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DUALITY OF ODE-DETERMINED NORMS

JARNO TALPONEN

Abstract
Recently the author initiated a novel approach to varying exponent Lebesgue space Lp( ·) norms.
In this approach the norm is defined by means of weak solutions to suitable first order ordinary
differential equations (ODE). The resulting norm is equivalent with constant 2 to a corresponding
Nakano norm but the norms do not coincide in general and thus their isometric properties are
different. In this paper the duality of these ODE-determined Lp( ·) spaces is investigated. It turns
out that the duality of the classical Lp spaces generalizes nicely to this class of spaces. Here the
duality pairing and Hölder’s inequality work in the isometric sense which is a notable feature of
these spaces. The uniform convexity and smoothness of these spaces are characterized under the
anticipated conditions. A kind of universal space construction is also given for these spaces.

1. Introduction

The author recently introduced a means to construct and analyze varying expo-
nent Lp( ·)[0, 1] norms by applying Carathéodory’s weak solutions to suitable
ordinary differential equations (ODE). Here we investigate the duality of such
Banach function spaces. This leads to looking at the geometry and duality
of Banach spaces in terms of the properties of the corresponding differential
equations.

The classical Orlicz norms were defined in the 1930’s, and since then there
have been various generalizations of these norms in several directions. Notable
examples of norms and spaces carry names such as Amemiya, Besov, Lizor-
kin, Lorentz, Luxemburg, Musielak, Nakano, Orlicz, Triebel, Zygmund, see
e.g. [7], [10], [12]. These norms have recently been applied to other areas of
mathematics as well as to some real-world applications, see e.g. [14]. Roughly
speaking, these norms can be viewed as belonging to a family of derivatives
of the Minkowski functional. This kind of approach leads to several vary-
ing exponent Lp( ·) type constructions, e.g. for sequence spaces, Lebesgue
spaces, Hardy spaces and Sobolev spaces. There is a vast literature on these
topics, see [5], [6], [11] and [13] for samples and further references. There
are also other ways of looking at the varying exponent Lp spaces, such as the
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Marcinkiewicz space, whose approach differs from the one mentioned above,
see [9].

Let us recall that the general Nakano or Musielak-Orlicz type norms are
defined as follows:

‖f ‖ = inf

{
λ > 0:

∫
�

φ

( |f (t)|
λ

, t

)
dm(t) ≤ 1

}
.

Here φ is a positive function satisfying suitable structural conditions. For in-
stance, φ(s, t) = sp(t), or ψ(s, t) = sp(t)

p(t)
, 1 ≤ p( ·) < ∞, produces a norm

that can be seen as a varying exponent Lp norm. In the latter case we use the
name Nakano norm (cf. [4], [8]), which is of particular interest in this paper.

The construction of the Lp( ·)[0, 1] norms studied in this paper is funda-
mentally different from the above Minkowski functional derivatives and was
introduced in [18] as a ‘continuous version’ of certain sequence spaces. These
sequence spaces can be described as varying exponent �p spaces, or �p( ·)
spaces, which first appear in [15] and were later studied in [16], cf. [1]. The
construction of these spaces is rather natural and local in its nature.

The accumulation of the norm is captured by a suitable ODE in such a
way that its weak solution, ϕf : [0, 1] → [0,∞), shall represent the norm as
follows:

ϕf (t) = ‖1[0,t]f ‖,
so that in particular ϕf (0) = 0 and ϕf (1) = ‖f ‖. This absolutely continuous
function obeys the following ODE:

ϕf (0) = 0, ϕ′
f (t) = |f (t)|p(t)

p(t)
ϕ(t)1−p(t) for a.e. t ∈ [0, 1].

In the constant p case the above ODE is a separable one, and solving it yields

(ϕf (t))
p =

∫ t

0
|f (s)|p ds

which produces the classical definition of the Lp norm, ϕf (1) = ‖f ‖p. The
ODE-determined Lp( ·) class is

Lp( ·) = {
f ∈ L0 : ϕf exists and ϕf (1) < ∞}

as a set where we identify functions which coincide almost everywhere. For
an unbounded exponent p( ·) it may happen that Lp( ·) is not a linear space,
but if it is, then the solutions define a norm as follows:

‖f ‖Lp( ·) := ϕf (1).
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This is equivalent with constant 2 to the particular Nakano norm (seeψ above).
Thus, we continue the analysis of the Lp( ·) spaces in the sense of [18].

The clean findings obtained here suggest that the definition of these ODE-
determined spaces is rather natural. For instance, it turns out that the duality and
the superreflexivity of these function spaces behave exactly in the anticipated
way. Here the norm satisfies Hölder’s inequality properly, i.e. without any
additional constant, and the spacesLp( ·) andLp

∗( ·) become isometrically dual
to each other via the usual pairing in case 1 < ess inf p( ·) ≤ ess supp( ·) <
∞.

1.1. Preliminaries and auxiliary results

We will usually consider the unit interval [0, 1] endowed with the Lebesgue
measurem. Here for almost every (a.e.) refers tom-a.e., unless otherwise spe-
cified. Denote by L0 the space of Lebesgue-to-Borel measurable functions on
the unit interval. We denote by �0(N) the vector space of sequences of real
numbers with pointwise operations. The monographs [2], [3] and [6] provide
suitable general background information. The paper [18] provides the neces-
sary prerequisite background information, including definitions, basic results
and the heuristic motivation of the construction, cf. [17].

We will study Carathéodory’s weak formulation for ODEs, that is, in the
sense of Picard type integral formulation, where solutions are required to be
only absolutely continuous. This means that, given an ODE

ϕ(0) = x0, ϕ′(t) = �(ϕ(t), t), for a.e. t ∈ [0, 1],

we call ϕ a weak solution in the sense of Carathéodory if ϕ is absolutely
continuous, t 	→ �(ϕ(t), t) is measurable and

ϕ(T ) = x0 +
∫ T

0
�(ϕ(t), t) dt

holds for all T ∈ [0, 1], where the integral is the Lebesgue integral. In what
follows, we will refer to Carathéodory’s solutions simply as solutions.

