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CONVOLUTIONS OF
MEASURES AND SETS OF ANALYTICITY

D. L. SALINGER! and N. TH. VAROPOULOS

0. Introduction and notation.

In a locally compact abelian group, @, with character group I', we
denote by 4(&) the algebra of functions

1@ = [Fo)=gp dm,

where f € LY(I',dm) with the norm
171 = [ 1f1dm,

dm being the Haar measure of . If E is a closed subset of G, we put
I(B) = {f: fe A(G) and f(x)=0, Yz e E}.
I(E) is a closed ideal of A(@), so we can write
AE) = A(Q)[I(E) .

Since E is the carrier space of A(E), we can identify elements of A(F)
with restrictions to £ of functions in 4(G).

E is called a Helson set if A(E)=Cy(E).

If ¢ is a complex-valued function defined on [~1,1], ¢ is said to
operate on A(E) if o fe A(E), for all fe A(E) whose range is [—1,1].
E is called a set of analyticity if essentially (cf., for example, [8]) only
the analytic functions operate on A(%).

The main results of this paper are theorems 2 and 4. We start by
proving that if the product of two continuous measures on G charges a
set H =@ x G, then E contains arbitrarily large squares. Then, by relating
the product and the convolution of the measures, we achieve an alge-
braic criterion.

Theorem 1 is a known result [9], but the proof given here is more
direct. Theorem 3 was announced in [10, Theorem 9.3.5], but, hitherto,
no proof has been published.

Received June 12, 1968.
1 For the duration of this work, this author was in receipt of a Science Research
Council grant.
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1. Preliminary results.

ProrosiTioN 1. Let K,,K, be locally compact metrisable spaces. Let
1, Ko be continuous regular bounded Borel measures on K, K ,, respectively.
Let F be a uy x py-measurable closed set in K, x K, such that |, x uy|(F) > 0.
Then, for any positive integer n, there exist sets X,,, Y, in K, K, respectively
with

X, =1Y,l=n and X,xY,<F.

Proor. Without loss of generality, we may assume u,,u, positive,
K,,K, compact, supp (u;) =K, supp (up) = K, and u;(K,) = uy(Kp)=1.

There exist continuous maps ¢,: K; - I, t,: K, > I, where I is the
unit interval, such that

MB) = /l’l(tl~l(B)) = Mz(tz_l(B))

for any A-measureable set B<1I, 1 denoting Lebesgue measure. More-
over, we can choose t,,¢, to be homeomorphisms of K;\ N,, K,\ N, onto
INM,, I\ M, respectively, where

pa(N1) = uo(Ny) = A(My) = MM,y =0
and

t(Ny) = My, t(N,) < M,

(cf. [1]). Put F;=F\ (K;xN,) U (N;x K,). Then (u; x uy)(F)>0.
Suppose there exist X,’, Y, <I such that

X, | = 1Y, and X, xY, <t xty,(Fy).
Then X,/<I\M,, Y,'<I\M,, so, if we put
X, =4t1X,), Y,= taH(YL)

we have the result.

It remains to show the result for K;=K,=1I, uyy=p,=1. Let x e F
be a point of density of F with respect to u=2x 1. There exist intervals
I,=[a,b], J,=[c,d], (b—a)=(d—c), with  in the interior of K=1, xJ,,
such that
(1.1) WEnF) > (1-1/n?)u(K).

Now, writing y5 for the characteristic function of F' and Kj; for the
squares of area (b—a)?/n?,

K = [a+i(b—a)/n, a+(i+1)(b—a)/n] x

x [c+jb—a)[n, c+(j+1)(b—a)/n], 4,j=0,...,n—1,
we obtain
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w(KnF) H xr(x,y) dedy = Z pr(w y) dwdy = ” Y(2,y) dedy ,

%,J=0 Koo
where

¥ = EXF(x'!"'(b —a)n, y+j(b—a)n) .

%,J=0

Suppose now that

Y(x,y) £ n?—1 forall (x,y)e K.
Then
pENF) £ ((n2=D)jn2)u(E) = (-1 n?)p(K)

which contradicts (1.1). So,
Y(xg,yy) = n% for some (x,,¥,) € Ko -
But this is just the same as X, x ¥, < F, where
= {z +i(a—b)[n}iz5, = {yo +j(a—b)n}}25,

which proves the proposition.
We now prove a combinatorial lemma.

