CONVOLUTIONS OF MEASURES AND SETS OF ANALYTICITY

D. L. SALINGER¹ and N. TH. VAROPOULOS

0. Introduction and notation.

In a locally compact abelian group, G, with character group Γ , we denote by A(G) the algebra of functions

$$f(g) = \int_{\Gamma} \hat{f}(\gamma)(-g,\gamma) dm ,$$

where $\hat{f} \in L^1(\Gamma, dm)$ with the norm

$$||f|| = \int |\hat{f}| \, dm \, ,$$

dm being the Haar measure of Γ . If E is a closed subset of G, we put

$$I(E) = \{f : f \in A(G) \text{ and } f(x) = 0, \forall x \in E\}.$$

I(E) is a closed ideal of A(G), so we can write

$$A(E) = A(G)/I(E) .$$

Since E is the carrier space of A(E), we can identify elements of A(E) with restrictions to E of functions in A(G).

E is called a Helson set if $A(E) = C_0(E)$.

If φ is a complex-valued function defined on [-1,1], φ is said to operate on A(E) if $\varphi \circ f \in A(E)$, for all $f \in A(E)$ whose range is [-1,1]. E is called a set of analyticity if essentially (cf., for example, [8]) only the analytic functions operate on A(E).

The main results of this paper are theorems 2 and 4. We start by proving that if the product of two continuous measures on G charges a set $E \subseteq G \times G$, then E contains arbitrarily large squares. Then, by relating the product and the convolution of the measures, we achieve an algebraic criterion.

Theorem 1 is a known result [9], but the proof given here is more direct. Theorem 3 was announced in [10, Theorem 9.3.5], but, hitherto, no proof has been published.

Received June 12, 1968.

¹ For the duration of this work, this author was in receipt of a Science Research Council grant.

1. Preliminary results.

Proposition 1. Let K_1, K_2 be locally compact metrisable spaces. Let μ_1, μ_2 be continuous regular bounded Borel measures on K_1, K_2 , respectively. Let F be a $\mu_1 \times \mu_2$ -measurable closed set in $K_1 \times K_2$ such that $|\mu_1 \times \mu_2|(F) > 0$. Then, for any positive integer n, there exist sets X_n, Y_n in K_1, K_2 respectively with

$$|X_n| = |Y_n| = n$$
 and $X_n \times Y_n \subset F$.

PROOF. Without loss of generality, we may assume μ_1, μ_2 positive, K_1, K_2 compact, supp $(\mu_1) = K_1$, supp $(\mu_2) = K_2$ and $\mu_1(K_1) = \mu_2(K_2) = 1$.

There exist continuous maps $t_1: K_1 \to I$, $t_2: K_2 \to I$, where I is the unit interval, such that

$$\lambda(B) = \mu_1(t_1^{-1}(B)) = \mu_2(t_2^{-1}(B))$$

for any λ -measureable set $B \subseteq I$, λ denoting Lebesgue measure. Moreover, we can choose t_1, t_2 to be homeomorphisms of $K_1 \setminus N_1$, $K_2 \setminus N_2$ onto $I \setminus M_1$, $I \setminus M_2$ respectively, where

$$\mu_1(N_1) = \mu_2(N_2) = \lambda(M_1) = \lambda(M_2) = 0$$

and

$$t_1(N_1) \subseteq M_1, \quad t_2(N_2) \subseteq M_2$$

(cf. [1]). Put $F_1 = F \setminus (K_1 \times N_2) \cup (N_1 \times K_2)$. Then $(\mu_1 \times \mu_2)(F) > 0$. Suppose there exist $X_n', Y_n' \subseteq I$ such that

$$|X_n'| = |Y_n'|$$
 and $X_n' \times Y_n' \subseteq t_1 \times t_2(F_1)$.

Then $X_n' \subseteq I \setminus M_1$, $Y_n' \subseteq I \setminus M_2$, so, if we put

$$X_n = t_1^{-1}(X_n'), \quad Y_n = t_2^{-1}(Y_n'),$$

we have the result.

