VECTORVALUED DISTRIBUTIONS COVARIANT UNDER ALGEBRAIC REPRESENTATIONS OF AN ORTHOGONAL GROUP OF ARBITRARY SIGNATURE

A. TENGSTRAND

0. Introduction.

Let G be a Lie group acting on a C^∞-manifold X and let A be a C^∞-representation of G as linear mappings on a finite-dimensional linear space L. A distribution T on X with values in L is called covariant under A if

$$ A(g)T(x) = T(gx) $$

for every $g \in G$. Suppose that X locally is a product $V \times Y$ where

$$ Y = [0, 1] \times \ldots \times [0, 1] \subseteq R^s $$

and that $V \times \{y\}$ for every $y \in Y$ is an open part of an orbit in X. In this case we are going to prove that, at least locally, a covariant distribution can be written

$$ T(x) = \sum_j f_j(x) \varphi_j(x), $$

where f_j are distributions on X with values in \mathbb{C} which are invariant under G, that is $f_j(gx) = f_j(x)$ for every $g \in G$ and φ_j are C^∞-functions from X to L which are covariant. Then we use this result to get an explicit description of the covariant distributions when $X = R^n$, $G = SO(p, q)$ and A is an algebraic representation of $SO(p, q)$. Here $SO(p, q)$ is the connected component of the unit e of the orthogonal group which leaves the quadratic form

$$ \langle x, x \rangle = \sum_{r=1}^{n-p+q} \epsilon(r) x_r^2, \quad \epsilon(1) = \ldots = \epsilon(p) = 1, \quad \epsilon(p+1) = \ldots = \epsilon(p+q) = -1 $$

invariant. It turns out that the covariant distributions can be written as (1). The invariant distributions f are described in [2] for $p=1$ and in [5] for the remaining p and $q.$

Received November 12, 1968.
1. Covariant distributions on manifolds which locally are product manifolds.

Let the Lie group G act on the C^∞-manifold X and write $x_1 \sim x_2$ if and only if there is $g \in G$ such that $gx_1 = x_2$. In the following we suppose that the following condition is satisfied:

(*) To every $x_0 \in X$ there exist neighbourhoods $U \subseteq X$ and $V \subseteq Gx_0$ and a diffeomorphism $\varphi = \varphi_U : U \rightarrow V \times Y$ such that $p_Y \varphi(x_1) = p_Y \varphi(x_2)$ if and only if $x_1 \sim x_2$. (Here p_Y is the projection $V \times Y \rightarrow Y$.)

It is easily seen that φ can be chosen so that $\varphi(x) = (x, y_0)$ if $x \in V$ and $\varphi(x_0) = (x_0, y_0)$.

Lemma 1. To every $x_0 \in X$ there is a neighbourhood $W \subseteq X$ and a C^∞-function $h : W \times W \rightarrow G$ such that $h(x_1, x_2) x_1 = x_2$ if $x_1, x_2 \in W$ and $x_1 \sim x_2$.

Proof. Choose neighbourhoods $U \subseteq X$, $V \subseteq Gx_0$ and a diffeomorphism $\varphi = \varphi_U$ as above. It is easily seen that there is a neighbourhood $O \subseteq G$ of e such that $gx \in U$ if $\varphi(x) = (x_0, y)$. Define $\alpha : O \times Y \rightarrow U$ by setting $\alpha(g, y) = g \varphi^{-1}(x_0, y)$. The restriction of α to $O \times \{y_0\}$ is then equal to $\varphi^{-1} \circ (\pi \times 1_Y)$, where $\pi : O \rightarrow V$ and $\pi g = gx_0$. It is well-known that $\operatorname{rank} d\alpha(e) = \dim V$ (see, for example, Helgason [3, pp. 110–113]) and this implies that

$$\operatorname{rank} d\alpha(e, y_0) = \dim V + \dim Y = \dim V \times Y.$$

Now it follows that there is a C^∞-function $\beta : W \rightarrow O \times Y$ such that $\alpha \circ \beta = \operatorname{id}_W$ and we can put $h(x_1, x_2) = \gamma(x_2) \gamma(x_1)^{-1}$, where $\gamma = p_O \circ \beta$ and p_O is the projection $O \times Y \rightarrow O$.

