NOTE ON A PAPER BY STETKÆR-HANSEN
CONCERNING ESSENTIAL SELFADJOINTNESS
OF SCHROEDINGER OPERATORS

JOHANN WALTER

Introduction.

By G we denote an open set in \mathbb{R}^n, by $(u, v) = \int_G u \overline{v} \, dx$ the scalar product defined in the Hilbert space $L^2(G)$. By $H_{2, \text{loc}}(G)$ we denote the space of all functions which are defined in G and possess locally square integrable derivatives up to the second order, and $Q_{x, \text{loc}}(G)$ is the set of all functions satisfying in G a local Stummel condition. (A description of this condition can be found, for example, in [5] and [3]. Atomic Coulomb potentials are included in $Q_{x, \text{loc}}$.)

Let

$$a_{jk}(x) \in C^2(G), \quad b_j(x) \in C^1(G), \quad q(x) \in Q_{x, \text{loc}}(G)$$

be realvalued functions and (a_{ik}) a positive definite symmetric matrix. If we denote by A the symmetric operator defined in $C^0_0(G)$ by the differential expression

$$Du = \sum_{i, k=1}^n D_j a_{jk} D_k u + qu, \quad D_j = i \frac{\partial}{\partial x_j} + b_j,$$

it is known (cf. [2], [3]) that the adjoint operator A^* has the domain of definition

$$(1) \quad \mathcal{D}(A^*) = \{ u \mid u \in L^2(G) \cap H_{2, \text{loc}}(G), Du \in L^2(G) \}.$$

Now choose nonnegative lipschitzean functions $\varrho(x)$ and $\sigma(x)$ with the following properties in G:

$$(2) \quad \sum a_{jk} \varrho_{x_j} \varrho_{x_k} \leq 1 \quad \text{a.e.,}$$

$$(3) \quad \sum a_{jk} \sigma_{x_j} \sigma_{x_k} \leq e^{2\sigma} \quad \text{a.e.,}$$

$$(4) \quad \lim_{x \to \partial G} \{ \varrho(x) + \sigma(x) \} = \infty. \quad (*)$$

Received May 10, 1968.

*) The condition (2) was first used by Jörgens [3], the conditions (3) and (4) are due to the author [7] resp. [8].

If (2) and (3) hold with $\varphi^2(\varrho)$ and $\varphi^2(\sigma)$ respectively instead of 1 and $e^{2\sigma}$ respectively at the right side and if
Theorem. If \(\delta \) is a positive number and

\[
(Au, u) \geq (1 + \delta)(e^{2\sigma}u, u) \quad \text{for all } u \in C_0^2(G),
\]

then \(A \) in \(C_0^2(G) \) is essentially selfadjoint.

Clearly \(\sigma(x) \) has to be chosen as small as possible to make condition (5) less restrictive.

The proof of our theorem (which in the case \(\sigma \equiv 0 \) is due to Stetkær-Hansen [4]) is a suitable generalization of a proof of Wienholtz [9]. In the case \(\sigma \equiv 0 \) Triebel [6] deduces a special result in a similar way.

Proof of the theorem.

Since \(A \) is bounded from below by 1, it is sufficient to show that \(h \in L^2(G) \) and \(h(Au) = 0 \) for all \(u \in C_0^2(G) \) imply \(h = \Theta \) (\(\Theta \) denoting the zero element of \(L^2(G) \)); cf. [1, p. 159]. Making essential use of (1), we deduce from (5) in the same way as in [9, p. 60] and [4] that

\[
\int_G |h|^2(\sum a_{jk}
\gamma_j \gamma_k) \, dx \geq (1 + \delta) \int_G |h|^2 e^{2\sigma} \, dx
\]

holds for all lipschitzian functions \(\gamma(x) \) with a compact support in \(G \).

Let \(f(t), g(t) \) be functions defined in \([0, \infty)\) with piecewise continuous first derivatives and compact support. Following an idea of Jörgens [3], we put \(\gamma(x) = f(\sigma(x))g(\sigma(x)) \). Because of (4), \(\gamma(x) \) has compact support in \(G \). We insert this \(\gamma \) into (6) and arrive at the inequality

\[
(1 + \epsilon) \int_G |h|^2 e^{2\sigma} f'(t)^2 \, dx + (1 + 1/\epsilon) \int_G |h|^2 (f')^2 g^2 \, dx \geq \frac{1}{2} \epsilon \int_G |h|^2 f^2 g^2 \, dx + (1 + \frac{1}{2} \epsilon) \int_G |h|^2 e^{2\sigma} f^2 g^2 \, dx
\]

(for any \(\epsilon > 0 \)) by using (2), (3) and some easy estimates.

We now choose

\[
f(t) = \begin{cases}
1 & \text{for } 0 \leq t \leq R, \\
\text{linear for } R \leq t \leq R + 1, \\
0 & \text{for } R + 1 \leq t,
\end{cases} \quad g(t) = \begin{cases}
e^{-t} - e^{-1} e^{-t} & \text{for } 0 \leq t \leq \alpha, \\
0 & \text{for } \alpha \leq t.
\end{cases}
\]

It follows that

\[
\int_0^\infty dt/\varphi(t) = \infty \quad \text{and} \quad \int_0^\infty dt/\psi(t) < \infty,
\]

the new functions

\[
r(x) = \int_0^x dt/\varphi(t) \quad \text{and} \quad s(x) = \text{Max} \left\{ 0; -\log \int_0^\infty dt/\varphi(t) \right\}
\]

satisfy (2) and (3) respectively; cf. [4], [7].
\(f' \equiv 0 \) for \(t \notin [R, R+1] \), \(|f'| \equiv 1 \) for \(t \in (R, R+1) \),

\[f \leq 1, \quad g \leq e^{-t}, \quad |g'| \leq (1 + 1/\alpha)e^{-t}, \]

and \(g(t) \) converges uniformly to \(e^{-t} \) as \(\alpha \to \infty \). Inserting this into (7), taking into consideration that \(h \in L^2(G) \) and letting \(\alpha \to \infty \), we finally get the inequality

\[
(1 + \varepsilon) \int_G |h|^2 f^2 \, dx + (1 + 1/\varepsilon) \int_{R \leq \varepsilon \leq R+1} |h|^2 e^{-2\varepsilon} \, dx \\
\leq \frac{1}{2} \delta \int_{\varepsilon \leq R} |h|^2 e^{-2\varepsilon} \, dx + (1 + \frac{1}{2}\delta) \int_G |h|^2 f^2 \, dx.
\]

For \(\varepsilon < \frac{1}{2}\delta \), \(h \neq \Theta \) and \(R \) sufficiently large this is a contradiction.

REFERENCES

INSTITUTE OF MATHEMATICS

TECHNICAL UNIVERSITY, 51 AACHEN

GERMANY