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VECTORVALUED DISTRIBUTIONS COVARIANT UNDER
ALGEBRAIC REPRESENTATIONS OF AN
ORTHOGONAL GROUP OF ARBITRARY SIGNATURE

A. TENGSTRAND

0. Introduction.

Let G be a Lie group acting on a C*-manifold X and let 4 be a
C>-representation of G as linear mappings on a finite-dimensional
linear space L. A distribution 7' on X with values in L is called covariant
under A4 if

A(g)T(z) = T(g=)

for every g € G. Suppose that X locally is a product ¥V x ¥ where
Y =10,1]x...x[0,1] < R®

and that V x {y} for every y € Y is an open part of an orbit in X. In
this case we are going to prove that, at least locally, a covariant distribu-
tion can be written

(1) T(x) = ijj(x) 1/’j(“’) ,

where f; are distributions on X with values in C which are invariant
under @, that is fj(gx)=f;(x) for every ge G and y; are C*-functions
from X to L which are covariant. Then we use this result to get an
explicit description of the covariant distributions when X=R" G=
SO(p,q) and A is an algebraic representation of SO(p,q). Here SO(p,q)
is the connected component of the unit e of the orthogonal group which
leaves the quadratic form

=p+q

{x,x) =nz ew)x? el)=...=¢p)=1, e(p+1)=...=¢e(p+q)=—1

y=1

invariant. It turns out that the covariant distributions can be written
as (1). The invariant distributions f are described in [2] for p=1 and
in [5] for the remaining p and g¢.

Received November 12, 1968.



32 A. TENGSTRAND

1. Covariant distributions on manifolds which locally

are product manifolds.

Let the Lie group G act on the C*®-manifold X and write x; ~z, if
and only if there is g € @ such that gz; =x,. In the following we suppose
that the following condition is satisfied:

(¥) To every z, € X there exist neighbourhoods U< X and V <Gz, and
a diffeomorphism ¢=¢y,:U - Vx Y such that pye(x;)=ppe(z,)
if and only if x;,~x,. (Here py is the projection Vx Y — Y.)

It is easily seen that ¢ can be chosen so that ¢(x)=(x,y,) if x € V and
®(%o) = (o, Yo)-

Levmma 1. To every x,€ X there is a neighbourhood W< X and a C*-
Sfunction b : W x W — @ such that h(x,,%,) %, =2, if 21,25 € W and z,;~z,.

Proor. Choose neighbourhoods U c X, V @z, and a diffeomorphism
@p=g@y as above. It is easily seen that there is a neighbourhood O <G
of e such that gr e U if ¢(x)=(x,y). Define x: Ox Y — U by setting
(9,y) =99 Y %,y). The restriction of & to Ox{y,} is then equal to
glo(mx1ly), where n: O -~V and ng=gz,. It is well-known that
rankdn(e)=dim V (see, for example, Helgason [3, pp. 110-113]) and this
implies that

rankdu(e,y,) = dmV+dimY = dimVx Y.

Now it follows that, there is a C®-function f: W -~ 0O x Y such that
xof=idy and we can put h(wy,x,)=y(x,)y(r;)t, where y=pyof and
Po is the projection O x ¥ — O.

If A4 is a representation of G' as linear mappings of the finite-dimen-
sional linear space L we put

I* = {ve L; A(gv=v for every g e G},

where G,={geG; gx=x}.
Let U be an open part of X with compact closure and C*(U, L) the
set of all O®-functions from U to L. We put

N(U) = {feC>(U,L); f(x)e L* for every x € U}.

N(U) is a module with coefficients in C*°(U,C) which is spanned by a
finite number of functions y;. Evidently it is sufficient to prove this
statement in a neighbourhood of every point x, € X since U has com-
pact closure. Choose a neighbourhood W of z, and a function % as in
lemma 1 and let {e;} be a basis of L**. Then



VECTORVALUED DISTRIBUTIONS COVARIANT UNDER ... 33

p;(x) = A(h(r,2,)) ¢; € C°(W,L)

is a basis of L for every x € W.

If ¢ is sufficiently close to e € G and if x belongs to a small neighbour-
hood of z, we have

pjlgx) = A(h(gz, ) €; = A(h(gr,2)) y;(x) = A(g) pj(x)

since g-lh(gz,x) € G,,. Suppose that ¢ has the Lie-algebra I'. If T is
covariant, we have

eV (e"x) = T(x) for every yel,
where y' =dA(y). By differentiation with respect to ¢ we get
(2) y'T(x) = y* T(x),
where y+ is the vectorfield on X generated by y. On the other hand (2)
implies that A4(g)T'=T og for every ¢ in a neighbourhood of ¢ and con-

sequently for all g if G is connected. It is also clear that y'y;(x)=y+y;(x)
when xe W.

THEOREM 1. Let T be a distribution on X with values in L such that
(3) y'T = y+T  for all yelI
10 the relatively compact open set U< X. Then
T(x) = Z; filx) pyx)  in U,

where f; are distributions on X with values in C such that y*f;=0 in U
and y; belongs to C°(U,L) and has the property y'y;=y*y; in U.