Whenever we make a statement about a derivative we implicitly state that
it exists. We will write F ≤ G, involving elements of L0, if F(t) ≤ G(t) for
a.e. t ∈ [0, 1]. We denote the characteristic function or indicator function by
1A defined by 1A(x) = 1 if x ∈ A and 1A(x) = 0 otherwise.

We will frequently calculate terms of the form (ap+bp)1/p where a, b ≥ 0
and 1 ≤ p < ∞. We will adopt from [16] the following shorthand notation
for this:

a �p b = (ap + bp)1/p.



64 J. TALPONEN

This defines a commutative semi-group on R+, in particular, the associativity

a �p (b �p c) = (a �p b)�p c,

is useful. In taking a sequence of �p or ⊕p operations we always perform the
operations from left to right, unless there are parentheses indicating another
order. We will also use the following operation:

p

1≤i≤n
xi = x1 �p x2 �p . . .�p xn =

( n∑
i=1

x
p

i

)1/p

, x1, . . . , xn ∈ R+.

The space �p( ·) ⊂ �0, p:N → [1,∞), consists of those elements (xn) such
that the following limit of a non-decreasing sequence exists and is finite:

lim
n→∞(. . . (((|x1|�p(1)|x2|)�p(2)|x3|)�p(3)|x4|)�p(4). . .�p(n−1)|xn|)�p(n)|xn+1|

and the above limit becomes the norm of the space, see [16].
The author is grateful to Professors Pilar Cembranos and José Mendoza for

providing an argument of the following fact in a personal communication.

Proposition 1.1. Let 1 ≤ p ≤ r < ∞ and Ak = (
a
(k)
ij

) ∈ �r(�p), k ∈ N,

with non-negative entries and a(k)ij a
(�)
ij = 0 for all i, j, k, � ∈ N, k = �. Then∥∥∥∥∑

k∈N
Ak

∥∥∥∥
�r (�p)

≤
p

k∈N
‖Ak‖�r (�p).

Proof. With the above assumptions we have∥∥∥∥ ∞∑
k=1

Ak

∥∥∥∥p
�r (�p)

=
( ∞∑
i=1

( ∞∑
j=1

∞∑
k=1

|a(k)ij |p
)r/p)p/r

=
∥∥∥∥ ∞∑
k=1

( ∞∑
j=1

|a(k)ij |p
)∞

i=1

∥∥∥∥
�r/p

≤
∞∑
k=1

∥∥∥∥( ∞∑
j=1

|a(k)ij |p
)∞

i=1

∥∥∥∥
�r/p

=
∞∑
k=1

( ∞∑
i=1

( ∞∑
j=1

|a(k)ij |p
)r/p)p/r

=
∞∑
k=1

∥∥Ak∥∥p�r (�p).
This in turn implies the following fact by decomposing the matrix to

columns.
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Proposition 1.2. If 1 ≤ p ≤ r < ∞ and (xij ) is an infinite matrix of
non-negative numbers, then

r

j∈N

p

i∈N
xij ≤

p

i∈N

r

j∈N
xij .

Equivalently, taking the transpose T : (xij ) 	→ (xji) defines a norm-1 operator
�p(�r) → �r(�p).

The inequality in Proposition 1.2 can be seen as a ‘distributive version’ of
the following fact appearing in [16]:

a �r (b �p c) ≤ (a �r b)�p c, 1 ≤ p ≤ r ≤ ∞, a, b, c ∈ R+.

In the context of function spaces an exponent is a function p ∈ L0[0, 1]
with p ≥ 1.

Consider the following identity

ϕ(t0 +	) = (
ϕ(t0)

p(t0) +	|f (t0)|p(t0)
)1/p(t0)

= ϕ(t0)�p(t0) 	
1/p(t0)|f (t0)|

(1.1)

analogous to the �p( ·) construction. By taking the right derivative of (1.1) we
find a natural candidate for the norm-determining differential equation:

∂+

∂	
ϕ(t0 +	)

∣∣∣∣
	=0

= |f (t0)|p(t0)
p(t0)

ϕ(t0)
1−p(t0).

Here we set 	 = 0, because we are interested in (infinitesimal) increments
around t0. So, the above equation is right if f and p are constant on the interval
[t0, t0 +	], but the equation does not concern the values of f , ϕ and p beyond
t0.

In formulating the differential equation we do not require f or p to be con-
tinuous anywhere, but motivated by Lusin’s theorem and related considerations
we will use the above formula in any case and aim to define ϕ by

ϕ(0) = 0, ϕ′(t) = |f (t)|p(t)
p(t)

ϕ(t)1−p(t) for a.e. t ∈ [0, 1].

This formulation has the drawback that 01−p(t) is not defined. Also, it has a
trivial solution ϕ ≡ 0, regardless of the values of f if we use the convention
00 = 0 and p ≡ 1. The behavior of the solutions is difficult to deal with in the
case where ϕ(t) is small and p(t) is large.
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To fix these issues, we will consider stabilized solutions to the above initial
value problem. Namely, we will use initial values ϕ(0) = x0 > 0, and to cor-
rect the error incurred we let x0 ↘ 0. The unique solutions ϕx0 decreasingly
converge pointwise to ϕ which again satisfies the same ODE (where applic-
able). So, this procedure yields a unique maximal solution ϕ which we will
formulate, by slight abuse of notation, as

ϕ(0) = 0+, ϕ′(t) = |f (t)|p(t)
p(t)

ϕ(t)1−p(t) for a.e. t ∈ [0, 1]. (1.2)

There is more to the above procedure than merely picking a maximal solution;
it turns out that in many situations it is convenient to look at positive-initial-
value solutions first.