If A is a representation of G as linear mappings of the finite-dimensional linear space L we put

$$L^x = \{v \in L ; \quad A(g)v = v \text{ for every } g \in G_x\},$$

where $G_x = \{g \in G ; \quad gx = x\}$.

Let U be an open part of X with compact closure and $C^\infty(U, L)$ the set of all C^∞-functions from U to L. We put

$$N(U) = \{f \in C^\infty(U, L) ; \quad f(x) \in L^x \text{ for every } x \in U\}.$$

$N(U)$ is a module with coefficients in $C^\infty(U, C)$ which is spanned by a finite number of functions φ_j. Evidently it is sufficient to prove this statement in a neighbourhood of every point $x_0 \in X$ since U has compact closure. Choose a neighbourhood W of x_0 and a function h as in lemma 1 and let $\{e_j\}$ be a basis of L^x. Then
\[\psi_j(x) = A(h(x, x_0)) e_j \in C^\infty(W, L) \]

is a basis of \(L^x \) for every \(x \in W \).

If \(g \) is sufficiently close to \(e \in G \) and if \(x \) belongs to a small neighbourhood of \(x_0 \) we have

\[\psi_j(gx) = A(h(gx, x_0)) e_j = A(h(gx, x)) \psi_j(x) = A(g) \psi_j(x) \]

since \(g^{-1} h(gx, x) \in G_x \). Suppose that \(G \) has the Lie-algebra \(\Gamma \). If \(T \) is covariant, we have

\[e^{-\gamma^t T(e^\alpha x)} = T(x) \quad \text{for every } \gamma \in \Gamma, \]

where \(\gamma' = dA(\gamma) \). By differentiation with respect to \(t \) we get

\[\gamma' T(x) = \gamma^+ T(x), \tag{2} \]

where \(\gamma^+ \) is the vectorfield on \(X \) generated by \(\gamma \). On the other hand (2) implies that \(A(g) T = T \circ g \) for every \(g \) in a neighbourhood of \(e \) and consequently for all \(g \) if \(G \) is connected. It is also clear that \(\gamma' \psi_j(x) = \gamma^+ \psi_j(x) \)

when \(x \in W \).

Theorem 1. Let \(T \) be a distribution on \(X \) with values in \(L \) such that

\[\gamma' T = \gamma^+ T \quad \text{for all } \gamma \in \Gamma \tag{3} \]

in the relatively compact open set \(U \subseteq X \). Then

\[T(x) = \Sigma_j f_j(x) \psi_j(x) \quad \text{in } U, \]

where \(f_j \) are distributions on \(X \) with values in \(C \) such that \(\gamma^+ f_j = 0 \) in \(U \) and \(\psi_j \) belongs to \(C^\infty(U, L) \) and has the property \(\gamma' \psi_j = \gamma^+ \psi_j \) in \(U \).

Proof. It is evident that it suffices to prove the theorem in a neighbourhood of every point in \(U \). Let \(x_0 \in U \) and choose a neighbourhood \(U' \subseteq X \) of \(x_0 \) according to (*) and a neighbourhood \(O \subseteq G \) of \(e \) such that \(O U' \subseteq U \). From (3) it is easily seen that \(A(g) T(x) = T(gx) \) in \(U' \) for every \(g \in O \). Let \(V \) be a neighbourhood of \(x_0 \) in \(G x_0 \) and \(\varphi = \varphi_{U'}: U' \to V \times Y \) a diffeomorphism (see *). Clearly we can choose \(U' \) so that there is a function \(h: U' \times U' \to G \) as in lemma 1. Now we put

\[\overline{T} = T \circ \varphi^{-1}, \quad \overline{\varphi} = \varphi \circ g \circ \varphi^{-1} \quad \text{for } g \in O, \quad \overline{h} = h \circ (\varphi^{-1} \times \varphi^{-1}). \]

