $f'(z) < 2\varepsilon$ and similarly $g'(1-z) < 2\varepsilon$. By Cauchy–Schwarz' inequality we get for any $x \in A^+$

$$|f(zx(1-z))|^2 \le f(zxz) f((1-z)x(1-z)) \le \varepsilon ||f|| ||x||^2$$

and similar expressions for g, f' and g'. Moreover

$$|(f-f')(zxz)| \leq 3\varepsilon ||x||, \qquad |(g-g')\big((1-z)x(1-z)\big)| \leq 3\varepsilon ||x||.$$

Since by assumption f-f'=g-g', we get

$$|(f-f')x| = |(f-f')((z+1-z)x(z+1-z))| \le \delta ||x||,$$

where δ can be chosen arbitrary small. Hence f = f' and g = g'.

We recall that a $Baire^*algebra$ is a monotone σ -closed C^* algebra [5], and a $\Sigma^*algebra$ is a weakly σ -closed C^* algebra [2] (probably the notions coincide). A functional on a Baire*algebra is σ -normal if it preserves limits of monotone sequences, and a functional on a Σ^* algebra is σ -continuous if it preserves limits of weakly convergent sequences. With these notions in mind we can state

Proposition 3. For any self-adjoint σ -normal (respectively σ -continuous) bounded functional h on a Baire*algebra (respectively Σ * algebra) there exists a unique decomposition

$$h = f - g$$
, $f \ge 0$, $g \ge 0$, $f \perp g$,

where f and g are σ -normal (respectively σ -continuous).

PROOF. Let h=f-g be the unique decomposition given by proposition 2, and for $\varepsilon > 0$ choose z as in condition (2) of proposition 1. By the polarization identity it follows that if h is σ -normal, so is the functional $h(z \cdot)$. Applying the Cauchy-Schwarz inequality we obtain

$$||g+h(z\cdot)||^2 = ||g-g(z\cdot)+f(z\cdot)||^2 \le 2\varepsilon ||h||$$
.

Since the set of σ -normal functionals is a norm-closed subset of the dual space, we have g, hence also f, σ -normal.

The case of σ -continuous functionals is proved similarly.

The above proposition is the non-commutative version of the *Jordan* decomposition of signed measures. The next proposition shows the possibility of a *Hahn decomposition*.

Proposition 4. If f and g are singular positive σ -normal (respectively σ -continuous) functionals on a Baire*algebra (respectively Σ * algebra) A, there exists a projection $p \in A$ such that f(p) = g(1-p) = 0.

PROOF. It suffices to consider the case where A is represented on a Hilbert space H and f and g are vector functionals associated with $\xi, \eta \in H$. We can then use the results contained in the proof of [4, Lemma 1] of which we give the following sketch: Since we can find $z \in A$ such that $||z\xi||$ and $||(1-z)\eta||$ are arbitrarily small, we can find a sequence $\{z_n\} \subseteq A$ such that both series

$$\sum |z_{n+1}-z_n|\xi, \qquad \sum |z_{n+1}-z_n|\eta$$

are convergent in H. This shows that if x^2 is the limit of the decreasing sequence $(1+\sum |z_{n+1}-z_n|)^{-1}$, then $x\in A$ and contains both ξ and η in its range. Now the sequence $x(\sum |z_{n+1}-z_n|)x$ is convergent in A, hence also the sequence $x(\sum (z_{n+1}-z_n))x$ converges in A. It follows that if z is a weak limit point of $\{z_n\}$ in the weak closure of A, then

$$\begin{split} z\xi &= (1-z)\eta = 0 \ , \\ xzx &= \lim_k x \big(\sum_1^k (z_{n+1} - z_n) \big) x - xz_1 x \in A \ . \end{split}$$

An ingenious calculation shows that $xzx \in A$ implies $[x]z[x] \in A$, where

$$[x]z[x]\xi = 0,$$
 $(1-[x]z[x])\eta = [x](1-z)[x]\eta = 0.$

As our projection p we can now take the range projection of [x]z[x]. Clearly p is not unique, in fact for any projection q with "total measure zero", that is, (f+g)(q)=0, we can use $p \vee q$ and $p \wedge q$ as well.