The above ODE is a separable one for a constant p( ·) ≡ p, 1 ≤ p < ∞,
and solving it yields

(ϕf (1))
p =

∫ 1

0
|f (t)|p dt,

compatible with the classical definition of the Lp norm. If p( ·) is locally
bounded and |f (t)|p(t) is locally integrable, then Picard iteration performed
locally yields a unique solution for each initial value ϕ(0) = a > 0.

We define the varying exponent space Lp( ·) ⊂ L0 as the space of those
functions f ∈ L0 such that ϕf (1) < ∞ where ϕf exists as an absolutely
continuous solution to (1.2) and the norm of f will be ϕf (1), see [18]. As
usual, we use pointwise linear operations defined almost everywhere and we
identify functions which coincide almost everywhere. As observed in [18], a
class Lp( ·) need not always be a linear space. However, if ess supp < ∞, for
instance, then Lp( ·) is a Banach space. In such a case the norm is equivalent to
the Nakano norm appearing in the introduction, although these norms do not
coincide in general.

The issues with the linearity can be circumvented by extending the class.
We consider functions f ∈ L0 and define

N(f ) := sup
n∈N

∥∥1p( ·)≤n f
∥∥
Lp( ·) .

The extended function space L̃p( ·) is the class of all functions f withN(f ) <
∞, and then N becomes a norm for this space and L̃p( ·) is in fact a Banach
space. Let us take a subclass Lp( ·)0 ⊂ Lp( ·) defined as a closed subspace

L
p( ·)
0 := {

1p( ·)≤n f : f ∈ Lp( ·), n ∈ N} ⊂ L̃p( ·).
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Then Lp( ·)0 becomes a Banach space with the ODE-determined norm. The
following fact, which can be obtained easily from the essentially bounded
exponent case (see the results in [18]), gathers many cases where Lp( ·) itself
is in fact linear.

Theorem 1.3. Letp ∈ L0[0, 1],p( ·) ≥ 1. Assume that there is a family� of
mutually disjoint open intervals I ⊂ (0, 1) such that the following conditions
hold:

(1) for each I ∈ � the exponent p( ·) is essentially bounded on I ;

(2) m
(⋃

�
) = 1,

(3) for each �0 ⊂ � with s = sup
⋃
�0 < 1, or s = 0, there is I ∈ � such

that inf I = s. That is, � is ‘well-ordered’.

Then Lp( ·) = L̃p( ·) and is in particular a Banach space.

Proof. It is clear that Lp( ·) ⊂ L̃p( ·). Therefore we are required to verify
that for each f ∈ L̃p( ·) there is a properly defined solution ϕf such that

ϕf (t) = ∥∥1[0,t]f
∥∥
L̃p( ·) .

Clearly the above solution is defined in the first interval I0 ∈ �, since the
exponent is essentially bounded there (see [18]). Suppose that ϕf has been
properly defined on [0, s), 0 < s ≤ 1. If s = 1 then there is nothing to prove.
In case s < 1 there is according to the assumptions on � an interval I ∈ �

such that inf I ≤ s < sup I . Then, again by virtue of the essentially bounded
exponent on I , we may further extend the solution to [0, sup I ]. Inductively, it
follows that ϕf can be properly defined on the whole unit interval.

Note that there is a more direct way to obtain Hölder’s inequality than the
argument provided in [18]. Namely, let p( ·) > 1 be any measurable exponent
and define the conjugate exponent p∗ by (1/p(t)) + (1/p∗(t)) = 1, let f ∈
Lp( ·) and g ∈ Lp∗( ·). Consider any point t0 ∈ (0, 1) such that

∫ t0
0 |fg| ds > 0,

thus ϕf (t0), ϕg(t0) > 0. Then, using homogeneity, we may assume without
loss of generality that ϕf (t0) = ϕg(t0) = 1 above. It follows by Young’s
inequality and the definition and normalizations of the solutions that

d

dt

∫ t

0
|fg| ds

∣∣∣∣
t=t0

= |f (t0)g(t0)| ≤ |f (t0)|p(t0)
p(t0)

+ |g(t0)|p∗(t0)

p∗(t0)

= ϕ′
f (t0)+ ϕ′

g(t0) = (ϕf ϕg)
′(t0).

Since this holds for a.e. t0 with
∫ t0

0 |fg| ds > 0, this proves Hölder’s inequality.
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2. Duality

Let p: [0, 1] → (1,∞) be a measurable function. Let Xn ⊂ Lp( ·), n ∈ N,
be the images of the contractive projections Pn:Lp( ·) → Xn, (Pnf )(t) =
11+1/n≤p(t)≤n(t)f (t). Then in fact

L
p( ·)
0 =

⋃
n

Xn ⊂ Lp( ·).

This is seen as follows: we claim that for each f ∈ X we have

‖f − Pnf ‖ + ‖Pnf ‖ → ‖f ‖, n → ∞.

For fixed initial value a > 0 and ϕf−Pnf (0) = ϕPnf (0) = ϕf (0) = a the
analogous statement follows easily, since ϕ1−p(t) → 1 as p(t) ↘ 1. By the
absolute continuity of the solutions we obtain thatϕPnf (1) → ϕf (1) asn → ∞
for any given initial value a > 0. Thus ϕf−Pnf,a(1) → a as n → ∞ for any
initial value a > 0. By a diagonal argument we find a sequence (mn)n such
that ϕf−Pmnf,1/n(1) → 0 as n → ∞. Since the solutions are non-decreasing
with respect to their initial values, we obtain that ‖f −Pnf ‖ → 0 as n → ∞.

Let us denote by J the ‘duality map’ J :Lp( ·) → L0, p( ·) > 1,

J (x)[t] = sign(x(t)) |x(t)|p(t)/p∗(t), p, p∗ ∈ L0,
1

p(t)
+ 1

p∗(t)
= 1.