\(\overline{T} \) is a distribution on \(V \times Y \) such that

\[A(\overline{\varphi}) \circ T = \overline{T} \circ \overline{\varphi} \quad (A(\overline{\varphi}) = A(g)). \]

If \(R^Y_x \) is a regulisator on \(Y \) (see de Rham [4]), then for every \(y \in Y \)
\(\overline{T}_{e,y} = R_{e} V \overline{T}(y) \) is a distribution on \(V \times \{y\} \) which satisfies

\[
A(\overline{h}(z_1, z_2)) \overline{T}_{e,y} = \overline{T}_{e,y} \circ \overline{h}(z_1, z_2)
\]

for every \(z_1 \) and \(z_2 \) in \(V \).

Let \(\omega^\alpha \) be an infinitely differentiable \(m \)-form on \(V \) \((m = \dim V)\) such that

\[
\omega^\alpha \to \delta_{z_0} \quad \text{as} \quad \alpha \to 0
\]

in distribution-sense. If \(\omega^\alpha_z = \omega^\alpha \circ \overline{h}(z_0, z) \) it is easily seen that \(\omega_z \to \delta_z \) in distribution-sense and if \(S = \overline{T}_{e,y} \) we have

\[
\langle S, \omega^\alpha_z \rangle \to S(z) \quad \text{as} \quad \alpha \to 0
\]

in distribution-sense. For every \(z_1 \) and \(z_2 \) in \(V \) we have

\[
A(\overline{h}(z_1, z_2)) \langle S, \omega^\alpha_z \rangle = \langle S \circ \overline{h}(z_1, z_2), \omega^\alpha_z \rangle.
\]

Here the function on the left is a \(C^\infty \)-function and we can put \(z_2 = z \) and get

\[
A(\overline{h}(z_1, z)) \langle S, \omega^\alpha_z \rangle = \langle S, \omega^\alpha_z \circ \overline{h}(z_1, z) \rangle.
\]

But as \(\omega^\alpha_z \circ \overline{h}(z_1, z)^{-1} = \omega^\alpha \circ \overline{h}(z_0, z) \overline{h}(z_1, z)^{-1} = \omega^\alpha_{z_1} \) we have

\[
A(\overline{h}(z_1, z)) \langle S, \omega^\alpha_z \rangle = \langle S, \omega^\alpha_{z_1} \rangle.
\]

Here the function on the left converges to \(A(\overline{h}(z_1, z) \circ S(z)) \) which is independent of \(z \) because the function on the right is independent of \(z \). Furthermore \(A(\overline{h}(z_1, z)) \circ S(z) \) is a \(C^\infty \)-function in \(z_1 \) and as \(\langle S, \omega^\alpha_{z_1} \rangle \to S(z_1) \) we conclude that \(S \in C^\infty(V, L) \). Now we have proved that the distribution \(S = \overline{T}_{e,y} \) is infinitely differentiable in \(z \) and \(y \). The function \(T_{e,y} = \overline{T}_{e,y} \circ \varphi \) is an element of the module \(N(U) \) and consequently we can write

\[
T_{e}(x) = \sum f_{j,e}(x) \psi_j(x),
\]

where \(\psi_j \) are the functions above. As \(\psi_j \) are linear independent it follows that \(f_{j,e} \) converges in \(D'(U) \) to distributions \(f_j \). We have proved that

\[
T(x) = \sum f_j(x) \psi_j(x)
\]

in a neighbourhood of every point in \(U \) and consequently in all of \(U \).

From the construction of \(h \) in lemma 1 and from the proof above it follows that \(f_{j,e} \) only depend on \(y \) and consequently \(\gamma^+ f_{j,e} = 0 \) and then \(\gamma^+ f_j = 0 \).

