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POWER-BOUNDED MATRICES OF
FOURIER-STIELTJES TRANSFORMS I1

PHILIP BRENNER

0. Introduction.

A well-known theorem by Beurling and Helson [1] says that a Fourier—
Stieltjes transform f has bounded powers if and only if

(*) fy) = cexp(i{z,y)), yeR™,

where |c]=1 and x € R~

The purpose of this note is to give a corresponding necessary and
sufficient condition for a matrix of Fourier—Stieltjes transforms to have
bounded powers in #, the non-commutative Banach algebra of matrices
of Fourier—Stieltjes transforms, in a natural norm (for definitions,
see Section 1).

We will prove (Theorem 1 in Section 2) that ¢ has bounded powers
in # if and only if there exists an invertible p € # such that p-lpp
is diagonal, with diagonal entries of the form ().

As a corollary of this result we get a characterization of those homo-
geneous matrix functions P on R?, with real eigenvalues, for which
exp (¢P) € # (Corollary 2 in Section 3). We will prove that exp(:P) e #
if and only if P is of the form

n
Ply) =3 4;y;, yeRr,
j=1

where A4,,...,4, are commuting, diagonable matrices with real eigen-
values. This is a general form of the multiplier theorem (Theorem 1)
proved in [3], in the extreme cases p=1 and p=co.

In [3] the multiplier theorem was used to get necessary and sufficient
conditions for the Cauchy problem for symmetric hyperbolic systems
to be well posed in L,,. A generalization of the necessity part of Theorem 2
in [3], in the case p=oco (and p=1), for certain systems of pseudo-
differential operators is contained in Theorem 2 in Section 3 below.

The main tools are the results obtained in [4], especially Theorem 3
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of that note, and a characterization of the idempotents in %, carried
out in Section 1. In the proof of Theorem 1 we use a device, formally
the same as that used by Strang [5]. As a by-product of this we will
be able to prove that if ¢ has bounded powers in %, there exists an
hermitian, invertible H in # such that H-lpH is unitary (Corollary 1
in Section 2).

1. Idempotents in Z.

We will take over the notions and results of [4], mainly those presented
in Sections 2 and 4 of that paper. For convenience we repeat the most
central notions.

For complex N-vectors », |[v| will be the Euclidean norm. For an
N x N-matrix 4, |4| will denote the corresponding operator norm.

By Z,(R"), or simply #,, we mean the complex N-vector functions
with components in L, with norm

ol = [ 1o(@)) d
Rn

In the same way #(R") denotes the set of N x N-matrices with
elements in M (R"), that is, elements which are bounded measures on R”.
For u € #(R") the norm is defined by

llell = sup{llu*vly; ve Ly, vl =1},

where pxv is defined in the obvious way (see [4]). We also define the
convolution between elements in .# via the usual matrix multiplication,
and have

lexvll < flll Il wove .

#(R") is then a Banach algebra with unit (non-commutative for N > 1).
For matrices and vectors with elements in M and L; we define the
Fourier-Stieltjes and Fourier transform by taking the transform element-
wise. For ue #, with transform g, we define ||d||=||ul.

In this way the Fourier-Stieltjes transforms of elements in .# is a
Banach algebra, denoted #(R") or, for N =1, B(R?), with unit £ under
pointwise (matrix-) multiplication and addition.

Let M be the maximal ideal space of B(R?). Of course, 7 is also the
maximal ideal space of M(R?). Every function in # can be extended
to a continuous function on M, the Gelfand transform of the element
in 4. Below the transform will get the same notion as the element.
This will simplify the formulations of the propositions and will cause
no confusion.
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For facts about M and the Gelfand transform we refer to [2]. Some
of the properties of 72 are collected in the following lemma.

LeMMa 1. Let M be the maximal tdeal space of B(R™). Then:
(i) M is connected and compact.
(ii) M contains R™ as a determining subset for B, that is if fe B and
f=0on R™, then f=0 on M.
(iii) If fi,....fr € B and F s analytic in a neighborhood of

{(f1®),. . fry) ;s yemy,
then F(fy,....f.) € B.