Now assume that A has no identity element. Then by [6, Theorem 1.3] A has a minimal dense hereditary ideal K. (A *subalgebra B of A is hereditary if B^+ is an order ideal of A^+ and B is the linear span of B^+ . The terms order-related and facial are also used.) We give K the topology τ defined in [7, Theorem 2.1] (see also [9, Theorem 2.4]) and notice that if A were commutative, that is, $A = C_0(X)$, X locally compact Hausdorff, then (K,τ) would be the set of continuous functions on X with compact supports equipped with the inductive limit topology arising from uniform convergence on compact subsets of X. Hence the C^* integrals of A, defined as the elements of the dual space of (K,τ) , are the non-commutative analogues of the Radon measures on a locally compact Hausdorff space.

The positive C^* integrals can be characterized as the positive functionals f on K such that for any $x \in K^+$

$$\sup \{f(y^*xy) \mid y \in A, ||y|| \le 1\} < \infty.$$

If J denotes the smallest norm-closed ideal of A'' containing A, then by [1, Proposition 4.4] K(J) is the smallest ideal of A'' containing K, and every positive C^* integral of A has a unique extension as a C^* integral of J. Moreover, every positive C^* integral has a unique extension to A''^+ as a weakly lower semi-continuous extended functional. For a positive C^* integral f on A we shall denote the extensions to K(J) and A''^+ by \tilde{f} . Following [1, p. 95] we define the support of f as the smallest projection p in A'' such that $\tilde{f}(1-p)=0$.

Proposition 5. If f and g are positive C^* integrals on A, the following conditions are equivalent:

(1) There exist two sets $\{f_i\}$ and $\{g_j\}$ of bounded positive functionals such that $f = \sum f_i$, $g = \sum g_i$, $f_i \perp g_i$ for all i, j.

(2) For any two bounded positive functionals f' and g', $f' \leq f$ and $g' \leq g$ imply $f' \perp g'$.

(3) There exists $z \in A''$, $0 \le z \le 1$, such that

$$\tilde{f}(z) = \tilde{g}(1-z) = 0.$$

(4) f and g have orthogonal supports in A''.

PROOF. (1) \Rightarrow (4). Clearly the supports of f and g are the suprema of the supports of the f_i 's and the g_j 's respectively. Since these are mutually orthogonal by assumption, so are the supports of f and g.

- $(4) \Rightarrow (3)$. Obvious.
- $(3) \Rightarrow (2)$. Follows from condition (3) in proposition 1.
- (2) \Rightarrow (1). By [6, Theorem 3.1] there exist sets $\{f_i\}$ and $\{g_j\}$ such that $f = \sum f_i$, $g = \sum g_j$. By assumption $f_i \perp g_j$ for all i, j.

When f and g satisfy the conditions of the proposition, we call them mutually singular and write $f \perp g$. The following lemma is the key to the proof that a decomposition in singular parts is unique.

Lemma 6. If f and g are positive C^* integrals on A and u,v are unitary operators in A'' such that for all $x \in K$

$$\tilde{f}(ux) = \tilde{f}(xu) = \tilde{g}(vx) = \tilde{g}(xv)$$
,
 $f = g$.

then

PROOF. For any $x \in K(J)^+$ define

$$\varrho(x) = \sup \{ \tilde{f}(y^*xy) \mid y \in A^{\prime\prime}, \, ||y|| \le 1 \} \, < \, \infty \, .$$

Using the relation $\tilde{f}(x) = \tilde{g}(u^*xv)$ which is valid for $x \in K(J)^+$ as well, together with the Cauchy–Schwarz inequality we get