Theorem 2.1. If 1 < ess inf t p(t) ≤ ess supt p(t) < ∞ then for each
F ∈ (Lp( ·))∗ there is f ∈ Lp∗( ·) such that

〈F, x〉 =
∫
x(t)f (t) dm(t), for all x ∈ Lp( ·),

and the above duality induces an isometric isomorphism
(
Lp( ·)

)∗ → Lp
∗( ·).

Moreover,
(
L
p( ·)
0

)∗
is isometric to L̃p

∗( ·) with the above duality for a measur-
able p: [0, 1] → (1,∞).

Note that the isomorphisms in the duality above are indeed isometric. This
involves the fact that the Hölder inequality holds properly here and not up to
a multiplicative constant, as in the varying exponent norms defined by means
of the Luxemburg type norm.

Proof. It follows from an easy adaptation of Hölder’s inequality that
L̃p

∗( ·) ⊂ (
Lp( ·)

)∗
in the sense that

|F(x)| =
∣∣∣∣∫ xf dm

∣∣∣∣ ≤ ‖x‖p( ·)‖f ‖p∗( ·), x ∈ Lp( ·)
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whenever f ∈ L̃p∗( ·) is regarded as a function and F is in the subspace with
the usual identification (2.1).

Let us begin by verifying the statement in the reflexive case, i.e. ess inf t p(t)
> 1 and ess supt p(t) < ∞ (see Theorem 3.2), so that we are actually studying
a space Xn for a given n. Let F ∈ (Lp( ·))∗. By modifying the standard proof
(see e.g. [3, Prop. 2.17]) of the statement in the usual constant exponent case,
we obtain that there is an f such that

〈F, x〉 =
∫
x(t)f (t) dm(t) (2.1)

holds for every x ∈ L∞.
Note that ‖F‖X∗ ≤ ‖f ‖p∗( ·). By applying the continuity of F on one hand,

and Lebesgue’s monotone convergence theorem on the other hand, we may
approximate

F(xn) → F(x),

∫
xnf dm →

∫
xf dm

by bounded functions xn → x ∈ Lp( ·). Thus (2.1) holds for all x ∈ Lp( ·).
Next we check that ‖F‖X∗ ≥ ‖f ‖p∗( ·) which yields that the dual

(
Lp( ·)

)∗
is (even isometrically) Lp

∗( ·). First we restrict our considerations to functions
x ∈ Lp( ·) which are essentially bounded. As in [18] and [19] we investigate
standard form simple semi-norms N ,

|x|N = |x|(...(Lp1 (μ1)⊕p2L
p2 (μ2))⊕p3 ...)⊕pnL

pn (μn),

which approximate p( ·) in the sense that

p̃N ↗ p( ·)
in measure. In this case we may assume that 1 < ess inf p( ·) ≤ pi . Note that
these semi-norms correspond in a canonical way to Banach spaces

(. . . (Lp1(μ1)⊕p2 L
p2(μ2))⊕p3 . . .)⊕pn L

pn(μn).

The duality of these spaces is understood, namely, it is easy to verify recursively
that

((. . . (Lp1(μ1)⊕p2 L
p2(μ2))⊕p3 . . .)⊕pn L

pn(μn))
∗

= (. . . (Lp
∗
1 (μ1)⊕p∗

2
Lp

∗
2 (μ2))⊕p∗

3
. . .)⊕p∗

n
Lp

∗
n (μn).

IfN denotes the semi-norm corresponding to the left hand space inside the par-
enthesis, then the semi-norm corresponding to the right hand space is denoted
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by N∗. Since the supports of μi are successive, we may consider these spaces
as function spaces on the unit interval. Denote by supp(N) = ⋃

i supp(μi)
for the corresponding measures μi in the representation of the semi-norm in
question. Note that∫

supp(N)
xJpN (1supp(N)x) dm = |x|N

∣∣JpN (1supp(N)x)
∣∣
N∗ ,

from the duality of the spaces. Indeed, here we apply the duality of Lpi (μi)
spaces and of direct products R⊕pi R, together with the fact

J

((∫
xpi dμi

)1/pi)
=
(∫

(Jx)p
∗
i dμi

)1/p∗
i

.

We have the following convergences in measure

Jp̃N→p̃N∗
(
1supp(N)x

) → Jp(x),

∂

∂t

∣∣1[0,t]∩supp(N)x
∣∣
N

→ ϕ′
x,

∂

∂t

∣∣JpN (1[0,t]∩supp(N)x)
∣∣
N∗ → ϕ′

x∗

as p̃N ↗ p( ·) in measure. It follows that∫
xJp(x) dm = ‖x‖p( ·) ‖Jp(x)‖p∗( ·). (2.2)

In fact, by using the absolute continuity of the norm accumulation functions
ϕf , we obtain by straightforward approximation argument that (2.2) holds for
all x ∈ Lp( ·) in the reflexive case. Thus ‖F‖X∗ = ‖f ‖p∗( ·).

Next we treat the non-reflexive case. As pointed above, it follows from
Hölder’s inequality that L̃p

∗( ·) ⊂ (
L
p( ·)
0

)∗
and ‖F‖

(L
p( ·)
0 )∗ ≤ ‖f ‖L̃p∗( ·) . Pick

f ∈ SL̃p∗( ·) . Denote

Xn = {
11+1/n≤p( ·)≤n x: x ∈ Lp( ·)0

}
, n ∈ N

and letPn be the corresponding band projections. RestrictF ∈ (Lp( ·)0

)∗
corres-

ponding to f to the subspace
⋃
n Xn. This does not change the operator norm,

since the subspace is dense. It is easy to see that ‖Pnf ‖Lp∗( ·) → ‖f ‖L̃p∗( ·) as
n → ∞. Hence, by using the observations of the reflexive case, we may pick
for each ε > 0 such n and x ∈ Xn, ‖x‖Lp( ·) = 1, that |(P ∗

n f )(x)| > 1 − ε.
Thus we observe that L̃p

∗( ·) ⊂ (
L
p( ·)
0

)∗
is an isometric subspace.