It remains to show the result for $K_1=K_2=I$, $\mu_1=\mu_2=\lambda$. Let $x\in F$ be a point of density of F with respect to $\mu=\lambda\times\lambda$. There exist intervals $I_n=[a,b],\ J_n=[c,d],\ (b-a)=(d-c),$ with x in the interior of $K=I_n\times J_n$, such that

(1.1)
$$\mu(K \cap F) > (1 - 1/n^2)\mu(K).$$

Now, writing χ_F for the characteristic function of F and K_{ij} for the squares of area $(b-a)^2/n^2$,

$$K_{ij} = [a+i(b-a)/n, a+(i+1)(b-a)/n] \times$$

$$\times [c+j(b-a)/n, c+(j+1)(b-a)/n], \quad i,j=0,\ldots,n-1,$$

we obtain

$$\mu(K \cap F) = \iint_K \chi_F(x,y) \, dx \, dy = \sum_{i,j=0}^{n-1} \iint_{K_{ij}} \chi_F(x,y) \, dx \, dy = \iint_{K_{00}} \Psi(x,y) \, dx \, dy ,$$

where

$$\Psi = \sum_{i,j=0}^{n-1} \chi_F(x+i(b-a)/n, y+j(b-a)/n)$$
.

Suppose now that

$$\Psi(x,y) \leq n^2 - 1$$
 for all $(x,y) \in K_{00}$.

Then

$$\mu(K \cap F) \le ((n^2 - 1)/n^2)\mu(K) = (1 - 1/n^2)\mu(K)$$
,

which contradicts (1.1). So,

$$\Psi(x_0, y_0) = n^2$$
 for some $(x_0, y_0) \in K_{00}$.

But this is just the same as $X_n \times Y_n \subset F$, where

$$X_n = \{x_0 + i(a-b)/n\}_{i=0}^{n-1}, \quad Y_n = \{y_0 + j(a-b)/n\}_{i=0}^{n-1},$$

which proves the proposition.

We now prove a combinatorial lemma.

LEMMA 1. Let there exist a collection $\{(X_s', Y_s')\}_{s=1}^{\infty}$ of pairs of subsets of a group G, with $|X_s'| = |Y_s'| = s$. Then there exists a collection $\{(X_n, Y_n)\}_{n=1}^{\infty}$ of pairs of subsets of G, with each pair satisfying

- a) $X_n \subset X_s'$, $Y_n \subset Y_s'$ for some s, depending on n,
- b) $|X_n| = |Y_n| = n$,
- (1.2) c) $X_n \cap Y_n = \emptyset$,
- (1.3) d) $x+y=x'+y' \Rightarrow x=x', y=y' \forall x, x' \in X_n \forall y, y' \in Y_n$.

PROOF. We shall show that we can choose $X_n \subset X_s'$ and $Y_n \subset Y_s'$ where $s = n^3 + 1$. The case n = 1 is clear, so suppose that n > 1 and that sets $\{x_1, \ldots, x_t\}$, $\{y_1, \ldots, y_t\}$, t < n, satisfying (1.2) and (1.3) have been chosen. The relation

$$(1.4) x+y_i = x_j+y_k, x \neq x_j, i,j,k=1,\ldots,t,$$

is satisfied by $t^2(t-1)$ values of x in G, and the relation

$$(1.5) x = y_i, \quad j = 1, \ldots, t,$$

is satisfied by t values in G. The set $X_s \setminus \{x_1, \ldots, x_t\}$ has more than $t^3 - t^2 + t$ points, so we can choose x_{t+1} from that set such that x_{t+1} satisfies neither of (1.4), (1.5). Proceeding similarly for Y_s , we obtain

 $\{x_1,\ldots,x_{t+1}\},\ \{y_1,\ldots,y_{t+1}\}\$ satisfying (1.2), (1.3). The lemma follows by induction.