LemMmA 1. Let there exist a collection {(X,Y )}, of pairs of subsets
of a group G, with |X/|=|Y/|=s. Then there exists a collection
{(Xp Y032, of pairs of subsets of G, with each pair satisfying

a) X, <X/, Y, <Y/ for some s, depending on n,
b) [ Xy =Y ,|=n,
(1.2) ¢) X,nY,=0,
(1.3) d) x+y=2'+y = z=2",y=y Ve,2r'eX,Vyy'el,.

Proor. We shall show that we can choose X, <X,/ and Y,<Y/

where s=n3+1. The case n=1 is clear, so suppose that n>1 and that

sets {&y, ..., 2}, {yy, .. .,y}, t <n, satisfying (1.2) and (1.3) have been cho-
sen. The relation

(1.4) x4y, = o;+Yy, T F x 5,5, k=1,...,t,
is satisfied by #2(¢—1) values of x in @, and the relation
(1.5) x=1y; j=Ll...,¢t,

is satisfied by ¢ values in G. The set X\ {z;,...,2} has more than
3 —t%+t points, so we can choose z,,, from that set such that x,,, satis-
fies neither of (1.4), (1.5). Proceeding similarly for Y,, we obtain
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{@1,. .., 24} Y1, - - Yp4q) satisfying (1.2), (1.3). The lemma follows by
induction.

ProrosiTION 2. Let B be a closed subset of a metrisable locally compact
abelian group G, and let u,v be two continuous bounded regular Borel mea-
sures on G, such that |u»v|(E) > 0. Then there exists a collection {(X,,, Y ) }oo_,
of pairs of disjoint subsets of G, with

X, =1Y,l=n and X,+Y,< E.
Proor. Let E*={(x,y) e GxG: z+yec E}. Since |u*»|(E)>0 gives
| % v|(#) > 0, it follows from proposition 1 that for any positive integer n
there exist sets X, Y,, <@, with |X,|=|Y,|=n, such that X, x Y, < E*.

But X, x Y, <E* means that X, +Y,<Z, and, by lemma 1, we can
assume X, ,Y, to be disjoint.

2. Independent sets and Helson sets.
We recall that a set £ in a group G is independent if
N T+ NeXp+ o oo + 12, =0 = N2y =...=m,2;,=0
for any choice of integers n,,...,n; and distinct points z,,...,z, of K.

THEOREM 1. Let E be an independent closed subset of a metrisable locally
compact abelian group G, and let u,v > 0 be continuous measures on G. Then

luxv|(B) = 0.
Proor. Suppose |u*v|(E)>0. By proposition 2 and lemma 1, there

exist points x;,%,,¥;,Y, € G such that x;+y;, 1,j=1,2, are distinct points
of E. But in view of the identity

(@1 +y1) — (1 +2s) + (@t Ye) — (Yo +2,) = 0,
this contradicts the independence of E.

THEOREM 2. Let B be a Helson set in the locally compact metrisable
abelian group Q. Let p,v be continuous measures on G. Then

|luxv|(E) = 0.

Proor. By a well-known result [7] there exist an integer K > 0, such
that, for all systems (z;...x,)< @, and for each inteter s>0, there are
at most Kns points of £ of the form

o6+ ..+, ,
the «; being integers with
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n
2 o] < 20
1

If |uxv|(E)>0, for any n there exist sets (z;),(y,) €@, ¢,j=1,...,n,
such that all n? points of the form z,+ y; are in E. Taking n> K, we ob-
tain the required contradiction.

3. Sets of analyticity.

We introduce the following definition, which is a modification of
Definition 4.3.1 in [10; Ch. 4, § 3].

DEerintTION. Let X, Y be closed sets of the locally compact abelian
group G, and let m;,m, be two elements of the set {2,3,...,00}. Then
feCXuY)is called an {m,,m,}-function if

fml(x) =1, fmz(?/) =1, VzelX, Vye Y,

where f*(z) denotes |f(z)|. The pair (X, Y) is called an {my,m,}-pair of
the group G if. for every {m,,m,}-function f, there exists a continuous
character y of G with

If(z)—x() <% VzeXuY.