Finally, pick F ∈ (
L
p( ·)
0

)∗
. Restrict F to

⋃
n Xn. Since the projections

Pn commute, this produces a natural candidate for the representation, namely
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f = limn P
∗
n F , the limit taken pointwise a.e. Since each P ∗

n F ∈ Lp
∗( ·) and

‖P ∗
n F‖Lp∗( ·) ≤ ‖F‖

(L
p( ·)
0 )∗ , we obtain that f ∈ L̃p∗( ·), although the above limit

does not, a priori, exist in the L̃p
∗( ·) norm. In fact, ‖f ‖L̃p∗( ·) = ‖F‖

(L
p( ·)
0 )∗ by

the construction of the norms. Let us verify that f presents F . Pick x ∈ Lp( ·)0 .
Then

F(x)−
∫
x(t)f (t) dm(t)

= F(x − Pnx)+ F(Pnx)−
(∫

(x − Pnx)f dm+
∫
Pnxf dm

)
.

HereF(x−Pnx) → 0 by the continuity of the functional and
∫
(x−Pnx) f dm

→ 0 by Hölder’s inequality. On the other hand,

F(Pnx) = (P ∗
n f )(x) =

∫
1+1/n≤p( ·)≤n

f (t)x(t) dm(t) =
∫
Pnxf dm.

Thus F(x) = ∫
x(t) f (t) dm(t) for all x ∈ Lp( ·)0 . This concludes the proof.

Given a function g: [0, 1] → R with finite variation, let us denote a special
‘variation norm’ as follows:∨

p( ·)∗
mg =

∨
p( ·)∗

g = sup

{∫ 1

0
f dmg: f ∈ C[0, 1], ‖f ‖p( ·) ≤ 1

}
.

Here mg is the Lebesgue-Stieltjes measure induced by g. For a continuously
differentiable g the notable special cases are∨

(p≡1)∗
g = Lip(g),

the best Lipschitz constant of g, and the usual total variation∨
(p≡∞)∗

g =
∨
g.

The above notion is applied somewhat tautologically in the following result.
To allow for integrating non-continuous functions easily, we will integrate in
the more general Lebesgue-Stieltjes sense in taking duality. Thus, let mg be
the Lebesgue-Stieltjes measure induced by g.

Theorem 2.2. Let p: [0, 1] → (1,∞) be measurable such that Lp( ·) is a
Banach space and let

X := C[0, 1] ⊂ Lp( ·).
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Then the elements of the dual space X∗ are Lebesgue-Stieltjes measures mg
with finite

∨
p( ·)∗ mg variation. The dual space is endowed with the norm

‖mg‖X∗ =
∨
p( ·)∗

mg

and the duality is given by

〈F, x〉 =
∫ 1

0
x(t) dmg(t), x ∈ X,

the Lebesgue integral with Lebesgue-Stieltjes measuremg , induced by g(t) =
F(1[0,t)) for F ∈ X∗.

Proof. Let us begin by studying continuous linear functionals F on the
normed space C[0, 1] ⊂ Lp( ·). Since ‖·‖p( ·) ≤ e‖f ‖∞ (see [18]), we obtain
that each F ∈ (C[0, 1], ‖·‖p( ·))∗ is also bounded with respect to the norm
‖·‖∗∞. ThusF ∈ (C[0, 1], ‖·‖p( ·))∗ ⊂ (C[0, 1], ‖·‖∞)∗ with the usual duality

〈F, f 〉 =
∫
f (t) dg(t), g(t) = F(1[0,t))

and ∨
g ≤ e‖F‖(C[0,1],‖·‖

Lp( ·) )∗ .

We note that F is a continuous linear functional on (C[0, 1], ‖·‖Lp( ·) ), the
above duality holds if and only if

〈F, f 〉 =
∫
f dmg, f ∈ C[0, 1],

g(t) = F(1[0,t)). Here ‖F‖X∗ = ∨
p( ·)∗ mg by the definition of the special

variation.
Let us verify that the above integral representation extends continuously

to the closure C[0, 1] ⊂ Lp( ·) for each F ∈ X∗. Fix x ∈ C[0, 1] ⊂ Lp( ·).
Pick (xn) ⊂ C[0, 1] such that ‖xn − x‖Lp( ·) → 0 as n → ∞. Since (xn) is
Cauchy, we can extract a subsequence (nj ) such that xn1 +∑j xnj+1 − xnj = x

unconditionally in the Lp( ·)-norm and
∑
j ‖xnj+1 − xnj ‖p( ·) < ∞. It follows

from the definition of
∨
p( ·)∗ mg that then

∑
j

∣∣∣∣∫ (xnj+1 − xnj )(t) dmg(t)

∣∣∣∣ < ∞. (2.3)
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By passing to a further subsequence and modifying all the functions xnj and x
in a mg-null set we may assume that xn1(t) +∑

j (xnj+1 − xnj )(t) = x(t) for
every t .

Consider the Banach space L1(mg). We obtain from (2.3) that xnj → y

in the norm ‖·‖L1(mg). Also, we observe that y(t) = x(t) for mg-a.e. t by
convergence in mg-measure considerations. We conclude that∫

xnj (t) dmg(t) →
∫
x(t) dmg(t), j → ∞.

It is easy to see that the above convergence does not depend on the particular
selection of the approximating Cauchy sequence of continuous functions.

3. Lp( ·)(μ) spaces

Let us consider an equivalent measure μ ∼ m on the unit interval and dμ/dm
with

μ(A) =
∫
A

dμ

dm
(t) dm(t)

for all Borel sets A. The above Radon-Nikodym derivative need not be integ-
rable. Going back to the heuristic derivation of the norm-determining ODE and
repeating the considerations with Lp(μ) in place of Lp under the assumption
that (dμ/dm)(t) is a continuous function, we arrive at the following ODE:

ϕ(0) = 0+, ϕ′(t) = dμ

dm
(t)

|f (t)|p(t)
p(t)

ϕ(t)1−p(t) for m-a.e. t ∈ [0, 1].