PROPOSITION 2. Let E be a closed subset of a metrisable locally compact abelian group G, and let μ, ν be two continuous bounded regular Borel measures on G, such that $|\mu*\nu|(E)>0$. Then there exists a collection $\{(X_n,Y_n)\}_{n=1}^{\infty}$ of pairs of disjoint subsets of G, with

$$|X_n| = |Y_n| = n$$
 and $X_n + Y_n \subseteq E$.

PROOF. Let $E^* = \{(x,y) \in G \times G \colon x+y \in E\}$. Since $|\mu * \nu|(E) > 0$ gives $|\mu \times \nu|(E) > 0$, it follows from proposition 1 that for any positive integer n there exist sets $X_n, Y_n \subset G$, with $|X_n| = |Y_n| = n$, such that $X_n \times Y_n \subset E^*$. But $X_n \times Y_n \subset E^*$ means that $X_n + Y_n \subset E$, and, by lemma 1, we can assume X_n, Y_n to be disjoint.

2. Independent sets and Helson sets.

We recall that a set E in a group G is independent if

$$n_1 x_1 + n_2 x_2 + \ldots + n_k x_k = 0 \implies n_1 x_1 = \ldots = n_k x_k = 0$$

for any choice of integers n_1, \ldots, n_k and distinct points x_1, \ldots, x_k of E.

THEOREM 1. Let E be an independent closed subset of a metrisable locally compact abelian group G, and let $\mu, \nu > 0$ be continuous measures on G. Then

$$|\mu * \nu|(E) = 0.$$

PROOF. Suppose $|\mu*v|(E)>0$. By proposition 2 and lemma 1, there exist points $x_1, x_2, y_1, y_2 \in G$ such that x_i+y_j , i,j=1,2, are distinct points of E. But in view of the identity

$$(x_1+y_1)-(y_1+x_2)+(x_2+y_2)-(y_2+x_1)=0$$
,

this contradicts the independence of E.

Theorem 2. Let E be a Helson set in the locally compact metrisable abelian group G. Let μ, ν be continuous measures on G. Then

$$|\mu * \nu|(E) = 0.$$

PROOF. By a well-known result [7] there exist an integer K > 0, such that, for all systems $(x_1
ldots x_n) \subseteq G$, and for each integer s > 0, there are at most Kns points of E of the form

$$\alpha_1 x_1 + \ldots + \alpha_n x_n ,$$

the α_i being integers with

$$\sum_{1}^{n} |\alpha_i| < 2^s.$$

If $|\mu \times \nu|(E) > 0$, for any n there exist sets $(x_i), (y_j) \subseteq G$, $i, j = 1, \ldots, n$, such that all n^2 points of the form $x_i + y_j$ are in E. Taking n > K, we obtain the required contradiction.

3. Sets of analyticity.

We introduce the following definition, which is a modification of Definition 4.3.1 in [10; Ch. 4, § 3].

DEFINITION. Let X, Y be closed sets of the locally compact abelian group G, and let m_1, m_2 be two elements of the set $\{2, 3, \ldots, \infty\}$. Then $f \in C(X \cup Y)$ is called an $\{m_1, m_2\}$ -function if

$$f^{m_1}(x) = 1, \quad f^{m_2}(y) = 1, \quad \forall x \in X, \ \forall y \in Y,$$

where $f^{\infty}(z)$ denotes |f(z)|. The pair (X, Y) is called an $\{\overline{m_1, m_2}\}$ -pair of the group G if, for every $\{m_1, m_2\}$ -function f, there exists a continuous character χ of G with

