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NET CHARACTERIZATIONS OF EQUICONTINUITY

JEONG SHENG YANG

Introduction.

Since the advent of equicontinuity, introduced by Ascoli, there have
been numerous variations and generalizations of the original definition,
cf. [1], [2], (3], [4], |7], [8]. In this paper, some characterizations of
equicontinuity, simple equicontinuity, and even continuity in terms of
universal nets are studied (Theorems 2, 8, 11). We also show by an
example that the pointwise topology for a family of continuous functions
having simple equicontinuity is not jointly continuous in general.
Therefore, simple equicontinuity is not equivalent to even continuity.

In several cases we consider nets which have as their domains neigh-
borhood bases. In all other cases the domains are arbitrary directed
sets. The context will make clear what directed set we have in mind
in each case, enabling us to conserve on notation by not bothering
with a symbol for the domain of nets.

Throughout this paper, X will be a topological space, and ¥ a uniform
space, unless otherwise specified. # will denote a family of continuous
functions on X into Y. As a general reference for the basic definitions
and notions occurring here, see [7].

The author wishes to thank Professor R. W. Bagley for his invaluable
suggestions and help.

DEeFiNITION 1. A universal net! {f,} in F is said to be eventually equi-
continuous at x € X if and only if, for each index V of Y, there exist a
neighborhood N of z and an n, such that (f,(z),f.(y)) € V whenever
nzn, and ye N. A universal net in F is said to be eventually equi-
continuous on X if it is eventually equicontinuous at each point x of X.

If A<X, we denote by 7, the set of functions {r, |z € 4} on F into
Y where n,(f)=f(x) for each fe F. Note that every element of z,
is continuous if ¥ is endowed with the pointwise topology.

The following is exercise 7 M (a) in [7].

Received November 25, 1968.
1 Recall the remark at the end of the introduction which concerns our convention

on domains of nets.
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Lemma 1. Suppose Y is a topological space. A topology t for F 1is
Jjointly continuous, if and only if {f,(x,)} converges to f(x) whenever {x,}
is a net in X converging to x and {f,} is a net in F, t-converging to f.

The following theorem is the first of the type promised in the opening
remarks of this paper.

THEOREM 2. F is equicontinuous at x € X if and only if every universal
net in F 1s eventually equicontinuous at x.

Proor. The necessity is obvious.

Suppose that every universal net in F is eventually equicontinuous
at x but F is not equicontinuous at . Then there is an index V of ¥
such that, for each neighborhood N of xz, there exist fy € F and z,, € N
such that (fy(x), fy(zy)) € V. Now {xy} converges to z. Let {fy,} be
a subnet of {fy} which is a universal net, then, since every universal
net in F is eventually equicontinuous at z, there is a neighborhood U
of  and a p, such that ( fw, (@), pr(y)) € V whenever pzp, and ye U.
Since {zy,} converges to x, there exists p, such that xy, €U for all
p=p,. Choose py=py,ps, then Ty, € U for all p>p, and

(pr(x), pr(pr)) eV.

The desired conclusion follows from this contradiction.

CoroLLARY 2.1. If every universal net in m is eventually equicontinuous
on (F,7), then t 18 jointly continuous.

Proor. Let (f,x)e (F,t)x X and V be an index of Y. Suppose W
is a symmetric index of Y such that W2< V. Since f is continuous at z,
there exists a neighborhood N of x such that (f(x), f(z)) € W whenever
z€ N. By Theorem 2, my is equicontinuous, hence there exists a neigh-
borhood U of f such that (f(z), g(z)) € W whenever ge U and z€ X.
Hence, for all ge U and ze N,

(f@), 9(2) = (f(2), f(2)) o (f(2), 9(2)) € W2 = V
and the corollary is proved.
Prorosrrion 3. If a universal net {f,} in F is eventually equicontinuous

at each point x of a compact space X, then it is eventually uniformly equi-
continuous on X.

Proor. Let V be an index of ¥ and W a symmetric index of ¥ such
that W2< V. For each x € X, the net {f,} is eventually equicontinuous
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at @, there exist a neighborhood N, of z and an %, such that
(ful®), fuly)) € W whenever n2n, and ye N,. There is a finite subset
{#1,%y,. .., 2} of X such that XzULIin. Let ngzn,,...,n,,, and
let y,2 be an arbitrary pair of elements of N, , 1<¢<k, then, for each
n2ny, we have (f,(y), fu(x,)) € W and (f,(x;), f(2)) € W. It follows that
(foly), fu(2)) € V whenever n=n,. Let ¥~ be the uniformity of X com-
patible with the compact topology for X. Then, by the uniform cover
property, there exists an index U e?¥” such that, for each ze X,
Ulx]=N,, for some i, 1<i<k. Now for n2n, and (z,y) € U we have
(fol®), fuly)) € V. This shows that {f,} is eventually uniformly equi-
continuous on X and the proof is complete.