ProposiTION 3. Let G be a locally compact abelian growp. Let
{(X,), Y, )52, be a sequence of pairs of disjoint subsets of @ with |X,'|=
|Y,'|=n. Then there exist a collection {(X,,Y,)}22; of pairs of subsets of
G and a collection of parrs of points {(x,,y,)}:>, with

X, =Y, l=r, X,<X,, Y, <Y, forsomen(r),

and each (X,—z,, Y,—y,) is an {my,my}-pair of G for some my(r), my(r).

‘We shall postpone the proof of this until section 4, in order to proceed
immediately to

THEOREM 3. Let G be a locally compact abelian group. Let E be a compact
subset of G. Let {(X,,Y )} be a sequence of pairs of disjoint subsets of G
such that

X, =Y, l=n and X,+Y,< K.

Then E is a set of analyticity [10; Theorem 9.3.5].

Proor (cf., for example, [3]). We shall show that, for any ¢ >0, there
exists a real function f e A(E) with

Ifla=¢ and (e, > e,
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where « > 0 is independent of t. This shows (cf. [6]) that F is a set of
analyticity. We may suppose, by lemma 1, that

z+y=a'+y = x=2",y=y Vz,2'€¢X,, Vy,ye€Y,,n=12,....

We may also suppose, by proposition 3, that there exists a collection
{(,,9,)}7 of points of & such that each {X,—,,Y,—y,}is an {my,m,}-
pair of ¢ for some m,,m,. Then, by [10, Ch. 4, § 3], [5],

C(Xn”'xn) ® O(Yn"yn) = A(Xn+ Yn_xn_yn)
with

IIA

I g < 1l

.. s = 36].. .]|® (36 is an arbitrary constant) .

Hence C(X,)®C(Y,)~A(X,+7Y,) with the same norm equivalence.
Let D* denote the product of countably many copies of Z,, the group
of two elements. Given t> 0, there exists a real f, € A(D*) with

Ifille =t and  [eifyll > e,

where >0 is independent of ¢, cf. [2]. So, for r large enough, there
exists a real function h € A(Z,") with

B <t and  [ett|| > efr2t,
The map M: A(Z,") — O(Zgr)é)O(sz) defined by
My(x,y) = g(x+Yy)

is an isometric injection [10, Ch. 8]. But C(Z,")~C(X,) and C(Y,)
for n=27, so there exists a real function kt € 4(X, + Y,) with

k]| £ 36¢ and ||| > eft2.
Hence there exists a real function f e A(F) with

Iflaem <t and || > e,
where o= "74p.

From theorem 3 and proposition 2 we deduce

THEOREM 4. Let E be a compact subset of a metrisable locally compact
abelian group G. Let u,v be continuous regular bounded Borel measures
on G. Then

juxv|(E)>0 = E is a set of analyticity.

We note that theorem 2 is an immediate consequence of theorem 4.
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4. The proof of proposition 3.

We require some preliminary notations and lemmas.

T will denote the group of complex numbers of unit modulus under
the operation of multiplication. We use the additive convention for all
other abelian groups. The symbols X, Y, will denote sets containing
precisely r elements.

DEriNtrions. 4 set X,= {4, .., ™ T, is called g-lacunary for
some ¢>1 if
1) lojafogl > q, j=1,...,r—1,

ii) |&,| < 1/(3n).
A set X,<T will be called an oco-set if, given any function f: X, - T,
there exists a continuous character y of 7' with

lx()—f(®)| <} forall zeX,.

If @ is a locally compact abelian group G, a set X, <G will be called a
K ,-set for some prime number p, if, given any function f: X, -~ T with
fP(x)=1 for all x € X,, there exists a continuous character y of G with

2(x) = f(x) forallzeX,.

Levma 2. If X,={e",.. . ,e™} T is a g-lacunary set for an integer
q>3n+2, then it is an occ-set.