$$|f(z)-\chi(z)|<\frac{1}{3} \quad \forall z\in X\cup Y.$$

PROPOSITION 3. Let G be a locally compact abelian group. Let $\{(X_n', Y_n')_{n=1}^{\infty} \text{ be a sequence of pairs of disjoint subsets of } G \text{ with } |X_n'| = |Y_n'| = n$. Then there exist a collection $\{(X_r, Y_r)_{r=1}^{\infty} \text{ of pairs of subsets of } G \text{ and a collection of pairs of points } \{(x_r, y_r)_{r=1}^{\infty} \text{ with } \}$

$$|X_r|\,=\,|\,Y_r|\,=\,r,\quad X_r\,\subset\,X_n{'},\ Y_r\,\subset\,Y_n{'}\qquad for\ some\ n(r)\;,$$

and each (X_r-x_r, Y_r-y_r) is an $\{\overline{m_1,m_2}\}$ -pair of G for some $m_1(r)$, $m_2(r)$.

We shall postpone the proof of this until section 4, in order to proceed immediately to

THEOREM 3. Let G be a locally compact abelian group. Let E be a compact subset of G. Let $\{(X_n, Y_n)\}_{n=1}^{\infty}$ be a sequence of pairs of disjoint subsets of G such that

$$|X_n| = |Y_n| = n$$
 and $X_n + Y_n \subseteq E$.

Then E is a set of analyticity [10; Theorem 9.3.5].

PROOF (cf., for example, [3]). We shall show that, for any t > 0, there exists a real function $f \in A(E)$ with

$$||f||_A \leq t$$
 and $||e^{if}||_A > e^{\alpha t}$,

where $\alpha > 0$ is independent of t. This shows (cf. [6]) that E is a set of analyticity. We may suppose, by lemma 1, that

$$x+y=x'+y' \Rightarrow x=x', y=y' \quad \forall x, x' \in X_n, \ \forall y, y' \in Y_n, \ n=1,2,\ldots$$

We may also suppose, by proposition 3, that there exists a collection $\{(x_n,y_n)\}_1^{\infty}$ of points of G such that each $\{X_n-x_n,Y_n-y_n\}$ is an $\{\overline{m_1,m_2}\}$ -pair of G for some m_1,m_2 . Then, by [10, Ch. 4, § 3], [5],

$$C(X_n - x_n) \, \hat{\otimes} \, C(Y_n - y_n) \cong A(X_n + Y_n - x_n - y_n)$$

with

$$\begin{split} \|\ldots\|_{\widehat{\bigotimes}} & \leq \|\ldots\|_{\mathcal{A}} \;, \\ \|\ldots\|_{\mathcal{A}} & \leq 36\|\ldots\|_{\widehat{\bigotimes}} \quad \text{(36 is an arbitrary constant)} \;. \end{split}$$

Hence $C(X_n) \widehat{\otimes} C(Y_n) \cong A(X_n + Y_n)$ with the same norm equivalence. Let D^{∞} denote the product of countably many copies of Z_2 , the group of two elements. Given t > 0, there exists a real $f_1 \in A(D^{\infty})$ with

$$||f_1||_A \leq t$$
 and $||e^i f_1|| > e^{\beta t}$,

where $\beta > 0$ is independent of t, cf. [2]. So, for r large enough, there exists a real function $h \in A(Z_2^r)$ with

$$||h|| \le t$$
 and $||e^{ih}|| > e^{\beta/2t}$.

The map $M: A(Z_2^r) \to C(Z_2^r) \hat{\otimes} C(Z_2^r)$ defined by

$$Mg(x,y) = g(x+y)$$

is an isometric injection [10, Ch. 8]. But $C(Z_2^r) \cong C(X_n)$ and $C(Y_n)$ for $n = 2^r$, so there exists a real function $k \in A(X_n + Y_n)$ with

$$||k|| \le 36 t$$
 and $||e^{ik}|| > e^{\beta t/2}$.

Hence there exists a real function $f \in A(E)$ with

$$||f||_{A(E)} < t$$
 and $||e^{if}|| > e^{\alpha t}$,

where $\alpha = 74\beta$.