Proor. It is evident that it suffices to prove the theorem in a neigh-
bourhood of every point in U. Let x,€ U and choose a neighbourhood
U’'c X of z, according to (x) and a neighbourhood O @ of e such that
OU’'c U. From (3) it is easily seen that A(g) T(x)=T(gx) in U’ for every
g€ 0. Let V be a neighbourhood of z, in Gz, and ¢=¢y.: U - Vx Y
a diffeomorphism (see *). Clearly we can choose U’ so that there is
a function h: U'x U’ — G as in lemma 1. Now we put

T=To¢p—1, g = @ogop for geO0, zzhO((p_lX(p‘l).
T is a distribution on ¥V x Y such that
A@)oT =Tog (4G = A(9))-

If RY is a regulisator on Y (see de Rham [4]), then for every ye ¥
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T,,=R¥T(y) is a distribution on ¥V x {y} which satisfies
AMzy,2)) T, = T, , 0 h(21,25)

for every 2, and 2z, in V.
Let o* be an infinitely differentiable m-form on V (m=dim V) such
that
o —~0, as x>0

in distribution-sense. If w,*=w*ok(zy,2) it is easily seen that w, ¢,
in distribution-sense and if S=7, , we have

S, >8>z asx—0
in distribution-sense. For every z, and z, in ¥V we have

(h(zl,zz)) (8, wp) = <S°k 21,29), g -

Here the function on the left is a C*-function and we can put z,==z

and get
A(h(24,2)) {8, 0% = (S, wFoh(zy,2)"1) .

But as wfoh(z;,2)! = w*oh(2,2)h(21,2)t = wf, we have
A(R(zy,2)K8, wfy = (S, of) .

Here the function on the left converges to A(h(z,,2)0 S(z) which is in-
dependent of z because the function on the right is independent of z.
Furthermore A(h(zy,2)) o S(z) is a C®-function in z, and as (S, w? 2 = S(2))
we conclude that S € C*(V,L). Now we have proved that the distribu-
tion §=T, v is infinitely differentiable in z and y. The function
T,=T, op is an element of the module N(U) and consequently we

can Wn’oe

&) = Z; f,o@) pj(@)

where y; are the functions above. As y; are linear independent it follows
that f; , converges in &'(U) to distributions f;. We have proved that

x) = Ejfj(x) %’(9-’)

in a neighbourhood of every point in U and consequently in all of U.
From the construction of % in lemma 1 and from the proof above it
follows that f;, only depend on y and consequently y+f; ,=0 and then

ytfi=

REMARK. The theorem holds for an arbitrary open set U< X if there
is a finite number of linear independent covariant functions y; which
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span N(U). If U=X this implies that the distributions f; are invariant
under G.

2. Description of L* when G =SO0(p,q).

Let A be an irreducible representation of G = SO(p, q) as linear mappings
of a finite-dimensional linear space L. For every x € R", L?® is the direct
sum of the one-dimensional subspaces of L which is invariant under
A(G,). From Weyl [6] it follows that the representations of @, which
is isomorphic to SO(p’,q’) where p'+q'=n—1, have degree 1 if and
only if they have the weight (0,...,0). If 4 is irreducible it follows from
Boerner ([1], p. 251-254) that there are one-dimensional subspaces of L
invariant under A(@,) if and only if 4 has the weight (k,0,...,0) where
k is a positive integer and that there is only one such subspace. If the
weight of 4 is (%,0,...,0) L is isomorphic to =;°, where 7,° is the space
of all homogeneous polynomials

p(é) = zaaaftx = aaal...ak 5001‘ * "Eock

in £=(&,...,&,) of degree=k and where a, are symmetric in « and

Tr(p) = (2;¢()) jjw)ber = O,
where o =(xg,...,0;). (See Weyl [6].)

Evidently the polynomials (&,&) =(3)_,&(»)&,2) are invariant under
G and the polynomials (x,&)$= (3l e(»)x,£,)® are invariant under G,.
We put

Pj,k(xs ‘S) = Cj,k<$’ ‘S>j<x> §>k_2j: 0= 2j <k,
where

- () i

Then P; ;, is homogeneous in £ of degree k and after a calculation we get

(m+1)Pjy o+ @2 Py gy it 2j2k-2,
Tr(P;,) = | (0+1)Py_y s if 9j=k-1,
nPj_l’k_z if 2j=k.

Here P_; ;_,=0.
Now it is easily seen that, if u;=(—1/n+1)’ when j<2k and u;=
(—1/n+1)(n+1)/n when j=2k, we have

Tr Y wglz,x) P;(x,é) = 0.
0s2j<k

We have proved the following.
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Lemma 2. If A is an irreducible representation of SO(p,q) with the weight
(k,0,...,0), then L® is spanned by the polynomial
Py, &) = 3 w02 <€) (x, k% .
0=2j<k

For other irreducible representations L*={0}.