That E, is idempotent merely means that E,22=FE,, on all of R"

LemMMA 2. Let Eye % be an idempotent. Then the eigenvalues of E can
be choosen to be =1 or =0 on M, and to have constant multiplicity on M.

Proor. Since E, can be extended to a continuous function on M,
and since R” is a determining subset of M2, E, is a continuous idempotent
matrix function on 7M. Then the eigenvalues of E, can be choosen
continuous on 77 and they only assume the values 0 and 1 there. As
m is connected this proves the lemma.

We can now give the following characterization of the idempotent
elements in Z(R?).

ProrosirioN 1. Let Eye Z be idempotent. Then there exists an S € B,
tnvertible in B, such that S E, S is diagonal, with diagonal elements
=1o0r =0.

Proor. Let B, =FE—E,. Then E, is also an idempotent element in .

Since the eigenvalues of E, and E; have constant multiplicity on 71,
we can find eigenvectors to the non-zero eigenvalues of E, and E, that
are analytic functions of the eigenvalues and the elements of £ respec-
tively ;. As analytic functions operate on B, the elements of these
eigenvectors belong to B. Furthermore they can be choosen linearly
independent on M. Let S be the matrix with these eigenvectors as
column vectors. Then det S0 on 7, and so the inverse of S is element-
wise an analytic function of the elements of S on 72, and so S-'e #.
It is easy to verify that S is the matrix asked for. The structure of the
diagonal matrix follows from Lemma 2.

By induction we obtain in the same way.
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CoroLLARY 1. Let E,,...,E; be orthogonal idempotents in HB. Then
there exists an invertible element S in A, such that S-1 E; S is diagonal,
with diagonal entries =1 or =0, j=1,...,1.

2. Power bounded elements in %.

In this section we give (Theorem 1 below) necessary and sufficient
conditions for a matrix function ¢ to have bounded powers in .

In the case N =1, Theorem 1 reduces to the Beurling—Helson theorem
[1], a local form of which was used in [4] (and so in the proof of Lemma 3
below). For N >1 the non-commutativity of & mainly adds a similiarity
transformation, bounded in #. The theorem can easily be extended
to hold, with obvious changes, on #(Q), where Q is an open, connected
subset of a LOA group (cf. [4]). For the applications we have in mind
the version proved in Theorem 1 will be sufficient.

As a corollary (Corollary 1) we notice that if p has bounded powers
in %, then g is close to unitary in %.

THEOREM 1. Let ¢ have bounded powers in JB. Then there exists a peZB,
invertible in &, such that p=' @ p is diagonal, with diagonal elements of
the form

(1) 2i(y) = c;exp(ix;,y)), yeR™,

where |c|=1 and x;eR™, j=1,...,N. This condition is also sufficient.

For the proof of the necessity part of the theorem we need some lemmas
which we state and prove before we give the proof of Theorem 1.

Lemma 3. Let @ have bounded powers in B. Then there exist functions
Ay, Ay of the form

(1) Aily) = c;exp(x;y)),  yeR™,

where |c;|=1 and z;eR”, j=1,...,N, such that A,(y),...,Ay(y) are the
eigenvalues of ¢(y), y € R, counted with proper multiplicities.

This is Theorem 3 in [4], where a proof can be found.

Lemma 4. Let ¢ € B and suppose that
sup{le™|; m=1,2,...} = C < +co.
Then for every power-bounded y tn B we have
(2) r=1)(rp—@) Y < C, r>1.
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Proor. Since ¢ has bounded positive powers, all the eigenvalues of ¢
have modulus £1. As |ry|=r >1, (rp—@)~! exists and can be expanded
in a convergent power series

(ry—@)t =2 (ry) 1 ¢l
j=0
Since p has bounded powers in B, |jy||=1 (see [1]). Hence by the as-
sumptions
lrp) 71 il < € i1,

It follows that (ry—g@)1eZ for r>1 and that
Irpy—@) Ml = COr—1)7, r>1,
which proves (2).
The next lemma is well known (cf. Strang [5]).