Proor. Let f: X, — T be a given function. Since |«,| < 1/(3%), there
exists a set S; of consecutive integers satisfying

[efma1__fefm )| < & forall nel,;
and
1 = 18] = [2/B3=]xy))]
Now
[2/(B |y )llors] 2 (2/37) [ovafovs] — [oxal 2 2¢/(3m) — [oxel 2 2,

so0 there exists a subset S, of consecutive integers of §, satisfying

Ie“'“”“z—f(ei""‘")] <} forall nesS,
and
1 £ |8y = [2/(3]ayl)] -

Continuing thus, any member of 8, defines a character y such that

(@) —fe)] < 3, j=1,...r.

Lemma 3. Let g>1 and K > 6n be integers. For any integer r>0, let
n=K(2q)" and let X" be the set
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’ n tnai\n
X, ={gfi={™h T,

where the x; are distinct. Then we can choose a subset X, ={x;}}_1 of distinct
points of X, and a point x; of X,," such that X ;" is q-lacunary.

0
Proor. Clearly, by picking a subset of X, if necessary, we can assume

We now proceed by induction, starting trivially.
Suppose that, from any subset of X’ with (2¢)s-! elements, we can pick
a subset X, ; and a point z € X’ such that X,_,z-!is ¢g-lacunary. Let
Y <X, ' have (29)¢ elements. We may suppose, without loss of generality,
that
= {w; }(2‘1)3 with o; <4y

Partition Y into 2¢ sets of consecutive points by putting

ys—1

Ve = @88 hegr1n b =1,...,29.
Let & be such that
(4.1) [ ko1 — Fp-pege-1al = 1, say,

is minimal. Choose a subsequence {z; }>1,<Y* and a point z; € Y*
such that {z; 27'}71, is g-lacunary. If h=<gq, put x; =xg,s; if h>g put
x; =x;. Then

Js
—

lovj,— i) > gl and oy, —og | S 1

by (4.1), so {z; ;;1 ¢.—1 18 g-lacunary. This completes the induction.

LemmA 4. Let X,,,Y,, be g-lacunary subsets of T'. Then we can pick
X, =X,,, Y, <X,, such that X,0Y, is g-lacunary.

Proor. Put X,.={x,}3={"™¥, Y, ={y,}¥={"). We choose
{y;2" by the following method. Choose
yi=0 i |aoZBy
=p1 At oyl > Byl .
Suppose now that y,,...,y, t<2r, have been chosen and that, without

loss of generality, y,=«;, and the last 8 chosen was g; (the symbol g,
denoting that no § has as yet been chosen). There are four cases:

i) if r elements of {x;} have been chosen put y;,;=/f.3,
ii) if » elements of {#,} have been chosen put y,,; =041,

and if neither i) nor ii), then



CONVOLUTIONS OF MEASURES AND SETS OF ANALYTICITY 13

ii) if |0l S [Bresl PUb Y1 =041,
iv) if o i0] > |Breal PUL Yip1=PBres -

It is clear that this process is possible and yields the desired result.

Now we introduce a few more notations and definitions.

oo

7% =TI Ty

will denote the direct product of countably many copies of 7'
ﬂj: Tw —> T]

will denote the canonical projections and #;: T'; > T'®, the canonical
injections.

Z,(q) will denote the cyclic group of order ¢ embedded in 7;(7;). If
g=o0, Z,(q) will denote an arbitrary but fixed embedding of the group
of integers in 7;(7';).

Let S be the set of all numbers of the form p* where p runs through
the primes and h=~h(p) is the maximal integer with p®<3n. Then H
will denote the group

T (TTZ™).
8§ \j=1

and f,, will denote the canonical projection

ot H —>1_I1Zj(ph) .
J=
Since

H = jIjI (T 20),

we shall identify H with its natural image in 7' (as explained above).

DeriNiTION. A set X, ={z,,...,2,}<T* will be called co-triangular if
there exist ¢;,...,%, such that for 1 <j<t<r, 1sm=[3x],
(4.2) i) ”ij(xt) =1,

i) {m;(x)}™ + 1.
A set X,={z,,...,x,}<H<T® will be called p*-triangular for some
prime p and some k< A(p), if

£(X,) < TI Z,(0%)

=1

and if there exist 4,,...,7, such that for 1£j<{=r,
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1) nijfp(xt) =1 3

ii) o fp(PFay) + 1

A set X, T will be called triangular if it is either oco-triangular or p*-
triangular, for some p and k, and 1,,...,¢, will be called the determining
co-ordinates of X .