Similarly as above we define a class of functions together with a norm (for a
general μ ∼ m) and we denote this space by Lp( ·)(μ). This can be regarded
as a ‘weighted Lp( ·) space’. Recall that Lp([0, 1]) and Lp(R) are isometric;
the same reasoning extends to our setting.

Proposition 3.1. Let p: [0, 1] → [1,∞) be measurable such that Lp( ·) is
a Banach space and μ ∼ m. Then Lp( ·)(μ) is a Banach space as well and the
mapping

T : f (t) 	→
(
dμ

dm
(t)

)−1/p(t)

f (t)

is a surjective linear isometry Lp( ·) → Lp( ·)(μ).
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Proof. Clearly the mapping is linear. Isometry follows by calculation:

ϕ′
μ,T (f )(t) = dμ

dm
(t)

∣∣( dμ
dm
(t)
)−1/p(t)

f (t)
∣∣p(t)

p(t)
ϕμ,T (f )(t)

1−p(t)

= |f (t)|p(t)
p(t)

ϕμ,T (f )(t)
1−p(t) = |f (t)|p(t)

p(t)
ϕm,f (t)

1−p(t) = ϕ′
m,f (t).

Indeed, a moment’s reflection involving a joint positive initial value justifies
the fact ϕμ,T (f ) = ϕm,f . Surjectivity follows by observing that

f (t) 	→
(
dμ

dm
(t)

)1/p(t)

f (t)

defines the inverse of the operator. Thus the class Lp( ·)(μ) is a Banach space
as an (isometrically) isomorphic copy of Lp( ·).

3.1. Applications of changing density

Theorem 3.2. Let p: [0, 1] → (1,∞) be measurable such that Lp( ·) is a
Banach space. The following conditions are equivalent:

(1) Lp( ·) is uniformly convex and uniformly smooth,

(2) Lp( ·) is reflexive,

(3) Lp( ·)0 contains neither �1, nor c0 almost isometrically,

(4) ess inf t p(t) > 1 and ess supt p(t) < ∞.

Proof. The implications (1) ⇒ (2) ⇒ (3) are clear.
The direction (3) ⇒ (4). Suppose that ess inf t p(t) = 1. We will show that

then Lp( ·)0 contains an isomorphic copy of �1 for any isomorphism constant
C > 1.

By the compactness of the unit interval we can find a point t0 such that

ess inf t 1(t0−ε,t0+ε)(t)p(t) = 1 for each ε > 0.

Indeed, assume that this is not the case and consider a suitable open cover of
open intervals (t0 − ε, t0 + ε), so that there is a finite subcover contradicting
ess inf t p(t) = 1. Therefore we may extract a sequence (An) of measurable
subsets of the unit interval with positive measure such that the following con-
ditions hold:

(1) supp|An ↘ 1 as n → ∞;

(2) either maxAn < minAn+1 for all n or maxAn > minAn+1 for all n.
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Fix a rapidly decreasing sequence of exponents pi ↘ 1 such that∏
i

∥∥I : �pi (2) → �1(2)
∥∥ < 1 + ε. (3.1)

We can find a strictly increasing sequence (ni) such that pi ≥ p|Ani for
each i ∈ N.

Let μ be an equivalent measure on the unit interval such that μ(Ani ) = 1
for i ∈ N. In proving the claim it suffices study Lp( ·)(μ) in place of Lp( ·),
since these spaces are isometric. Put p̃(t) = max

(
1,
∑

i pi1Ani (t)
)
.

Define a mapping T : �1 → Lp( ·)(μ) by putting

T ((xi)) =
∑
i

xi1Ani

where the sum is defined pointwise a.e.
We follow the arguments in [16] involving sequence space semi-norms

arising as follows. For (xn) ∈ �0 we put

(. . . ((|x1| �p1 |x2|)�p2 |x3|)�p3 . . .�pn−1 |xn|)�pn |xn+1|,
in case (An) is increasing, or the analogous left-handed version if (An) is
decreasing:

|x1| �p1 (|x2| �p2 (|x3| �p3 . . .�pn−2 (|xpn−1 | �pn−1 (|xn| �pn |xn+1|) . . .),
we observe that one may control inductively the difference of norms when one
changes the values of the exponents pi by using (3.1). That is,∥∥∥∑

i

xi1Ani

∥∥∥
Lp( ·)(μ)

≥ 1

1 + ε

∑
i

∥∥xi1Ani∥∥Lp( ·)(μ).
Thus,

∥∥T −1: T (�1) → �1
∥∥ ≤ 1 + ε.

Similarly, by passing to subsequences of (An)multiple times we obtain that∑
i

‖xi1Ani‖L1(μ) =
∥∥∥∑

i

xi1Ani

∥∥∥
L1(μ)

≤ (1 + ε)

∥∥∥∑
i

xi1Ani

∥∥∥
Lp( ·)(μ)

≤ (1 + 2ε)
∥∥∥∑

i

xi1Ani

∥∥∥
Lp̃( ·)(μ)

≤ (1 + 3ε)‖(xn)‖�p ·

≤ (1 + 4ε)‖(xn)‖�1 = (1 + 4ε)
∑
i

‖xi1Ani‖L1(μ).
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Indeed, analyzing the Lp( ·)-differential equation shows that for a constant
function the values of the derivative uniformly approximate |f (t)| asp(t) ↘ 1.
Thus ‖T ‖ ≤ 1+ε. This shows that the space contains �1 almost isometrically.

Next, assume that ess supt p(t) = ∞. We will show that Lp( ·)0 contains
c0 almost isometrically. We may again without loss of generality make some
assumptions about the equivalent measure, namely, that μ([0, 1]) = 1 and

μ
({t ∈ [0, 1]:p(t) > r})1/r → 1, r → ∞.

