COMPLEMENTATION AND CONTINUITY IN SPACES OF ALMOST AUTOMORPHIC FUNCTIONS

WILLIAM A. VEECH

1. Introduction.

We prove two unrelated results:

Theorem 1. The space of almost periodic functions on the group of integers is uncomplemented in the space of almost automorphic functions.

Theorem 2. Let f be an almost automorphic function on a locally compact group G. If f is measurable, then f is continuous.

Recall that a complex-valued function on a group G is almost automorphic if every net $\alpha' = \{\alpha_{\lambda'}\}_{\lambda' \in A'}$ of group elements has a subnet $\alpha = \{\alpha_{\lambda}\}_{\lambda \in A}$ such that $T_{\alpha}f(t) = \lim_{\lambda} f(\alpha_{\lambda}t)$ exists for each $t \in G$, and also

(1)
$$T_{\alpha-1}T_{\alpha}f(t) = \lim_{\lambda} T_{\alpha}f(\alpha_{\lambda}^{-1}t) = f(t)$$

holds for each t. Almost periodic functions are almost automorphic, but the reverse inclusion is generally false [3]. The theory of almost automorphic functions has been developed in [4].

2. Proof of Theorem 1.

We will use a construction from [3]. Let G be the group of integers, and let $G_1 \supset G_2 \supset \ldots$ be a descending sequence of proper subgroups of G. Let $1 < M_1 < M_2 < \ldots$ be a sequence of generators for these groups $(M_k \mid M_{k+1}, \ k=1,2,\ldots)$ and choose integers a_1,a_2,\ldots in such a way that if $A_k = a_k + G_k$, then

- (i) $A_k \cap A_l = \emptyset$, $k \neq l$,
- (ii) $\bigcup_{k=1}^{\infty} A_k = G$.

Let m be the Banach space of bounded, complex-valued sequences $b=(b_1,b_2,\ldots)$. With each $b\in m$ we associate a function $f=\pi b$ on G by letting $f(x)=b_k$, $x\in A_k$. For each $b\in m$ πb is almost automorphic

Received May 25, 1968.

Research in part supported by NSF grant GP-5585.

on G [4]. If \mathscr{A}_0 is the space of almost automorphic functions on G with the supremum norm, then $\pi \colon m \to \mathscr{A}_0$ is an isometry into.

LEMMA. If $b \in m$, a necessary and sufficient condition for πb to be almost periodic is that whenever $\lim_{j\to\infty} \{a_{k_j} \pmod{M_l}\}$ exists for $l=1,2,\ldots$, then also $\lim_{j\to\infty} b_{k_i}$ exists.

PROOF. Let X be the space of infinite sequences of integers $x=(x_1,x_2,\ldots)$, where $0 \le x_l < M_l,\ l=1,2,\ldots$, and $x_{l+1} \equiv x_l \pmod{M_l}$. X is a compact abelian group if addition is defined coordinate-wise mod M_l . Let $\sigma\colon G\to X$ be the natural homomorphism which reduces $s\in G \mod M_l$ for each l. If $f=\pi b,\ b\in m$, define $g(\sigma s)=f(s),\ s\in G$. Evidently g is continuous on σG in the X-topology. Since f is constant on each set A_k , the condition of our lemma is necessary and sufficient for g to extend to be continuous on X. If g extends, then f is almost periodic. Conversely, since g is continuous on σG , if f is also almost periodic, g must extend to be continuous on X. For suppose $\alpha=\{\alpha_i\},\ \beta=\{\beta_j\}$ are such that $T_{\alpha}f,T_{\beta}f$ exist and

$$\lim_{i\to\infty} \sigma \alpha_i = \lim_{j\to\infty} \sigma \beta_j$$
.

By continuity on σG , $T_{\alpha-1}T_{\beta}f=f$. If f is almost periodic, then $T_{\beta}f$ is almost automorphic (even almost periodic) and so

$$T_{\alpha}f = \, T_{\alpha}T_{\alpha-1}T_{\beta}f = \, T_{\beta}f \; . \label{eq:Tauf}$$

This implies that g extends to be continuous, and our lemma is proved.

PROOF OF THEOREM 1. Let \mathscr{A} be the space of almost periodic functions on G, and let $\mathscr{A}_1 \subseteq \mathscr{A}$ be the subspace consisting of those f for which $g(\sigma s) = f(s)$ is relatively continuous. \mathscr{A}_1 is a closed, self-adjoint, translation invariant subalgebra of \mathscr{A} containing the constants, and any such subalgebra is known to be complemented in \mathscr{A} . (The maximal ideal space of \mathscr{A} is the Bohr compactification Y of G and that of \mathscr{A}_1 is Y/Y_1 , where Y_1 is a closed subgroup. If v is normalized Haar measure on Y_1 , then $F \to v * F$ may be regarded as a projection of C(Y) onto $C(Y/Y_1)$, and this projection induces a projection $P: \mathscr{A} \to \mathscr{A}_1$.)