(1)
$$\tilde{f}(x)^2 = \tilde{g}(u^*x^{\frac{1}{2}}x^{\frac{1}{2}}v)^2 \leq \tilde{g}(u^*xu) \, \tilde{g}(v^*xv) = \tilde{g}(u^*xu) \, \tilde{g}(x)$$

and similarly

(2)
$$\tilde{g}(x)^2 \leq \tilde{f}(v^*xv)\tilde{f}(x).$$

It follows that we have the inequalities

$$\tilde{f}(x) \leq \varrho(x), \qquad \tilde{g}(x) \leq \varrho(x).$$

Suppose we have proved for all $x \in K(J)^+$ that

(3)
$$\tilde{f}(x)^n \leq \varrho(x) \ \tilde{g}(x)^{n-1}, \qquad \tilde{g}(x)^n \leq \varrho(x) \ \tilde{f}(x)^{n-1}.$$

Then, applying (1) and (3) in succession, we get

$$\tilde{f}(x)^{2n} \leq \tilde{g}(u^*xu)^n \, \tilde{g}(x)^n
\leq \varrho(u^*xu) \, \tilde{f}(u^*xu)^{n-1} \, \tilde{g}(x)^n = \varrho(x) \, \tilde{f}(x)^{n-1} \, \tilde{g}(x)^n$$

and a similar inequality for g applying (2) and (3); hence

$$\tilde{f}(x)^{n+1} \leq \varrho(x) \, \tilde{g}(x)^n, \qquad \tilde{g}(x)^{n+1} \leq \varrho(x) \, \tilde{f}(x)^n.$$

We now prove (3) by induction, and extracting the *n*th roots we get in the limit $\tilde{f}(x) = \tilde{g}(x)$.

Theorem 7. For any self-adjoint C* integral h there exists a unique decomposition

$$h = f - g$$
, $f \ge 0$, $g \ge 0$, $f \perp g$,

where f and g are C^* integrals.

PROOF. By [9, Theorem 2.5] there exists on K^+ an invariant convex functional ϱ majorizing h and -h. For any C^* subalgebra B of K the restriction $\varrho|B$ is necessarily continuous by [9, Lemma 2.1]. Hence h|B is continuous. (Since the topology τ on K is generated by semi-norms arising from the invariant convex functionals on K, this argument in fact shows that the restriction of τ to B gives the norm topology.) It follows from proposition 2 that there exist bounded positive functionals f', g' on B such that h|B=f'-g', $f'\perp g'$. Hence there exists an element $z\in B''$, $0\leq z\leq 1$, such that

$$(h|B)^{\tilde{}}(x(1-z)) \ge 0, \qquad (h|B)^{\tilde{}}(xz) \le 0$$

for all $x \in B^+$. Since B'' has a canonical injection as a von Neumann subalgebra of A'', we may assume $z \in A''$.

Now by [8, Proposition 4] the set $\{B_i\}$ of finitely generated C^* subalgebras of K forms a net under inclusion which converges to K. To each B_i we choose z_i as above and since the positive part of the unit ball of A'' is compact, we may assume that the net $\{z_i\}$ converges weakly to some z.

For any $x \in K^+$ and $u, v \in A$, $||u|| \le 1$, $||v|| \le 1$, we have

$$4u*xv = \sum_{n=0}^{3} i^{n}(u+i^{n}v)*x(u+i^{n}v)$$
,

hence

$$4|h(u^*xv)| \leq \sum_{n=0}^{3} \varrho((u+i^nv)^*x(u+i^nv)) \leq 16 \varrho(x)$$
.