We will partition each set {t ∈ [0, 1]: n < p(t) ≤ n+1} to measurable subsets
of equal μ-measure, call them A

(1)
n,0 and A(1)n,1. (Possibly both the subsets have

measure 0.) Divide A(1)n,1 again to two subsets of equal measure, A(2)n,0 and

A
(2)
n,1. We proceed recursively in this manner to construct sets A(k)n,θ , k, n ∈ N,

θ ∈ {0, 1}. Let A(k)j = ⋃
n≥j A

(k)
n,0. Observe that

μ(A
(k)
j ) = 2−kμ({t ∈ [0, 1]:p(t) > j}), k, j ∈ N.

Note that

lim
j→∞μ(A

(k)
j )

1/j = lim
j→∞(2

−k)1/jμ({t ∈ [0, 1]:p(t) > j})1/j = 1, k ∈ N.

Assume first that 1
A
(n)
j

∈ Lp( ·)(μ), although this is not necessarily the case.

Define an operator T : c00 → Lp( ·)(μ) by

T ((xn)) =
∑
n

xn1A(n)j

defined pointwise a.e. Clearly ‖T ‖ ≤ ‖1‖L̃p( ·)(μ). In fact, by choosing a large
enough j we get that ‖T ‖ ≤ 1 + ε. Indeed, observe that if ϕ(t) ≥ 1 then
1
j
ϕ1−j (t) becomes small for a large j . Thus

(1 + ε)max
n

|xn| ≥ ‖T ((xn))‖Lp( ·)(μ) ≥ max
n

‖T (xnen)‖Lp( ·)(μ).

Here (en) is the canonical vector basis of c00 and (T (en))n ⊂ Lp( ·)(μ) is a
1-unconditional sequence. To show the claim it is required to check that

‖T (en)‖Lp( ·)(μ) ≥ 1 − ε, n ∈ N.
This is seen as follows, first observe that

‖1
A
(n)
0

‖Lp( ·)(μ) ≥ ‖1
A
(n)
j

‖Lp( ·)(μ).
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Then observe that for each ε > 0 there is j ∈ N such that

1

p( ·) (ϕ(t))
1−p( ·) ≥ 1

j
(ϕ(t)+ ε)1−j , p( ·) ≥ j, ϕ(t)+ ε ≤ 1.

This reads ∥∥1Anj
∥∥
Lp( ·)(μ) ≥ ∥∥1Anj

∥∥
Lj (μ)

− ε

and further ∥∥1An0
∥∥
Lp( ·)(μ) ≥ lim sup

j→∞

∥∥1Anj
∥∥
Lj (μ)

. (3.2)

Recall that∥∥1
A
(n)
j

∥∥
Lj (μ)

= (2−n)1/jμ({t ∈ [0, 1]:p(t) > j})1/j → 1, j → ∞. (3.3)

We made an additional assumption during the course of the proof that 1
A
(n)
j

is included in the space. This assumption can be removed by observing that we
may restrict the support of these functions to suitable sets {t :p(t) ≤ p(n)}, so
that the positive-initial-value solutions become Lipschitz with a large constant
and such that simultaneously (3.2) and (3.3) hold up to an extra ε. Thus Lp( ·)0
contains c0 almost isometrically.

The direction (4) ⇒ (1). Here we will follow the analogous argument in
the setting of �p( ·) spaces. We will require the notions of upper p-estimate and
lower q-estimate of Banach lattices. If X is a Banach lattice and 1 ≤ p ≤
q < ∞ then the upper p-estimate and the lower q-estimate, respectively, are
defined as follows:∥∥∥ ∑

1≤i≤n
xi

∥∥∥ ≤
p

1≤i≤n
‖xi‖,

∥∥∥ ∑
1≤i≤n

xi

∥∥∥ ≥
q

1≤i≤n
‖xi‖,

respectively, for any vectors x1, . . . , xn ∈ X with pairwise disjoint supports.
These estimates involve multiplicative coefficients which are taken to be 1 in
this treatment. We will apply the fact that a Banach lattice, which satisfies
an upper p-estimate and a lower q-estimate for some 1 < p < q < ∞
with constants 1 is both uniformly convex and uniformly smooth (with the
respective power types), see [6, 1.f.1, 1.f.7].

Let 1 < p = ess inf t p(t) and ess supt p(t) = q < ∞. We claim that
Lp( ·) satisfies the respective estimates for these p and q. To check the upper
p-estimate, let fk , 1 ≤ k ≤ n, be disjointly supported functions in Lp( ·).
Observe that if X and Y satisfy the upper p-estimate, then X ⊕r Y satisfies it
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as well for r ≥ p. Indeed,

p

i

‖(xi, yi)‖X⊕rY ≥
p

i

‖xi‖X �r

p

i

‖yi‖Y

≥
∥∥∥∑

i

xi

∥∥∥
X

�r

∥∥∥∑
i

yi

∥∥∥
Y

=
∥∥∥∑

i

(xi, yi)

∥∥∥
X⊕rY

where we applied the direct sum norm twice, Proposition 1.2 and the upper
p-estimate of X and Y. Thus, using this observation inductively on the semi-
norms N we obtain the statement by approximation.

Alternative route. By a simple argument using the definition of outer meas-
ure we see that each simple semi-norm can be approximated pointwise from
below with other semi-norms of the type ‖·‖(...(Lp1 (μ1)⊕r2L

p2 (μ2))⊕r3 ...⊕rmL
pm (μm)),

ess inf t p(t) ≤ ri ≤ ess supt p(t), such that only one of the functions fk is
supported on the support of a given μi . We may interpret the values of the
semi-norms as norms of finite �p( ·) sequences

f 	→ (|f |Lp1 (μ1), |f |Lp2 (μ2), . . . , |f |Lpm (μm)
)

and then the supports of the sequences are disjoint for disjointly supported
functions fk . We apply the fact proved in [16] which states that for disjointly
supported �p( ·) sequences we have the upper p-estimate for p = inf t pt . From
these considerations it follows that also disjointly supported Lp( ·) functions
satisfy the upper p-estimate for p = ess inf t p(t).