Remark. The theorem holds for an arbitrary open set \(U \subseteq X \) if there is a finite number of linear independent covariant functions \(\psi_j \) which
span \(N(U)\). If \(U = X\) this implies that the distributions \(f_j\) are invariant under \(G\).

2. Description of \(L^2\) when \(G = SO(p, q)\).

Let \(A\) be an irreducible representation of \(G = SO(p, q)\) as linear mappings of a finite-dimensional linear space \(L\). For every \(x \in \mathbb{R}^n\), \(L^x\) is the direct sum of the one-dimensional subspaces of \(L\) which is invariant under \(A(G_x)\). From Weyl [6] it follows that the representations of \(G_x\), which is isomorphic to \(SO(p', q')\) where \(p' + q' = n - 1\), have degree 1 if and only if they have the weight \((0, \ldots, 0)\). If \(A\) is irreducible it follows from Boerner ([1], p. 251–254) that there are one-dimensional subspaces of \(L\) invariant under \(A(G_x)\) if and only if \(A\) has the weight \((k, 0, \ldots, 0)\) where \(k\) is a positive integer and that there is only one such subspace. If the weight of \(A\) is \((k, 0, \ldots, 0)\) \(L\) is isomorphic to \(\pi_k\), where \(\pi_k\) is the space of all homogeneous polynomials

\[
p(\xi) = \sum_\alpha a_\alpha \xi_\alpha = \sum_\alpha a_{\alpha_1 \ldots \alpha_k} \xi_{\alpha_1} \cdots \xi_{\alpha_k}
\]

in \(\xi = (\xi_1, \ldots, \xi_n)\) of degree \(k\) and where \(a_\alpha\) are symmetric in \(\alpha\) and

\[
\text{Tr}(p) = (\sum_j \epsilon(j) a_{jj^*}) \xi_{j^*} = 0,
\]

where \(\alpha^* = (x_2, \ldots, x_k)\). (See Weyl [6].)

Evidently the polynomials \(\langle \xi, \eta \rangle^j = (\sum_{i=1}^n \epsilon_i \eta_i)^j\) are invariant under \(G\) and the polynomials \(\langle x, \xi \rangle^s = (\sum_{i=1}^n \epsilon_i x_i \xi_i)^s\) are invariant under \(G_x\).

We put

\[
P_{j,k}(x, \xi) = c_{j,k} \langle \xi, \xi \rangle^j \langle x, \xi \rangle^{k - 2j}, \quad 0 \leq 2j \leq k,
\]

where

\[
c_{j,k} = \binom{k}{2j} (2j)! / 2^n.
\]

Then \(P_{j,k}\) is homogeneous in \(\xi\) of degree \(k\) and after a calculation we get

\[
\text{Tr}(P_{j,k}) = \begin{cases} (n + 1) P_{j-1, k-2} + \langle x, x \rangle P_{j-1, k-2} & \text{if } 2j \leq k - 2, \\ (n + 1) P_{j-1, k-2} & \text{if } 2j = k - 1, \\ n P_{j-1, k-2} & \text{if } 2j = k. \end{cases}
\]

Here \(P_{-1, k-2} = 0\).

Now it is easily seen that, if \(u_j = (-1/n + 1)^j\) when \(j < 2k\) and \(u_j = (-1/n + 1)^j (n + 1)/n\) when \(j = 2k\), we have

\[
\text{Tr} \sum_{0 \leq 2j \leq k} u_j \langle x, x \rangle^j P_{j,k}(x, \xi) = 0.
\]

We have proved the following.
Lemma 2. If \(A \) is an irreducible representation of \(SO(p,q) \) with the weight \((k, 0, \ldots, 0) \), then \(L^\xi \) is spanned by the polynomial

\[
P_k(x, \xi) = \sum_{0 \leq 2j \leq k} u_j c_{jk} \langle x, x \rangle^j \langle \xi, \xi \rangle^j \langle x, \xi \rangle^{k-2j}.
\]

For other irreducible representations \(L^x = \{0\} \).