ProposiTION 4. If {7, } is a universal net in 7wy such that {x,} converges
to x € X, and a topology v for F is jointly continwous, then {m, } is even-
tually equicontinuous on (F,1).

Proor. Let fe F and V be an index of Y. Let W be a symmetric
index of Y such that W2< V. There exist neighborhoods N, and N,
of f and x respectively such that z(N,x N,)<W[f(x)]. Since {x,} con-
verges to x, {f(x,)} converges to f(x). There exists n, such that n=n,
implies that (f(z,),f(x)) € W. There exists an n, such that x,e N,
for all n=n,. Choose my=n,,n,. Then, for every ge N; and n=n,,
(f(@), g(x,)) e W and (f(x,), f(z)) € W. It follows that (f(x,), g(z,)) e V
for every n=n, and g € N,. This completes the proof.

CorROLLARY 4.1. If X is compact and a topology T for F is jointly con-
tinuous, then 7y is equicontinuows on (F,t).

Proposition 4 has the following dual.

ProposirioN 5. If {f,} is a universal net in F, t-converging to fe F,
and t is jointly continuous, then {f,} is eventually equicontinuous on X.

We note that Theorem 7.16 of [7] may be regarded as a corollary to
Proposition 5.
The following theorem is a filter characterization of equicontinuity.

THEOREM 6. F is equicontinuous at x € X if and only if every wltrafilter
2 in F satisfies: If V is an index of Y, there exist H € # and a neighbor-
hood N of x such that (f(x),f(y)) € V for all fe H and y € N.

PrOOF. Suppose every universal net in F is eventually equicontinuous
at z € X, but not every ultrafilter in F' has the stated property. Then,
for some ultrafilter # in F, there is an index V of Y such that for some
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H e " and each neighborhood N of x there exist 2y € N and fye H
such that (fy(x), fy(zy)) € V. There is a subnet {fN } of the net {fy}
which is a universal net in F. The corresponding net. {xN } is a subnet
of {xy}. There exist a neighborhood N, of x and a p, such that
( pr(x) pr ))e V forallye N, and p>p,. Since {xN converges to x,
there exists p, such that ay €N, for all pzp,. Choose Po= P1,Pe- 1t
follows that zy € N, for all p=p,, hence ( Ivp®@): fa(@y,) € V for all
P =Py, which is a contradiction.

For the reverse implication, assume that every ultrafilter in F has
the stated property, and let {f,} be a universal net in F. Let F,=
{fm | m=n} and let 5 be the ultrafilter in F such that 5# > {F,}. Then,
for each index V of Y, there is H € 2 and a neighborhood N of z such
that (g(x), g(y)) € V whenever g € H and y € N. There exists an n, such
that H> F, . Then, for each g € F, and y € N, we have (g(x), g(y)) € V.
Therefore, for each n=n, and each ye N, we have f,eF, and
(fal®), fuly)) € V. This shows that the net {f,} is eventually equicon-
tinuous at x € X, and the proof is completed.

ProrositiOoN 7. If X is a uniform space, then a family F is uniformly
equicontinuous on X if and only if every universal net in F is eventually
uniformly equicontinuous on X.

ProOF. Suppose F' is uniformly equicontinuous and {f,} is a universal
net in F. For each index V of Y there is an index U of X such that
(f(z), f(y)) € V whenever fe F and (z,y) € U. It follows specially that
{f.} is eventually uniformly equicontinuous on X.

Conversely, suppose every universal net in ¥ is eventually uniformly
equicontinuous on X, but F is not uniformly equicontinuous. Then
there is an index V of Y so that, for each index U of X, there are xy;, 2,
in X and f; € F such that (zy,2y) € U but (fy(xy), fu(zy)) ¢ V. If we
introduce an ordering in the uniformity of X by defining U, U, if
and only if U, > U, for every pair of indices U,, U, of X. Then the unifor-
mity along with such an ordering is a directed set, and {fy} is a net
in F. Suppose {fy, } is a subnet of {f;} which is a universal net. Then
there exist an index W of X and an n; such that (fy (), fy,(2)) €V
whenever nzn, and (z,2) € W. Corresponding to W there exists
n, such that, if nzny2n,, then U,2W. For nzn,, (z,2)e U, im
plies (v,2) € W; hence (fy, (%), fu,(?) ) e V. Specially, we have that
((fo(®u,)s fo(?v,) € Vs which is a contradiction.