It follows that the bilinear functional $(u,v) \to h(uxv)$ is bounded on $A \times A$ and hence extends to a weakly continuous bilinear functional Φ_x on $A'' \times A''$. If $\sum u_n x_n v_n = 0$ and $\{u_{\mathbf{\lambda}}\} \subset K^+$ is an approximative unit for A, then

$$\begin{array}{ll} 0 \,=\, \varPhi_{u_{\pmb{\lambda}}}\!\!\left(\sum u_n x_n v_n\,,\, 1\right) \,=\, \sum \varPhi_{u_{\pmb{\lambda}}}\!\!\left(u_n x_n v_n\,,\, 1\right) \\ &=\, \sum \varPhi_{x_n}\!\!\left(u_n\,,\, v_n u_{\pmb{\lambda}}\right) \,\to\, \sum \varPhi_{x_n}\!\!\left(u_n\,,\, v_n\right)\,. \end{array}$$

We conclude that for any $y = \sum u_n x_n v_n \in K(J)$ we may define $\tilde{h}(y) = \sum \Phi_{x_n}(u_n, v_n)$ and that \tilde{h} is a linear functional which extends h.

For any $x \in K^+$ we have

$$\tilde{h}(xz_i) = (h|B_i)^{\tilde{}}(xz_i), \qquad \tilde{h}(x(1-z_i)) = (h|B_i)^{\tilde{}}(x(1-z_i))$$

when $x \in B_i$. Hence in the weak limit we get

$$\tilde{h}(x(1-z)) \geq 0, \qquad \tilde{h}(xz) \leq 0.$$

We define positive linear functionals f and g on K by

$$f(x) = \tilde{h}(x(1-z)), \qquad g(x) = -\tilde{h}(xz),$$

and since for $x \ge 0$ we have

$$f(x) \leq 4\varrho(x), \qquad g(x) \leq 4\varrho(x),$$

we conclude that f and g are C^* integrals. Finally

$$\begin{array}{ll} 0 \, \leqq \, \tilde{f} \, (z^{\frac{1}{2}} x z^{\frac{1}{2}}) \, = \, \tilde{h} \big(z^{\frac{1}{2}} x z^{\frac{1}{2}} (1-z) \big) \\ & = \, \tilde{h} \big((1-z)^{\frac{1}{2}} x \, (1-z)^{\frac{1}{2}} z \big) \, = \, - \tilde{g} \big((1-z)^{\frac{1}{2}} x \, (1-z)^{\frac{1}{2}} \big) \, \leqq \, 0 \end{array}$$

for any $x \in K^+$. We conclude that $\tilde{f}(z) = \tilde{g}(1-z) = 0$, hence $f \perp g$ by condition (3) in proposition 5.

To prove uniqueness of the decomposition let f,g,f',g' be positive C^* integrals with

$$f \perp g$$
, $f' \perp g'$, $f-g = f'-g'$.

If p and q are the supports of g and g', we observe that u=1-2p and v=1-2q are unitary operators in A'' such that

$$(\tilde{f} + \tilde{g})(ux) = (\tilde{f} + \tilde{g})(xu) = (f - g)(x)$$
$$= (f' - g')(x) = (\tilde{f}' + \tilde{g}')(vx) = (\tilde{f}' + \tilde{g}')(xv)$$

for all $x \in K$. By lemma 6 this implies f+g=f'+g', hence f=f' and g=g'.

REFERENCES

- 1. F. Combes, Poids sur une C* algèbre, J. Math. Pures Appl. 47 (1968), 57-100.
- 2. E. B. Davies, On the Borel structure of C* algebras, Comm. Math. Phys. 8 (1968), 147–163.
- 3. J. Dixmier, Les C* algèbres et leurs représentations, Paris, 1964.
- R. V. Kadison, Operator algebras with a faithful weakly-closed representation, Ann. of Math. 64 (1956), 175-181.
- E. T. Kehlet, On the monotone sequential closure of a C*-algebra, Math. Scand. 25 (1969), 59-70.
- 6. G. Kjærgård Pedersen, Measure theory for C* algebras, Math. Scand. 19 (1966), 131-145.
- G. Kjærgård Pedersen, Measure theory for C* algebras II, Math. Scand. 22 (1968), 63-74.
- G. Kjærgård Pedersen, A decomposition theorem for C* algebras, Math. Scand. 22 (1968), 266-268.
- G. Kjærgård Pedersen, Measure theory for C* algebras III, Math. Scand. 25 (1969), 71-93.