3. Distributions covariant under algebraic representations of SO(p,q).

Now we can use the results in section 1 and 2 to characterize the
distributions on Rj=R"\ {0} which are covariant under irreducible
representations of SO(p,q).

LeMMA 3. Let A be an irreducible representation of SO(p,q) as linear
mappings on the finite dimensional linear space L. Then there are covariant
distributions on Ry if and only if A has the weight (k,0,...,0) and in that
case T s covariant if and only if

where f is an tnvariant distribution on R™ with values in C.
REMARK. If A has the weight (£,0,...,0) every distribution with

values in L can be written as a homogeneous polynomial in £ of degree
k with distributions 7', as coefficients that is

T(2)(8) = Z,To(®) &,

where 7', is symmetric.

Proor. From theorem 1 and lemma 2 it follows that it is sufficient
to prove that Rj has the property (). If x,=(x"...,2,°%) € R", then,
for example, x,°+0 and the function ¢: R* > R” defined by

Y = go(x) = &x), Yy = gplx) =, i k=2

is a diffeomorphism in a neighbourhood of z,. Furthermore
{y' |1y —xy'| <e} where y' = (yy,. . ., U5), ' =(Zs,...,2,) is diffeomorphic
to an open part of Gz, if ¢> 0 is sufficiently small.

Now it remains to characterize the distributions with support in the
origin which are covariant under an irreducible representation 4. If
the distribution 7' has values in L and support in the origin we can write

T(x)(§) = P(D",§) d(x),

where D= (D%,...,D,*%), D, =¢(k)(0[ox,). Furthermore 7T is covariant
if and only if
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P(g1D",g8) = P(I*,€)  for every g€ S0(p,q),

that is, when the polynomial P(z,£) is covariant under 4. Then evidently
P(z,£) € L for every x and consequently

Pz, &) = Q({x,x)) Py, &)

with P, as in lemma 2. But as P is a polynomial it follows if we observe
the construction of P, that @ also is a polynomial and we have proved

LevMMA 4. Let A be an irreducible representation of SO(p,q) as linear
mappings on the finite-dimensional linear space L. There are covariant
distributions T with values in L and support in the origin if and only if
A has the weight (k,0,...,0) and in that case a distribution T is covariant

if and only if T(x)(£) = Q(O) Py(D"8) d(x)
where n
O = 2 e(v) 0%/0%, .

In order to combine lemmas 3 and 4 we now prove
LEMMA 5. Py(x,&) 0%Hé(x)=k! P(DS, &) 1+ 0O+ 0%+ . .. +0¥) d(x)

Proor. At first we observe that P,(z,&)=2P,(&,«) and conrequently
we have Tr, P,(z,&)=0 if we regard P, as a polynomial in x with poly-
nomials in & as coefficients. We put Pu(z,&)=3,a,(&) x, where a &)
is symmetric in «. If ¢ € D(R®) we get after a calculation

O(Py(, &) p(@)) = (Z) Tr, Py(e,) (@) + 3 3.0,(8) @fo,) Dyyglw) +
J=
+ Py(x,&)Op(x) .

Now if we use that Tr, P,(x,&)=0 it follows by induction that if r <k,
then

O"(Py(x, &) p(x)) = ;uzoc ]l,g’juaa(xa/x%. 2y )D,, ... D, O (@),
where ¢, are combinatorial coefficients with ¢,=1. Now the lemma easily
follows.

We have now proved the following theorem.

THEOREM 2. If A is an irreducible representation of SO(p,q) as linear
mappings on the finite-dimensional linear space L then there are distribu-
tions on R™ with values in L which are covariant under A if and only if
A has the weight (k,0,...,0). In that case a distribution T is covariant
if and only if it can be written
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T(x)(§) = f(x) Py(x,§),
where f is an invariant distribution with values in C.

If A is an algebraic representation of SO(p,q) as linear mappings on
the finite-dimensional linear space L it is well known that A4 is reducible
(see, for example, Boerner [1]). Then we can write

L @7” m m’

where m=(my,...,m,), p=[n/2], L, is the invariant subspace which
belongs to the irreducible representation A4,, with weight m, and a,,
are non-negative integers a finite number of which are >0. It is easily
seen that

LP = @0 L)* = @agp. 00 L¥0...00 = Dy Ly”

because L,*={0} if m=(k,0,...,0). The space L* is spanned by
a;, Pp(x, &%), where &= (&% ... &% and 1<j,<a,.

THEOREM 3. If 4 is an algebraic representation of SO(p,q) as linear
mappings on the finite-dimensional linear space L then the distribution T
on R™ with values in L is covariant under A if and only if

(T(x) Z Z a/kfk]k ) Py, ‘f”‘)

k jr=1

where fy, ;, are distributions in R™ with values in C which are invariant

under SO(p,q) and &= (&%,...,6.% &2,.. &2 . ..).
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