LeMMA 5. Let ¢ be a matrix function with eigenvalues of modulus 1
on M. Assume that for some constant C

(Z-9@) = C(Z]-1)7, |Z]>1, yem.

Then @ has linear factors on M, that is there exist idempotent orthogonal
matrix functions B, . . ., E, on M, such that

¢ =MBi+... +4E,
where Ay,...,4 are eigenvalues of ¢, and B+ ... +E=E.

Proor or THEOREM 1. Lemma 4 and Lemma 5 together with the
fact that
DY) = 1Dll, yem, Pe,

proves that for y e M,
PY) = 1) Ei)+ . - - +4(y) Li(y),

where E,,...,E; are orthogonal idempotent matrices, with sum K,
on M. By Lemma 3, A; can be taken to have the form

(1) Ai(y) = c; exp(i{z;,9)), yeR™.

In particular the 1’s have bounded powers in B and are continuous
on M.
Next we observe that
l
(3) (r=1) 2 (rA—@)t = (r—1) A 3 (rd—2;) " E; — By,

J=1
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as r — 1, pointwise on R*. By Lemma 4 the left hand side of (3) is
uniformly bounded for r>1 in 4. Hence (cf. Lemma 2 in [4]) there
exists an B, € # such that E, =K, a.e. on R, This holds for k=1,...,1
and so

(4) o =MhE +...+14E,.

Both sides of (4) are continuous and hence (4) holds on all of R™,
In the same way we see that E,,...,E, are orthogonal idempotents
in 4. Corollary 1 in Section 1 then shows that there exists an invertible
S e % such that S-1 E'jS is diagonal, j=1,...,l. Take p=8. Then

plop=A4 S E S+... +481ES

is a sum of diagonal matrices, hence a diagonal matrix of the form stated
in Theorem 1. This proves the necessity part of the theorem.

For the proof of the sufficiency part we observe that a diagonal matrix
A with diagonal entries of the form (1) has bounded powers in %. But

— pAmp—l
and so
o™ = lIpll lp2 4™ = €, m==%1, £2,...,

which completes the proof of the theorem.

Let ¢ have bounded powers in . Using the matrices E'j constructed
in the proof of Theorem 1, we will construct an invertible hermitian
matrix H in % such that H-1 ¢ H is unitary. This is formally done
as the corresponding construction by Strang [5].

CorOLLARY 1. Let ¢ have bounded powers in ZB. Then there exists an
tnvertible hermitian matrix H in %, such that H-1 ¢ H is unitary.

Proor. First let
Hyy) = Z;By) B*y),  yem.
Then Hy=Hy* on M and for any N-vector v and any y e M
(Ho(y)o,v) z [vf*.

This follows at once from the fact that the E,’s are orthogonal idem-
potents with sum X (see Strang [5]). Further

(p—-lHO = w—lejEj* = zzkE .E’ E*
7 j

%Z ZkE’E E* = Hyg*
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and so
(5) * = Hy ot Hy .

Now let H be the hermitian square-root of H,. Since H,2 % on M
the elements of H can be taken to be analytic functions of the elements
of H,on M. For example, let

1

H(y) = 271

fz% (A—Hyy)-1dA, yem,

where C is a suitable curve in the right half-plane surrounding the spec-
trum of H,. From (5)
(HloH)*=Hoe*H'=HH, ‘9 *HH'=Hl9'H=(H'9pH)1,

and the corollary is proved.

3. Homogeneous matrices and the Cauchy problem for systems in L_.

In this section we will give necessary and sufficient conditions for
exp(sP) to be in #, when P is a homogeneous matrix function on R»
with real eigenvalues.

As an application of this we will then give necessary conditions that
the Cauchy problem for systems of constant-coefficient pseudo-
differential operators should be well posed in L, (and in L,, by duality).

COROLLARY 2. Let P be a homogeneous mairix function of positive degree
on R™ with real eigenvalues. Then exp(iP)e % if and only if

(6) Ply) =3 4;y;, yeRr,
J=1

where A,,...,A, are diagonable, commuting matrices with real eigenvalues.