From theorem 3 and proposition 2 we deduce

Theorem 4. Let E be a compact subset of a metrisable locally compact abelian group G. Let μ, ν be continuous regular bounded Borel measures on G. Then

$$|\mu*\nu|(E)>0 \implies E \text{ is a set of analyticity.}$$

We note that theorem 2 is an immediate consequence of theorem 4.

4. The proof of proposition 3.

We require some preliminary notations and lemmas.

T will denote the group of complex numbers of unit modulus under the operation of multiplication. We use the additive convention for all other abelian groups. The symbols X_r, Y_r will denote sets containing precisely r elements.

Definitions. A set $X_r = \{e^{i\pi\alpha_1}, \dots, e^{i\pi\alpha_r}\} \subset T$, is called *q-lacunary* for some q > 1 if

i)
$$|\alpha_{j+1}/\alpha_j| > q$$
, $j = 1, ..., r-1$,

ii)
$$|\alpha_r| < 1/(3\pi)$$
.

A set $X_r \subset T$ will be called an ∞ -set if, given any function $f: X_r \to T$, there exists a continuous character χ of T with

$$|\chi(x)-f(x)|<\frac{1}{3}$$
 for all $x\in X_r$.

If G is a locally compact abelian group G, a set $X_r \subset G$ will be called a K_p -set for some prime number p, if, given any function $f: X_r \to T$ with $f^p(x) = 1$ for all $x \in X_r$, there exists a continuous character χ of G with

$$\chi(x) = f(x)$$
 for all $x \in X_r$.

Lemma 2. If $X_r = \{e^{i\pi\alpha_1}, \ldots, e^{\pi\alpha_r}\} \subseteq T$ is a q-lacunary set for an integer $q > 3\pi + 2$, then it is an ∞ -set.

PROOF. Let $f: X_r \to T$ be a given function. Since $|\alpha_1| < 1/(3\pi)$, there exists a set S_1 of consecutive integers satisfying

$$|e^{i\pi n\alpha_1} - f(e^{i\pi\alpha_1})| < \frac{1}{3}$$
 for all $n \in S_1$

and

$$1 \le |S_1| \le [2/(3\pi |\alpha_1|)]$$
.

Now

$$[2/(3\pi |\alpha_1|)]|\alpha_2| \ge (2/3\pi)|\alpha_2/\alpha_1| - |\alpha_2| \ge 2q/(3\pi) - |\alpha_2| \ge 2,$$

so there exists a subset S_2 of consecutive integers of S_1 satisfying

$$|e^{i\pi n\alpha_2}-f(e^{i\pi\alpha_2})|<\frac{1}{3}$$
 for all $n\in S_2$

and

$$1 \le |S_2| \le [2/(3\pi |\alpha_2|)]$$
.

Continuing thus, any member of S_r defines a character χ such that

$$|\chi(e^{i\alpha_j})-f(e^{i\alpha_j})|<\frac{1}{3}, \quad j=1,\ldots,r.$$

LEMMA 3. Let q > 1 and $K > 6\pi$ be integers. For any integer r > 0, let $n = K(2q)^r$ and let X_n' be the set

$$X_n' = \{x_i\}_1^n = \{e^{in\alpha_i}\}_1^n \subset T$$
,

where the x_j are distinct. Then we can choose a subset $X_r = \{x_k\}_{k=1}^r$ of distinct points of X_n' and a point x_{j_0} of X_n' such that $X_r x_{j_0}^{-1}$ is q-lacunary.

Proof. Clearly, by picking a subset of X_n' if necessary, we can assume

$$|\alpha_j - \alpha_i| < 1/(3\pi) \quad \forall x_j, x_i \in X_n'$$
.

We now proceed by induction, starting trivially.