Suppose $Q: \mathcal{A}_0 \to \mathcal{A}$ is a projection. We define $\mu: m \to \mathcal{A}_1$ by

$$\mu b = \pi \circ i \circ P \circ Q \circ \pi .$$

Here $i: \mathscr{A}_1 \to m$ is given by $(if)_k = f(a_k)$. If $f \in \mathscr{A}_1$, then $\pi \circ if \in \mathscr{A}_1$ by our lemma. If $b \in m$, then $P \circ Q \circ \pi b \in \mathscr{A}_1$, and therefore $\mu b \in \mathscr{A}_1$ for $b \in m$. Clearly $\pi \circ i \circ \mu b = \mu b$, $b \in m$. Also, if $f \in \mathscr{A}_1$, and if $\pi \circ i$ f = f,

then $\mu \circ i$ f = f. The range of μ is precisely the set of $f \in \mathcal{A}_1$ for which $\pi \circ i$ f = f.

We specialize G_k . Let $M_k = 2^k$, $k = 1, 2, \ldots$, and set $a_k = \frac{1}{3}(1 - (-2)^{k-1})$. If $a_k + G_k = A_k$, an easy induction verifies (i) and (ii). Also

$$a_{k+j} - a_k = (-2)^{k-1} a_{j+1} \equiv 0 \pmod{2^{k-1}}$$
.

Thus, $\lim_{k\to\infty} \sigma a_k$ exists in X. Now by our lemma $\pi b\in \mathscr{A}$ if and only if $\lim_{k\to\infty} b_k$ exists. Letting c be the space of convergent sequences we see that $i\circ\mu$ maps m into c. Since $i\circ\mu\circ i\circ\mu$ $c_1=c_1$, $c_1\in c$, it follows that $i\circ\mu$ is a projection of m onto c. This contradicts the classical result of Phillips [2] that c is uncomplemented in m. Theorem 1 is proved.

Remark. As would be expected Theorem 1 holds in greater generality, but we have chosen to present it on the integers where the constructions are more explicit.

3. Proof of Theorem 2.

A set $E \subseteq G$ is relatively dense if there exist elements $s_1, \ldots, s_p \in G$ with

$$\bigcup_{i=1}^{p} s_{i} E \, = \, G \, = \, \bigcup_{i=1}^{p} E \, s_{i} \, .$$

In a locally compact group a relatively dense set has positive outer (right or left) Haar measure.

Let f be almost automorphic on a group G. Given $\varepsilon > 0$ and a finite set $M \subseteq G$, there exists $\delta > 0$ and a finite set $N \subseteq G$ such that if

$$\max_{x,y\in N} |f(x\sigma_i y) - f(xy)| < \delta, \quad i=1,2,$$

then

$$\max_{x,y\in M} |f(x\sigma_1\sigma_2^{-1}y) - f(xy)| < \varepsilon$$
.

Also, for such δ, N

$$E(\delta, N) = \{ \sigma \in G \mid \max_{x,y \in N} |f(x\sigma y) - f(xy)| < \delta \}$$

is relatively dense. (See respectively Lemmas 2.1.2 and 2.1.1 of [4].) Now let f be measurable almost automorphic, and let G be locally compact. Given $x \in G$ and $\varepsilon > 0$, we set $M = \{x, e\}$, e = identity, and then find $E(\delta, N)$ for this M and ε . Being measurable and relatively dense, E has positive measure, and therefore EE^{-1} contains a neighborhood U of e. If $\sigma \in U$, we have $\sigma = \sigma_1 \sigma_2^{-1}$, $\sigma_i \in E$, i = 1, 2, and therefore $|f(x\sigma) - f(x)| < \varepsilon$. Thus f is continuous at x.

REMARK. For almost periodic functions Theorem 2 is a classical result of von Neumann. See also [1] for an "elementary" proof of the latter.

REMARK. It is easy to show, even on the line, that uniform continuity need not hold in Theorem 2.

Remark. In Theorem 2 we have used only that f is almost automorphic and that $E(\delta, N)$ has positive inner measure for all $\delta > 0$ and finite N.

REFERENCES

- H. Davis, An elementary proof that Haar measurable almost periodic functions are continuous, Pacific J. Math., 21 (1967), 241-248.
- 2. R. S. Phillips, On linear transformations, Trans. Amer. Math. Soc. 48 (1940), 516-541.
- W. A. Veech, Almost automorphic functions, Proc. Nat. Acad. Sci. U.S.A. 49 (1963), 462–464.
- W. A. Veech, Almost automorphic functions on groups, Amer. J. Math. 87 (1965), 719– 751.
- B. B. Wells, Uncomplemented subspace of continuous functions and weak compactness of measures, Thesis, University of California, Berkeley, 1967.

UNIVERSITY OF CALIFORNIA, BERKELEY, CALIF., U.S.A.