Before the proof we remark that the corollary generalizes Theorem 1
in [3] in the extreme cases p=1 and p=oo.

Proor oF CoroLLARY 2. Let g=exp(sP) and assume that ¢ € 4.
For m >0 then

¢™(y) = exp(imP(y)) = exp(iP(sy)) = p(sy)
where s¥*=m, k>0 being the order of P. From this follows that
lg™ = llgll = €, m=1,2,....
That ¢ has bounded powers in # then follows from the fact that
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|detp|=1 as in Corollary 1 in Section 4 in [4]. Hence, by Theorem 1,
there exists a p € &, invertible in &, such that p~1Pp is diagonal with
real linear diagonal elements. From this

P(y) = py) (éle yj) P~ (y)

where D; are real diagonal matrices. But then P has linear eigenvalues
on R™, From this follows that P is homogeneous of degree 1, and so

tP(y) = P(ty) = p(ty) (t ile yj) p~ty)
o

for t>0. If we divide both members by i, we obtain

P(y) = p(ty) (ile y,-) p~H(ty) .
o

Let t - 0. As both p and p~! are continuous on R™ we get

n
P(y) = 3 p(o) D; p~(0) y;
J=1
and so the necessity part is proved. The sufficiency follows from the well-
known fact that by the assumptions on 4,,...,4, we can find an in-
vertible (constant) matrix § such that S14;8=D;, j=1,...,n, are
real diagonal matrices. Then

exp(iP(y)) = 8 A(y) 8-

where A(y) is a diagonal matrix with diagonal entries of the form
exp (¢€x;,y)), y € R", where z;eR", j=1,...,N. This ends the proof
of the Corollary.

Let P(D) be a matrix of pseudo-differential operators with constant
coefficients. By this we mean that for C*® N-vector functions » with
compact support (then we say that « € 9)

N
P(D) uly) = P(y) 4(y),
where we merely assume that |P(y)| do not grow faster than some power
of y. The order k (here assumed >0) is defined so that
s7* P(sy) - Po(y)

as § — oo, uniformly on compact subsets of R*. Here P, the principal
part of P, is a non-zero homogeneous matrix function of the degree &
on R~
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Let us consider the Cauchy problem

0

e PD)u, weRe,
(7) o

u(xz,0) = uy(x), 0<t=T,

where P is a matrix pseudo-differential operator as defined above,
and where u, € 2. We say that (7) is well posed in L, if there is a con-
stant C=C(T') such that for any solution w of (7) we have

(8) [u( )l S C%olloey  OSEST, €2
and
= (u(o, t+h) —u(-, 8)) = P(D) u(, )]l > 0, b —>0.

If P, has imaginary eigenvalues on R® we will give the following neces-
sary condition for (7) to be well posed in L.

THEOREM 2. Assume that (7) is well posed in L., and suppose that the
principal part Py of P has imaginary eigenvalues on R™. Then P, has
the form

n

0
Po(D) = ZA;'_

b
j=1 0%
where Ay,. .., A, are diagonable, commuting matrices with real eigenvalues.

This theorem strengthens the necessity part of Theorem 2 in [3] in
the extreme cases p=1 and p=cc. In view of Corollary 2 above it will
be sufficient to prove the following lemma.

Lemma 6. Assume that (7) ts well posed in Ly,. Then exp(P,) € &.

Proor. From (7) and the definition of P we obtain (cf. [3]) the Fourier
transform of the solution of the Cauchy problem as

W(y,t) = exp(tP(y)) fy(y) .

For any ve %, we get by (8) and Parsevals formula that

© | [(expPw) tae), 90) dy | < Clluge o, 0tST .

But this implies that ¢,=exp(¢P) belongs to %, and that
(10) lpdl = C, 0=t=T.

If & is the order of P, let s¥*=¢, s> 0. Since affine transformations of
the variable are isometries on & and since
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@571 y) = exp(Py(y)+0(1)), s-0,

uniformly on compact subsets of R®, it follows from (10) that exp(P,) € #
(cf. Lemma 2 in [4]).

The L;-version of Theorem 2 follows from (9), assuming that (8) holds
in L;-norm.
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