Suppose that, from any subset of X_n' with $(2q)^{s-1}$ elements, we can pick a subset X_{s-1} and a point $x \in X_n'$ such that $X_{s-1}x^{-1}$ is q-lacunary. Let $Y \subseteq X_n'$ have $(2q)^s$ elements. We may suppose, without loss of generality, that

$$Y = \{x_j\}_{j=1}^{(2q)^s}$$
 with $\alpha_j < \alpha_{j+1}$.

Partition Y into 2q sets of consecutive points by putting

$$Y^k = \{x_j\}_{j=(k-1)(2q)^{s-1}+1}^{k(2q)^{s-1}} \quad k = 1, \dots, 2q \ .$$

Let h be such that

$$|\alpha_{h(2g)^{s-1}} - \alpha_{(h-1)(2g)^{s-1}+1}| = l, \text{ say },$$

is minimal. Choose a subsequence $\{x_{j_m}\}_{m=1}^{s-1} \subset Y^h$ and a point $x_{j_0} \in Y^h$ such that $\{x_{j_m}x_{j_0}^{-1}\}_{m=1}^{s-1}$ is q-lacunary. If $h \leq q$, put $x_{j_s} = x_{(2q)^s}$; if h > q put $x_{j_s} = x_1$. Then

$$|\alpha_{i_2} - \alpha_{i_2}| > ql$$
 and $|\alpha_{i_2-1} - \alpha_{i_2}| \leq l$

by (4.1), so $\{z_{j_m}z_{j_0}^{-1}\}_{m=1}^s$ is q-lacunary. This completes the induction.

LEMMA 4. Let X_{3r} , Y_{3r} be q-lacunary subsets of T. Then we can pick $X_r \subset X_{3r}$, $Y_r \subset Y_{3r}$ such that $X_r \cup Y_r$ is q-lacunary.

PROOF. Put $X_{3r} = \{x_j\}_1^{3r} = \{e^{i\pi\alpha j}\}_1^{3r}$, $Y_{3r} = \{y_j\}_1^{3r} = \{e^{i\pi\beta j}\}_1^{3r}$. We choose $\{\gamma_j\}_1^{2r}$ by the following method. Choose

$$\gamma_1 = \alpha_1 \quad \text{if} \quad |\alpha_2| \le |\beta_2|,$$

$$= \beta_1 \quad \text{if} \quad |\alpha_2| > |\beta_2|.$$

Suppose now that $\gamma_1, \ldots, \gamma_l$, t < 2r, have been chosen and that, without loss of generality, $\gamma_l = \alpha_k$, and the last β chosen was β_l (the symbol β_0 denoting that no β has as yet been chosen). There are four cases:

- i) if r elements of $\{\alpha_i\}$ have been chosen put $\gamma_{t+1} = \beta_{t+3}$,
- ii) if r elements of $\{\beta_0\}$ have been chosen put $\gamma_{t+1} = \alpha_{k+1}$,

and if neither i) nor ii), then

iii) if
$$|\alpha_{k+2}| \leq |\beta_{l+3}|$$
 put $\gamma_{l+1} = \alpha_{k+1}$,

iv) if
$$|\alpha_{k+2}| > |\beta_{l+3}|$$
 put $\gamma_{l+1} = \beta_{l+3}$.

It is clear that this process is possible and yields the desired result.

Now we introduce a few more notations and definitions.

$$T^{\omega} = \prod_{j=1}^{\infty} T_j$$

will denote the direct product of countably many copies of T.

$$\pi_i : T^{\omega} \to T_i$$

will denote the canonical projections and $\bar{\pi}_j \colon T_j \to T^\omega$, the canonical injections.

 $Z_j(q)$ will denote the cyclic group of order q embedded in $\bar{\pi}_j(T_j)$. If $q = \infty$, $Z_i(q)$ will denote an arbitrary but fixed embedding of the group of integers in $\bar{\pi}_i(T_i)$.

Let S be the set of all numbers of the form p^h where p runs through the primes and h=h(p) is the maximal integer with $p^h < 3\pi$. Then H will denote the group

$$\prod_{S} \left(\prod_{j=1}^{\infty} Z_{j}(p^{h}) \right),$$

and f_p will denote the canonical projection

$$f_p: H \to \prod_{i=1}^{\infty} Z_i(p^h)$$
.

