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A NOTE ON P.P. RINGS

M. SATYANARAYANA

In this note we present some results on divisible p.p. rings. A ring
with identity is called (right) principal projective (p.p.) iff every prin-
cipal (right) ideal is projective. In [3] a divisible ring is defined as a
ring with identity in which every non-zero divisor is an unit. Von
Neumann regular rings are right p.p. and divisible rings. It is natural
to ask whether among right p.p. rings regular rings are characterized
by divisible property. It is not so, which can be noted in Small’s example
[Remark 2]. However an annihilator condition stronger than divisible
property characterizes regular rings among right p.p. rings [Theorem 1].
Various authors, namely, Endo, Harada and Small, considered the prob-
lem when a right p.p. ring is a left p.p. ring. In this connection, Endo [1]
defines that a ring is normal iff its idempotents are in the center. Normal
rings are natural generalizations of commutative rings and integral
domains. Endo proves that the right p.p. rings are left p.p. and hence
in normal case we do not distinguish right or left p.p. condition. In
this note we find some equivalent conditions to this normal property.
This yields a characterization of strongly regular rings (regular rings
without nilpotents) and a description of finite direct sum of division
rings.

Norarron. If S is a subset of a ring R, then ST and S™ denote the
right annihilator of S and the left annihilator of S” respectively.

It is well known that if a ring R with identity is a right p.p. ring,
then 2 =e¢R for every x in R, where e2=e.

THEOREM 1. Let R be a ring with identity. Then the following are
equivalent :

(i) R s a regular ring.
(i) R is a right p.p. ring such that (Rx)" = Rx for every x in R.
(iii) R is a left p.p. ring such that (xR)F' =xR for every x in R.
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Proor. It suffices to prove (ii) = (i) since (iii) is a symmetric con-
dition to (ii).
ae(Rx)f =>a=0 if 2"=0.
So
2" =0 = (Re)' =0 = Rr = (Re)" = 0' = R.

Now if Rx+R, then 27+ 0 and z"=eR, where e2=¢, since R is a
right p.p. ring. Also ze=0 which implies x € R(1—¢). But (Rz)’'ca’=eR.
Hence

(eR)! < (Rx)™ = Rz,

that is, R(1—e)< Rz, which implies Rx= R(1—e). Thus R becomes a
regular ring.

REMARK 2. It can be seen from the first two lines in the above proof
that the annihilator condition on R implies that R is divisible. For
showing right p.p. divisible rings need not be regular, consider Small’s
example [5; 25]. In this example an element

(v 7)
0 f
is regular (non-zero divisor) iff @ is a unit and f+0, and if regular it

has an inverse
(a' 1—-a'bf ’)
0 I

where ff'=1 and aa’=1. So the ring is divisible and it is also right p.p.
since it is shown to be right hereditary. It is not a regular ring since
it has nilpotent ideals, namely

(0 b
0 0) :
REMARK 3. In Theorem 1 the p.p. condition can’t be dropped. For,

consider the ring of integers modulo 4. This ring satisfies annihilator
condition and it is a local ring.

PropositioN 4. Let R be a right p.p. ring. Then the following are
equivalent:

(i) R is a normal ring.

(ii) R has no proper nilpotents.

(iii) " =2 for every x ¢ R.

ProoF. (i) = (ii): Let 2»=0 and 2a7140. Then xF#+0. Also
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02" % R% xR -0 is an exact sequence of right R-modules, where
¢ is the inclusion mapping and j is defined by r —ar for every
r € R. Since xR is R-projective, x” is a direct summand. Thus 27 =¢R,
where e?=e. Now ze=0 and z"-!ceR. Hence z"l=ex"1=2""le=0,
since R is normal. Therefore 2"-1=0, a contradiction.

(ii) = (iii): If 2"=0, then 2'=0 by lemma 3 of Endo [1]. Hence
al=x!=0. If 2"+0, a"=eR where e2=e, since R is a right p.p. ring.
Since (ii) implies that idempotents in R are in the center [2; 10],
xl=Re=eR=2x".

(iii) => (i): Let e be a non-zero idempotent. Then e’ =e!=R(1—e)=
(1—e)R. If x € R, then

(1—e)x = [(1—e)x](1—e) and z(l—e) = (1—e)[x(l—e)].
So (1 —e)x=x(1 —e¢) which implies ex = xe.
By virtue of Proposition 4 we have

COROLLARY 5. 4 ring R with identity is strongly regular iff R is a normal
right p.p. ring with (Rx)™ = Rx for every x € R.

Now we shall give a characterization of normal p.p. rings with ascend-
ing chain condition.

ProposiTiON 6. Let R be a normal right Noetherian right p.p. ring.
Then R is a finite direct sum of integral domains.

Proor. If R is indecomposable, then R is an integral domain. Other-
wise if R is decomposable, R=eR@ (1 —e¢)R where e2=e. Since e is in
the center, eR and (1 —e)R are p.p. rings with identities. By Noetherian
condition, we can get only a finite number of summands and hence
each direct summand is indecomposable and thus is an integral domain.

THEOREM 7. Let R be a ring with identity. Then the following are
equivalent :
(1) R is a finite direct sum of division rings.
(i) R is a normal right Noetherian divisible p.p. ring.
(iii) R is @ normal divisible p.p. ring in which every maximal right ideal
s principal.

Proor. It suffices to prove that (ii) and (iii) separately = (i). First
we prove (ii) and (iii) separately imply that R is a semisimple ring
(right Artinian ring with zero Jacobson radical).

Assume (ii). Since R is a normal p.p. ring, R has no nilpotents by
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proposition 4. Then the right Noetherian condition makes the right
quotient ring of R, which is R itself, semi-simple.

Assume (iii). Let aR be a proper maximal right ideal of R. Since
@ is a non unit in the divisible ring R, a"=0 or a’+ 0. But a’=0<=a’=0
since R is a normal right p.p. ring [1, Lemma 3]. So a”=¢R where ¢2=¢
and aR< (1—e)R. Since (1—e)R+R, aR=(1—¢)R. Thus every maximal
ideal is a direct summand. This implies that R is semisimple by a
theorem in [4].

Now R is a semi-simple ring in both the cases (ii) and (iii) and so
R is a finite direct sum of simple rings, each being isomorphic to a
matrix ring over a division ring. These direct summands reduce to
division rings since by hypothesis B has no nilpotents and hence the
direct summands have no nilpotents.

REMARK 8. The hypotheses in (ii) and (iii) in the above theorem are
minimum possible as can be seen in the counter examples of the ring of
integers and the ring K in Remark 3.
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