3. Distributions covariant under algebraic representations of \(SO(p,q) \).

Now we can use the results in section 1 and 2 to characterize the distributions on \(R^n_0 = R^n \setminus \{0\} \) which are covariant under irreducible representations of \(SO(p,q) \).

Lemma 3. Let \(A \) be an irreducible representation of \(SO(p,q) \) as linear mappings on the finite dimensional linear space \(L \). Then there are covariant distributions on \(R^n_0 \) if and only if \(A \) has the weight \((k, 0, \ldots, 0) \) and in that case \(T \) is covariant if and only if

\[
T(x)(\xi) = f(x) P_k(x, \xi),
\]

where \(f \) is an invariant distribution on \(R^n \) with values in \(C \).

Remark. If \(A \) has the weight \((k, 0, \ldots, 0) \) every distribution with values in \(L \) can be written as a homogeneous polynomial in \(\xi \) of degree \(k \) with distributions \(T_\alpha \) as coefficients that is

\[
T(x)(\xi) = \sum_\alpha T_\alpha(x) \xi_\alpha,
\]

where \(T_\alpha \) is symmetric.

Proof. From theorem 1 and lemma 2 it follows that it is sufficient to prove that \(R^n_0 \) has the property \((\ast) \). If \(x_0 = (x_1^0, \ldots, x_n^0) \in R^n \), then, for example, \(x_1^0 \neq 0 \) and the function \(\varphi: R^n \rightarrow R^n \) defined by

\[
y_1 = \varphi_1(x) = \langle x, x \rangle, \quad y_k = \varphi_k(x) = x_k \quad \text{if} \quad k \geq 2
\]

is a diffeomorphism in a neighbourhood of \(x_0 \). Furthermore \(\{y' \mid |y' - x_0'| < \varepsilon\} \) where \(y' = (y_2, \ldots, y_n), \ x_0' = (x_2, \ldots, x_n) \) is diffeomorphic to an open part of \(Gx_0 \) if \(\varepsilon > 0 \) is sufficiently small.

Now it remains to characterize the distributions with support in the origin which are covariant under an irreducible representation \(A \). If the distribution \(T \) has values in \(L \) and support in the origin we can write

\[
T(x)(\xi) = P(D^*, \xi) \delta(x),
\]

where \(D^* = (D_1^*, \ldots, D_n^*) \), \(D_k = \varepsilon(k)(\partial/\partial x_k) \). Furthermore \(T \) is covariant if and only if
that is, when the polynomial \(P(x, \xi) \) is covariant under \(A \). Then evidently \(P(x, \xi) \in L^2 \) for every \(x \) and consequently

\[
P'(x, \xi) = Q(\langle x, x' \rangle) P_k(x, \xi)
\]

with \(P_k \) as in lemma 2. But as \(P \) is a polynomial it follows if we observe the construction of \(P_k \) that \(Q \) also is a polynomial and we have proved

Lemma 4. Let \(A \) be an irreducible representation of \(SO(p, q) \) as linear mappings on the finite-dimensional linear space \(L \). There are covariant distributions \(T \) with values in \(L \) and support in the origin if and only if \(A \) has the weight \((k, 0, \ldots, 0)\) and in that case a distribution \(T \) is covariant if and only if

\[
T(x)(\xi) = Q(\Box) P_k(D^2, \xi) \delta(x)
\]

where

\[
\Box = \sum_{\nu=1}^n \epsilon_\nu \partial^2 \partial^2 x_\nu .
\]

In order to combine lemmas 3 and 4 we now prove

Lemma 5. \(P_k(x, \xi) \Box^{k+j} \delta(x) = k! P(D^2_k, \xi) (1 + \Box + \Box^2 + \ldots + \Box^j) \delta(x) \).