The argument for lower q-estimates is analogous. This concludes the proof.

Next, our aim is to build a kind of universal Lp( ·) space. We will study a
modification of Topologist’s Sine Curve as follows:

p0(t) = 1

1 − t
sin

(
1

1 − t

)
+ 1

1 − t
+ 1, 0 ≤ t < 1.

Theorem 3.3. Let p0 be as above. Suppose that p is any exponent such
that Lp( ·) is a Banach space. Then Lp( ·) is finitely representable in Lp0( ·).
Assume further that p: [0, 1) → [1,∞) is a C1-function, not constant on any
proper interval and thatp′ changes its sign finitely many times on each interval
[0, a] ⊂ [0, 1). Then there is an isometric linear embedding Lp( ·) → Lp0( ·)
onto a projection band.

Proof. We omit the argument for the first part of the statement. Towards
the second part, according to the assumptions we find a sequence of open
subintervals 	n ⊂ [0, 1], n ∈ N, with sup	n = inf 	n+1 such that the sign
of p′ does not properly change on the intervals	n. Moreover, we may assume
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that |p′(x)| > 0 for x ∈ ⋃n 	n. We may choose this collection to be almost a
cover in the sense that m

(
[0, 1] \⋃n 	n

) = 0.
Now, p is monotone on each 	n. By the construction of p0 we can find a

sequence of open intervals 	′
n ⊂ [0, 1], n ∈ N, with sup	′

n ≤ inf 	′
n+1 such

that there is a C1-diffeomorphism Tn:	n → 	′
n with p|	n = p0 ◦ Tn.

By taking the union of the graphs of Tn, i.e. by ‘gluing together’ these
mappings, we define a mapping T defined a.e. on [0, 1], which has the property
that p(x) = p0(T (x)) for a.e. x ∈ [0, 1].

Let us define absolutely continuous measures ν and μ on [0, 1] given by
(dν/dm)(t) = |p′(t)| and (dμ/dm)(t) = |p′

0(t)| for m-a.e. t .
By making suitable identifications via T we may consider Lp( ·)(ν) as a

subspace of Lp0( ·)(μ). Both ν and μ can be thought as variation measures
corresponding to p and p0, respectively. Thus it is easy to see that T is a
ν-μ-measure-preserving mapping and

‖1T ([0,1])f ‖Lp0( ·)(μ) = ‖f ◦ T ‖Lp( ·)(ν) = ‖g‖Lp( ·)(ν)
forf ∈ Lp0( ·)(μ) such thatf ◦T = g ∈ Lp( ·)(ν). Indeed, by using the absolute
continuity of the solutions we observe that values of f outside T ([0, 1]) do
not influence the norm.

This way we may apply Proposition 3.1 to observe that G:Lp( ·)(ν) →
Lp0( ·)(μ) given by

G(f )[t] =
(
dν

dm
(T −1(t))

dμ

dm
(t)

)1/p0(t)

f (T −1(t)) if t ∈ T ([0, 1]),

and G(f )[t] = 0 otherwise, defines the required isometry. Note that in integ-
rating with a change of variable above the mapT −1 isμ-ν-measure-preserving.
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5. Kováčik, O., and Rákosník, J., On spaces Lp(x) andWk,p(x), Czechoslovak Math. J. 41(116)
(1991), no. 4, 592–618.

6. Lindenstrauss, J., and Tzafriri, L., Classical Banach spaces, Lecture Notes in Mathematics,
vol. 338, Springer-Verlag, Berlin-New York, 1973.

7. Luxemburg, W. A. J., Banach function spaces, Thesis, Technische Hogeschool te Delft, 1955.
8. Maligranda, L., Hidegoro Nakano (1909–1974)—on the centenary of his birth, in “Banach

and function spaces III (ISBFS 2009)”, Yokohama Publ., Yokohama, 2011, pp. 99–171.
9. Marcinkiewicz, J., Sur l’interpolation d’opérations, C. R. Acad. Sci., Paris 208 (1939), 1272–

1273.
10. Musielak, J., Orlicz spaces and modular spaces, Lecture Notes in Mathematics, vol. 1034,

Springer-Verlag, Berlin, 1983.
11. Nakai, E., and Sawano,Y., Hardy spaces with variable exponents and generalized Campanato

spaces, J. Funct. Anal. 262 (2012), no. 9, 3665–3748.
12. Orlicz, W., Über eine gewisse Klasse von Räumen vom TypusB, Bull. Int. Acad. Polon. Sci. A

1932 (1932), no. 8-9, 207–220.
13. Rao, M. M. and Ren, Z. D., Theory of Orlicz spaces, Monographs and Textbooks in Pure and

Applied Mathematics, vol. 146, Marcel Dekker, Inc., New York, 1991.
14. Rao, M. M., and Ren, Z. D., Applications of Orlicz spaces, Monographs and Textbooks in

Pure and Applied Mathematics, vol. 250, Marcel Dekker, Inc., New York, 2002.
15. Sobczyk, A., Projections in Minkowski and Banach spaces, Duke Math. J. 8 (1941), 78–106.
16. Talponen, J., A natural class of sequential Banach spaces, Bull. Pol. Acad. Sci. Math. 59

(2011), no. 2, 185–196.
17. Talponen, J., Note on order-isomorphic isometric embeddings of some recent function spaces,

J. Funct. Spaces (2015), Art. 186105, 6 pp.
18. Talponen, J., ODE for Lp norms, Studia Math. 236 (2017), no. 1, 63–83.
19. Talponen, J., Decompositions of Nakano norms by ODE techniques, Ann. Acad. Sci. Fenn.

Math. 43 (2018), 737–754.

UNIVERSITY OF EASTERN FINLAND
DEPARTMENT OF PHYSICS AND MATHEMATICS
BOX 111
FI-80101 JOENSUU
FINLAND
E-mail: talponen@iki.fi