(4.3)

Lemma 5. a) Let X,={z,,...,2,} be an co-triangular set in T°. Then
X, is an oo-set.
b) Let X,={x,,...,x,} be a p*-triangular set in T®. Then X, is a K ,-set.

Proor. a) Let f: X,—>7T be a given function. Writing y, for
xodomy: T - T;, we can choose a character y of T with

2 = for i14q,...,%,,

2 (2,) —f (2,)

1
1
3

A

by ii) of (4.2),
|Xi,-._1(xr—1) xi,-(xr—l) _f(xr—l)[ < .}i ’
and so on. Thus, taking into account i) of (4.2),
lx(x)—f(x)] < 4 forall zeX,.
b) Let f: X, — T satisfy fP(z)=1 for all xe X,. Then we choose yx
such that
Xi,-(xr) = f(xr) ’

(4.4)
xi,_l(xr—l) X'i,-(xr—l) = f(xr-—l) ’

and so on, where
if xﬁi,.(e"""‘) = ¢ then n=0 (modgq),

where g=p," ... pMp*-1, pt eS8 and p,+p. This is possible, by (4.3),
and since every factor of (4.4) is a pth root of unity.

LemMMA 6. Let k be a fixed integer and let X,," < T be fixed sets of n points
of T® satisfying
(XN <k forall i,n=1,2,....
Then, given r > 0, and for large enough n, there exists a subset X, of r points
of X,/ and x € T® such that X,—w is triangular.

Proor. Suppose there exists an ¢; such that there exist z,2" € 7; (X,,’)
with m,(m(x—2a'))+1 for any integer m < 3x. Select X'< X,," with
m(x) =xt e Ty forallzeX?

and
| XY > nfk.
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Choose z; € (X, \ X1) —7, (+') such that
7, (mx;) + 1 for all integers m <3 .
Now, if we can, we select i,, X2, 2*(e T};,) and

%y € (XN X3?)—7, (21) — 7, (2?),
where
7;,(maz,) £ 1 for all integers m < 3x

and | X2 >n/k% Then
ﬂ,,:l(xz) = ]. .

So we either obtain a set X,<X,'—(f&;,(x')+ ... +&,;_,(x"*)) which is
oo-triangular, or, for some ¢, we can no longer find j such that there exist
z,x’ € Xt with s;(m(x—2')) %1 for all integers m < 3z. Then, by transla-
tion, we can assume X‘<H. To simplify the notation we shall omit
the index ¢.

For some prime p, |f,(X)|=n12|X |*. As before, let % be the largest
integer such that p"< 3.

If h=1, it is clear that we can use the method of the earlier part of
this lemma to choose a subset X, of X and x € X such that X,—z is
p-triangular.

If A>1, consider the map

s T 207 - T1 207 [T1 2,00 = TT 24
=1 Jj=1 J=1 J=1

If |gf,(X)| = k", we choose X°c X with
(4.5) gfp(@) *+ gf,(x') for all x # 2’ in X0,

and [X° zk". We can then, as before, choose X,<X? and x € T such
that X, —x is ph-triangular.

If |gf,(X)| <k, then there exists a subset X of X such that | fp(X )| >
nt/kr and

9fp@) = gf,(2') forallz,a'eX.
Let 2’ € X, then
fo(X~a"") = Il'[Zj(p"'l) .

Continuing we obtain a set X° with

fp(XO—f) < ]_ii- Z’(pt) )

some ¢, 12t <h—1, some Z, with |f,(X?)|>n1/k?" and
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afp(@) * gf,(x) forall x+a' € X0-Z,

where g denotes the canonical map

g: TIZ) > T1 %) .
J=1 J=1

If » is large enough, |f,(X°)|> k", so we can choose X,<X° and x e T®
such that X, —z is p'-triangular.