Proof. At first we observe that \(P_k(x, \xi) = P_k(\xi, x) \) and consequently we have \(\text{Tr}_x P_k(x, \xi) = 0 \) if we regard \(P_k \) as a polynomial in \(x \) with polynomials in \(\xi \) as coefficients. We put \(P_k(x, \xi) = \sum a_\alpha(\xi) x_\alpha \) where \(a_\alpha(\xi) \) is symmetric in \(x \). If \(\varphi \in D(\mathbb{R}^n) \) we get after a calculation

\[
\Box(P_k(x, \xi) \varphi(x)) = \binom{k}{2} \text{Tr}_x P_k(x, \xi) \varphi(x) + \sum_{j=1}^n \sum a_\alpha(\xi)(x_a(x_\alpha \partial \partial^2 x_{\alpha j}))D_\alpha \varphi(x) + P_k(x, \xi) \Box \varphi(x) .
\]

Now if we use that \(\text{Tr}_x P_k(x, \xi) = 0 \) it follows by induction that if \(r \leq k \), then

\[
\Box^r(P_k(x, \xi) \varphi(x)) = \sum_{\mu=0}^r c_\mu \sum_{j_1, \ldots, j_\mu} a_\alpha(x_a(x_{\alpha i_1} \ldots x_{\alpha i_\mu})D_{\alpha i_1} \ldots D_{\alpha i_\mu} \Box^{r-\mu} \varphi(x) ,
\]

where \(c_\mu \) are combinatorial coefficients with \(c_\mu = 1 \). Now the lemma easily follows.

We have now proved the following theorem.

Theorem 2. If \(A \) is an irreducible representation of \(SO(p, q) \) as linear mappings on the finite-dimensional linear space \(L \) then there are distributions on \(\mathbb{R}^n \) with values in \(L \) which are covariant under \(A \) if and only if \(A \) has the weight \((k, 0, \ldots, 0)\). In that case a distribution \(T \) is covariant if and only if it can be written
\[T(x)(\xi) = f(x) \, P_k(x, \xi), \]
where \(f \) is an invariant distribution with values in \(\mathbb{C} \).

If \(A \) is an algebraic representation of \(SO(p,q) \) as linear mappings on the finite-dimensional linear space \(L \) it is well known that \(A \) is reducible (see, for example, Boerner [1]). Then we can write

\[L = \bigoplus_m a_m L_m, \]
where \(m=(m_1, \ldots, m_p) \), \(p=[n/2] \), \(L_m \) is the invariant subspace which belongs to the irreducible representation \(A_m \) with weight \(m \), and \(a_m \) are non-negative integers a finite number of which are \(>0 \). It is easily seen that

\[L^x = \bigoplus_m a_m L_m^x = \bigoplus a_{(k,0,\ldots,0)} L_{(k,0,\ldots,0)}^x = \bigoplus a_k L_k^x \]
because \(L_m^x = \{0\} \) if \(m \neq (k,0,\ldots,0) \). The space \(L^x \) is spanned by \(a_k \, P_k(x, \xi^{jk}) \), where \(\xi^{jk}=(\xi_1^{jk}, \ldots, \xi_n^{jk}) \) and \(1 \leq j_k \leq a_k \).

Theorem 3. If \(A \) is an algebraic representation of \(SO(p,q) \) as linear mappings on the finite-dimensional linear space \(L \) then the distribution \(T \) on \(\mathbb{R}^n \) with values in \(L \) is covariant under \(A \) if and only if

\[(T(x))(\xi) = \sum_{k} \sum_{j_k=1}^{a_k} a_k f_{k,j_k}(x) \, P_k(x, \xi^{j_k}), \]
where \(f_{k,j_k} \) are distributions in \(\mathbb{R}^n \) with values in \(\mathbb{C} \) which are invariant under \(SO(p,q) \) and \(\xi=(\xi_1^1, \ldots, \xi_n^1, \xi_1^2, \ldots, \xi_n^2, \ldots) \).

References

University of Lund, Sweden