Since

$$H = \prod_{j=1}^{\infty} \left(\prod_{S} Z_{j}(p^{h}) \right),$$

we shall identify H with its natural image in T^{ω} (as explained above).

DEFINITION. A set $X_r = \{x_1, \dots, x_r\} \subset T^{\omega}$ will be called ∞ -triangular if there exist i_1, \dots, i_r such that for $1 \le j < t \le r$, $1 \le m \le [3\pi]$,

$$\begin{array}{ccc} \text{i)} & \pi_{ij}(x_t) = 1 \; , \\ & \text{ii)} & \{\pi_{ij}(x_t)\}^m \, \neq \, 1 \; . \end{array}$$

A set $X_r = \{x_1, \dots, x_r\} \subset H \subset T^{\omega}$ will be called p^k -triangular for some prime p and some $k \leq h(p)$, if

$$f_p(X_r) \subset \prod_{j=1}^{\infty} Z_j(p^k)$$

and if there exist i_1, \ldots, i_r such that for $1 \le j < t \le r$,

(4.3)
$$\begin{array}{c} \text{i) } \pi_{i_{j}} f_{p}(x_{t}) = 1, \\ \text{ii) } \pi_{i_{t}} f_{p}(p^{k-1}x_{t}) \neq 1 \end{array}$$

A set $X_r \subset T^\omega$ will be called *triangular* if it is either ∞ -triangular or p^k -triangular, for some p and k, and i_1, \ldots, i_r will be called the *determining* co-ordinates of X_r .

Lemma 5. a) Let $X_r = \{x_1, \ldots, x_r\}$ be an ∞ -triangular set in T^{ω} . Then X_r is an ∞ -set.

b) Let $X_r = \{x_1, \dots, x_r\}$ be a p^k -triangular set in T^{ω} . Then X_r is a K_p -set.

PROOF. a) Let $f: X_r \to T$ be a given function. Writing χ_i for $\chi \circ \bar{\pi}_i \circ \pi_i \colon T^\omega \to T_i$, we can choose a character χ of T^ω with

$$\chi_i \equiv 1$$
 for $i \neq i_1, \dots, i_r$, $|\chi_{i_r}(x_r) - f(x_r)| < \frac{1}{3}$,

by ii) of (4.2),

$$|\chi_{i_{r-1}}(x_{r-1})\chi_{i_r}(x_{r-1}) - f(x_{r-1})| < \frac{1}{3}$$
 ,

and so on. Thus, taking into account i) of (4.2),

$$|\chi(x)-f(x)| < \frac{1}{3}$$
 for all $x \in X_r$.

b) Let $f: X_r \to T$ satisfy $f^p(x) = 1$ for all $x \in X_r$. Then we choose χ such that

(4.4)
$$\chi_{i_r}(x_r) = f(x_r) ,$$

$$\chi_{i_{r-1}}(x_{r-1}) \chi_{i_r}(x_{r-1}) = f(x_{r-1}) ,$$

and so on, where

if
$$\chi \bar{\pi}_{i}(e^{in\alpha}) = e^{i2\pi n\alpha}$$
, then $n \equiv 0 \pmod{q}$,

where $q = p_1^{h_1} \dots p_l^{h_l} p^{k-1}$, $p_i^{h_l} \in S$ and $p_i \neq p$. This is possible, by (4.3), and since every factor of (4.4) is a pth root of unity.

Lemma 6. Let k be a fixed integer and let $X_n' \subseteq T^{\omega}$ be fixed sets of n points of T^{ω} satisfying

$$|\pi_i(X_n')| < k \quad \text{for all } i, n = 1, 2, \dots$$

Then, given r > 0, and for large enough n, there exists a subset X_r of r points of $X_{n'}$ and $x \in T^{\omega}$ such that $X_r - x$ is triangular.