Using Propositions 3 and 7 we have the following well-known result
as our corollary.
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CoroLLARY 7.1. If F is equicontinuous on a compact space X, then it
18 uniformly equicontinous on X.

DEriNITION 2. F is said to have simple equicontinuity at x € X if, for
every index V of Y and every ultrafilter 5 in F there exists a neighbor-
hood N of x such that, for each y ¢ N, there exists H, e A such that

(f@), fy) eV forall fe H,.

The concept of simple equicontinuity was first studied by Brace [2].
Brace obtained a strengthened version of the Alaoglu-Bourbaki Theorem,
replacing equicontinuity by simple equicontinuity. Comparing Defini-
tion 2 with Theorem 6 we can see that simple equicontinuity is clearly
weaker than equicontinuity. The following examples show that simple
equicontinuity is not equivalent to equicontinuity, even if X is compact.
Furthermore, the examples also show that the pointwise topology for
a family having simple equicontinuity is not jointly continuous in
general. Therefore simple equicontinuity is not equivalent to even
continuity.

ExamPLE 1. Let X be the space of all real sequences with all but
finitely many terms equal to zero. Let X have the norm topology with
llo]| =3 {lz,] | n € w}. If f,(x)=nx,, then the sequence {f,} converges
to zero relative to the pointwise topology. Let F'={f,}u{0}. Then F
is compact in the pointwise topology, hence F has simple equicontinuity
by Theorem 4.7 of [2]. However, F is not equicontinuous.

ExamMpPLE 2. Let f be a continuous real-valued function on the closed
unit interval such that f(0)=f(1)=0 and f==0. Let g, (z)=f(x") for
each non-negative integer n. Then {g,} converges pointwise (but not
uniformly) to the function 2 which is identically zero. The set F=
{g9,}u{Rh} is compact rclative to the pointwise topology, but is not
compact relative to the uniform topology. Since X is compact, the
uniform topology coincides with the compact-open topology. Therefore
the pointwise topology is smaller than the compact-open topology.
Consequently the pointwise topology is not jointly continuous and ¥
is not equicontinuous. However F has simple equicontinuity by Theorem
4.7 of [2].

THEOREM 8. F has simple equicontinuity at € X if and only if, for every
universal net {f,} in F and every index V of Y, there exists a neighborhood
N of z so that, for each y € N, there exists n, such that (f,(x), fy(y)) eV
whenever nzn, .
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Proor. Suppose F' has simple equicontinuity at « € X, and let {f,}
be a universal net in F. Let F,={f,, | m2n} and let 5# be the ultra-
filter in F such that # > {F,}. Then for each index V of Y, there
exists a neighborhood N of z and for each y € N, there exists H, e 5
such that (f(x), f(y)) € V for all fe H,. There is an n, such that HDFny.
It follows that (f,(2), f,(y)) € V for all n>n,.

Suppose, conversely, that F has the stated property but does not
have simple equicontinuity at « € X. Then, there exist an index V of ¥
and an ultrafilter 5# in F such that, for each neighborhood N of x, there
exists 2y e N and for each HeJ#, (fy z(@), fy ul®y) ¢V for some
fv, g€ H. Define an ordering in A" x # such that (N, H,)z (N, H,)
if and only if H,<H,, where 4" is the neighborhood filter for . Now
{fy,m} is a net on & x#. Let {f,} be a universal subnet of {fy y}.
Then there exists a neighborhood N, of z such that, for each ze N,,
there exists p, such that (f,(z), f,(z)) € V whenever p=p,. Hence there
is H e # such that (fy, #(®), fx, a(®y,) € V, which is a contradiction.

We note that the property stated in Theorem 8 is the e-related con-
dition defined in [8] and was essentially given by E. W. Hobson [5, p.409]
as a necessary and sufficient condition for interchange of order in re-
peated limits.

Lemma 9. (Cf. [7, p. 241].) A family F of continuous functions on X
to Y s evenly continuous if and only if, for each net {(f,,x,)} in FxX
such that {x,} converges to x and {f,(x)} converges to y, it is true that {f,(x,)}
converges to y.

DEFINITION 3. A net {f,}in F is said to be uniformly Cauchy at x € X
if, for every index V of Y, there exist a neighborhood IV of x and an
ny such that (f,(y), fn(y)) € V whenever m,nzn, and y e N.

Prorositrion 10, If F is equicontinuous at x € X, then every universal
net in F which is Cauchy at x is uniformly Cauchy at x. The converse
also holds if F(x) is a totally bounded subset of Y.