For convenience of reference, we now repeat the statement of

ProposiTIiON 3. Let G be a locally compact abelian group. Let
(X, Y, )., be a sequence of pairs of disjoint subsets of G with |X,'| =

| Y, | =n. Then there exists a collection {(X,,Y )}, of pairs of subsets of
G and a collection of pairs of points {(,,y,)}>, with

X =1Y,|=r, X, <X, Y, <Y, [forsomen(r),
and each (X,—x,,Y,—y,) is an {in;,m,}-pair of G for some m(r), my(r).

Proor. Let G, be the subgroup of G generated by X,’uY,’. Since G,,
is finitely generated, it is of the form ITj.,Z;(g;). By embedding Z,(q;)
in T';, we achieve an (algebraic) embedding of G, in T'°. We shall identify
X,', Y, with their images in 7'®. There are three cases:

1. For any s> 0, there exist n,,j such that |7,(X,’)|>s, |7;(Y,')] >s.

2. For any s> 0, there exists n,7 such that |=,(X,’)|>s, but for all
J.m, |m; (Y, )| <k where k is an integer independent of s, n.

3. There exist a k> 0 such that |7,(X, )| <k and |7, (Y, ) <k Vi,n.

These cases are exhaustive (after possible interchange of X,’ and Y ’).
Case 1 divides into two subcases.
la. For any s> 0, there exist 7,n such that |7;(X ") >s and |7 (Y ') >s.
By Lemmas 3 and 4, we find X,<X,’, Y, <Y, and z,,y,€G,cT®
such that
{ni(Xr - xr)} U {ni( Yr - yr)} is Q'la‘cuna‘ry .

By lemma 2, (X,—x,,Y,—y,) is an {c0,o0}-pair of 7.
1b. For any s> 0, there exist ¢,n such that |7,(X,’)| <s, but there is a
k>0 such that
(X )l > 8 = |m(Y) < k.

However, there exist j,n such that

|m(X, ) > 8 and |my(Y,)|>s, iF7j.
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Taking s large enough, and fixing ¢ and j, we choose a subset Y< Y’
guch that

m(y') = m(y) = y'say, Vyy'el,
and
[ (Y)| > s.
Then, by lemma 3, we can find X, < X,’, Y, < Y,,x € T;,y € T such that
n(X,—x,), 7(Y,—y, are g-lacunary,
where
T, = Tx), Y, = Zyys)+7Y)
Then, if f: (X,—z,) U(Y,—y,) — T is a given function, there exists, by
lemma 2, a character y on 7 such that

) —fw)l <% VYyeY,-y,
and

IXi(x)Xj(x) "f(x)l < % Yz e Xr_xr .
So (X,—z,,Y,—y,) is an {co,oc}-pair of T,

Cask 2. Taking s large enough, we can find arbitrary large » such
that, for some i(n), [7(X,')|>s. As in 1b we select Y <Y, such that

7y = n(y) Yyye¥
and
| Y| =z nfk.

By Lemmas 3 and 6, we select subsets X, <X,’, Y < Y and z,,y,€G,<T?
such that n;(X,—z,) is g-lacunary, Y ,—y, is triangular and, in addition,

wy) =1 VyelY,—y,.

Then, by lemmas 2 and 5, the pair (X,~x,, Y, —y,) is an {c0, 7, }-pair for
some M.

Cask 3. Using lemma 6, it is easy to see that, for n large enough we
can choose sets X,<X,’, Y,<Y,’ and points z,,9,€ @,<T* such
that X,—=z,, Y,—y, are triangular, with the additional condition that,
if 45, 238 J1s- - -»]r, are the determining coordinates for X, —«,, Y, -y,
respectively, then

ﬂ’it(y) =1 Vye Yr_yr, t = 1,. Ty,
) =1 VweX, —z,.

This ensures, by lemma 6, that (X,—=,,Y,—y,) forms an {in;,7,}-pair
of T for some m,, m,.

Math, Scand. 25 — 2
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To conclude the proof of the proposition, we need only remark that,
if (X,,Y,)<=G,=T? is an {my,my}-pair for T®, it is an {m,m,}-pair
for @. This follows since, if X is a finite set in G, and y is an (algebraic)
character on @, there exist, for any ¢> 0, a continuous character ¥ on G,
with

W@)-%@) <& VeeX,
cf. [4].
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