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COMPLEMENTATION AND CONTINUITY
IN SPACES OF ALMOST AUTOMORPHIC FUNCTIONS

WILLIAM A. VEECH

1. Introduction.
We prove two unrelated results:

THEOREM 1. The space of almost periodic functions on the group of
integers is uncomplemenied in the space of almost automorphic functions.

THEOREM 2. Let f be an almost automorphic function on a locally com-
pact group G. If f is measurable, then f is continuous.

Recall that a complex-valued function on a group @ is almost auto-
morphic if every net o'={x;};., of group elements has a subnet
o ={x;}2c4 such that 7T f(t)=lim,f(x,¢t) exists for each t € @, and also

(1) T LT, f() = lim, T, f(a3't) = f(2)

holds for each ¢. Almost periodic functions are almost automorphic,
but the reverse inclusion is generally false [3]. The theory of almost
automorphic functions has been developed in [4].

2. Proof of Theorem 1.
We will use a construction from [3]. Let G be the group of integers,

and let G,>G,> ... be a descending sequence of proper subgroups of G.
Let 1<M,<M,<... be a sequence of generators for these groups
(M, | My.q, k=1,2,...) and choose integers a,,a,,... in such a way

that if 4,=a;,+ G, then
(i) ApnAd,=0, k+l,
() Up,4,=6.

Let m be the Banach space of bounded, complex-valued sequences
b=(by,b,,...). With each b € m we associate a function f=nb on G by
letting f(x)=b;, x € A,. For each bem mb is almost automorphic
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on G [4]. If @/, is the space of almost automorphic functions on G with
the supremum norm, then z: m - &7, is an isometry into.

LemMA. If b € m, a necessary and sufficient condition for nb to be almost
periodic 1s that whenever lim;_, {a’“i (mod M)} exists for 1=1,2,..., then
also lim;_, by, exists.

Proor. Let X be the space of infinite sequences of integers z=
(%1, %y,...), where 0Zz,;<M,, I=1,2,..., and 2, =z, (mod M}). X is
a compact abelian group if addition is defined coordinate-wise mod M.
Let 0: G — X be the natural homomorphism which reduces s € G mod M,
for each 1. If f=nb, b €m, define g(os)=f(s), s € G. Evidently g is
continuous on ¢ in the X-topology. Since f is constant on each set A4,
the condition of our lemma is necessary and sufficient for ¢ to extend
to be continuous on X. If g extends, then f is almost periodic. Con-
versely, since g is continuous on o@, if f is also almost periodic, g must
extend to be continuous on X. For suppose & ={x;}, f={f;} are such
that T'.f,T,f exist and

lim;_, ox;=lim;_,  op; .

By continuity on o@, T, ;Tef=f. If f is almost periodic, then T';zf is
almost automorphic (even almost periodic) and so

T(xf = TocTa—lT,Bf = Tﬂf‘

This implies that g extends to be continuous, and our lemma is proved.

Proor or THEOREM 1. Let o7 be the space of almost periodic functions
on G, and let o/, <./ be the subspace consisting of those f for which
g(as) =f(s) is relatively continuous. 27, is a closed, self-adjoint, transla-
tion invariant subalgebra of &/ containing the constants, and any such
subalgebra is known to be complemented in /. (The maximal ideal
space of 7 is the Bohr compactification ¥ of @ and that of o/, is Y/Y,
where Y, is a closed subgroup. If » is normalized Haar measure on Y,
then F — v+ F may be regarded as a projection of C(Y) onto C(Y/Y,),
and this projection induces a projection P: & — o7,.)

Suppose @: o/, — & is a projection. We define u: m — &7, by

ub = motoPoQom.

Here i: &/; - m is given by (if),=f(a,). 1f fe o/,, then noif € &, by
our lemma. If b em, then PoQonbe o/, and therefore ub € &, for
bem. Clearly motoub=ub,bem. Also, if feol,, and if wo¢ f=f,



COMPLEMENTATION AND CONTINUITY ... 111

then got¢ f=f. The range of u is precisely the set of f e o/, for which
mot f=f.

We specialize Gy,. Let M, =2% k=1,2,..., and set a;=}(1—(—2)*1).
If a,+ G, =A4,, an easy induction verifies (i) and (ii). Also

Apyj— 0 = (—2)1a;,, = 0 (mod2k-1) .

Thus, lim,_, . oa; exists in X. Now by our lemma =b € &7 if and only
if lim,_, b, exists. Letting ¢ be the space of convergent sequences we
see that 70 u maps m into ¢. Since topoiopu ¢;=cq, ¢, € ¢, it follows that
tou is a projection of m onto c. This contradicts the classical result of
Phillips [2] that ¢ is uncomplemented in m. Theorem 1 is proved.

REMAREK. As would be expected Theorem 1 holds in greater generality,
but we have chosen to present it on the integers where the constructions
are more explicit.

3. Proof of Theorem 2.

A set Ec@ is relatively dense if there exist elements s,...,s, €@
with

P P
Usig=0=U Es,.
=1 =1

In a locally compact group a relatively dense set has positive outer
(right or left) Haar measure.

Let f be almost automorphic on a group @. Given &> 0 and a finite
set M <@, there exists §>0 and a finite set N <@ such that if

maxXg ,en |f(x0'z?/) _f(xy)l < 9, 1=1,2,
then
ma’Xz,yeM lf(x6162_1y) _f(x@/)l <e.

Also, for such 6, N
E((S,N) = {G eqd I maxy, yen |f(xcry) _f(xy)l < 6}

is relatively dense. (See respectively Lemmas 2.1.2 and 2.1.1 of [4].)

Now let f be measurable almost automorphic, and let G be locally
compact. Given xz € @ and ¢ >0, we set M = {z,e}, e=identity, and then
find E(6,N) for this M and e. Being measurable and relatively dense,
E has positive measure, and therefore £ E-! contains a neighborhood
U of e. If e U, we have o=0,0,"1, 0;€ B, i=1,2, and therefore
|f(xo)—f(x)] <e. Thus f is continuous at z.
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REeMARK. For almost periodic functions Theorem 2 is a classical result
of von Neumann. See also [1] for an “elementary” proof of the latter.

REeMARK. It is easy to show, even on the line, that uniform continuity
need not hold in Theorem 2.

REMARK. In Theorem 2 we have used only that f is almost auto-
morphic and that E(d,N) has positive inner measure for all §>0 and
finite N.
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