Proor. Suppose F is equicontinuous at  and {f,} is a universal net
in F such that {f,(x)} is Cauchy in Y. Let V be an index of ¥ and W
a symmetric index of ¥ such that W3< V. Since F is equicontinuous
at z, there exists a neighborhood N of x such that (f(x), f(2)) € W for all
ze W and f e F. There exists n, such that (f,(x), f,(x)) € W for p,qzn,.
Hence, for every ze N and p,q =n,, we have
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(fp(Z),fq(Z)) = (fp(z)’ fp(x)) ° (fp(x)rfq(x)) ° (fq(x),fq(z)) € W3C V ’

and the first statement is proved.

Conversely, suppose F(z) is totally bounded and every universal
net in F which is Cauchy at « is uniformly Cauchy at z. If F is not
equicontinuous at x, therc exists an index V of Y such that, for each
neighborhood N of z, there are xy e N and fy e F such that (fy(xy),
fv(@)) € V. Let W be a symmetric index of ¥ such that W3< V, and let
{/n,} be a universal subnet of {fy}. Then { fn, (@)} is a universal net in
I'(z), hence a Cauchy net in F(x). There exist a neighborhood N, of
x and a p, such that, whenever ze N, and p,q2p,, we have ( I,z
I (2) )e W. Since {x } converges to z, there exists p, such that
wy, € N, for all p=p,. Choose P27y, P2- Then there exists a neighbor-
hood N, of x such that (pr 2), fN z))e W whenever ze N,. Let
N=N,nN,. There is p,>p, such that Ty, € N. Now,

(fN,,o(wNpo)s f.v,,o(x )
= (pro(mN,,o):fN,,(xN%)) ° (fzv,,(xzvp 0),f A',,(x)) ° (fA fA,, x)) e W3 V.

This contradicts our assumption that ¥ is not equicontinuous.

The following theorem characterizes even continuity in terms of nets
when Y is a uniform space.

TueoreM 11. If Y is a uniform space, then F is evenly continuous if
and only if, for every x € X, every universal net in F which converges at
x 1s uniformly Cauchy at x.

Proor. Suppose every universal net in F which converges at z is
uniformly Cauchy at x for each x € X, and suppose F' is not evenly
continuous. Then there exists a net {(f,,z,)} in F x X such that {z,}
converges to x and {f,(x)} converges to y, but {f,(x,)} does not converge
to y. There is an index ¥V of ¥ such that, for each n, there exists p2n
such that (f,(z,), y) ¢ V. Let W be a symmetric index of Y such that
W3<V, and let { fvp Tp,)} be a subnet of {(f,,x,)} which is universal
net. Then {f, }is a umversal net in F and {f, ()} converges to y. Thus
{fp } is uniformly Cauchy at x and there exist a neighborhood N, of
and a k such that ¢,r>k and z e N, imply that ( Fp(2); fp,(2)) € W and
(fp (z), y) € W. Then there exists a neighborhood N of x such that
(fpk(z , [oi{®)) € W whenever ze N,. Choose ¢, such that =z, € N=
N,nN, for each ¢=¢,. Now if, g=k.q,, then
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(fr(®np)> ¥)
= (qu(qu)’ fpk(qu)) o (fpk(qu)5 fpk(x)) o (fpk(x)s y) eWdcV )

which is a contradiction and the sufficiency is then proved.

For the necessity, let F be evenly continuous, and suppose {f,} is
a universal net in F which converges at x to y € Y. Let V be an index
of Y and W a symmetric index of Y such that W2< V. There exists
a neighborhood N of x and an index U of Y such that, whenever ze N
and (f(z), y) € U, we have (y, f(z)) € W. Since {f,(x)} converges to y,
there exists an n, such that (f,(z), y) € U for all n2n,; hence, for all
ze N and m,n zn,, we have (f,.(2), y) € W and (f,(2), y) € W. It follows
that (f,.(2), fn(2)) € W<V whenever ze N and m,n=n,. This com-
pletes the proof.

CoroLLARY 11.1. If F is evenly continuous and F(x) is a complete
subset of Y, then every universal net in F which s Cauchy at x is uniformly
Cauchy at z.

CoroLLARY 11.2. If every universal net in F which is Cauchy at x is
uniformly at x for each x € X, then F is evenly continuous.

As a consequence of Proposition 10 and Corollary 11.1, we have the
following Proposition, which is Theorem 7.23 of [7].

ProrosiTioN 12. If F is evenly continuous and F(x) is relatively compact,
then F 1s equicontinuous at x.
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