PROOF. Suppose there exists an i_1 such that there exist $x, x' \in \pi_{i_1}(X_n')$ with $\pi_i(m(x-x')) \neq 1$ for any integer $m < 3\pi$. Select $X^1 \subseteq X_n'$ with

$$\pi_{i_1}(x) = x^1 \in T_{i_1}$$
 for all $x \in X^1$

and

$$|X^1| > n/k.$$

Choose $x_1 \in (X_n' \setminus X^1) - \bar{\pi}_{i_1}(x^1)$ such that

$$\pi_{i_1}(mx_1) \neq 1$$
 for all integers $m < 3\pi$.

Now, if we can, we select i_2 , X^2 , $x^2 (\in T_{i_2})$ and

$$x_2 \in (X^1 \setminus X^2) - \bar{\pi}_{i_1}(x^1) - \bar{\pi}_{i_2}(x^2)$$
 ,

where

$$\pi_{i_2}(mx_2) \neq 1$$
 for all integers $m < 3\pi$

and $|X^2| > n/k^2$. Then

$$\pi_{i_1}(x_2) = 1.$$

So we either obtain a set $X_r \subset X_n' - (\bar{\pi}_{i_1}(x^1) + \ldots + \bar{\pi}_{i_{r-1}}(x^{r-1}))$ which is ∞ -triangular, or, for some t, we can no longer find j such that there exist $x, x' \in X^t$ with $\pi_j(m(x-x')) \neq 1$ for all integers $m < 3\pi$. Then, by translation, we can assume $X^t \subset H$. To simplify the notation we shall omit the index t.

For some prime p, $|f_p(X)| = n^1 \ge |X|^{\frac{1}{4}}$. As before, let h be the largest integer such that $p^h < 3\pi$.

If h=1, it is clear that we can use the method of the earlier part of this lemma to choose a subset X_r of X and $x \in X$ such that X_r-x is p-triangular.

If h > 1, consider the map

$$g\colon \prod_{j=1}^\infty Z_j(p^h) \to \prod_{j=1}^\infty Z_j(p^h) \bigg/ \!\!\prod_{j=1}^\infty Z_j(p^{h-1}) \, \cong \, \prod_{j=1}^\infty Z_j(p) \ .$$

If $|gf_n(X)| \ge k^r$, we choose $X^0 \subseteq X$ with

$$(4.5) gf_p(x) \neq gf_p(x') \text{ for all } x \neq x' \text{ in } X^0,$$

and $|X^0| \ge k^r$. We can then, as before, choose $X_r \subset X^0$ and $x \in T^\omega$ such that $X_r - x$ is p^h -triangular.

If $|gf_p(X)| < k^r$, then there exists a subset \overline{X} of X such that $|f_p(\overline{X})| > n^1/k^r$ and

$$gf_p(x) \,=\, gf_p(x') \quad \text{ for all } x,x' \in \overline{X} \;.$$

Let $x'' \in \overline{X}$, then

$$f_p(\overline{X}-x'') \subset \prod_{1}^{\infty} Z_j(p^{h-1})$$
.

Continuing we obtain a set X^0 with

$$f_p(X^0-\overline{x}) \subset \prod_{1}^{\infty} Z_j(p^t)$$
,

some t, $1 \le t \le h-1$, some \overline{x} , with $|f_p(X^0)| > n^1/k^{2r}$ and

$$gf_{v}(x) + gf_{v}(x')$$
 for all $x + x' \in X^{0} - \overline{x}$,

where g denotes the canonical map

$$g: \prod_{j=1}^{\infty} Z_j(p^t) \to \prod_{j=1}^{\infty} Z_j(p)$$
.

If n is large enough, $|f_p(X^0)| > k^r$, so we can choose $X_r \subset X^0$ and $x \in T^{\omega}$ such that $X_r - x$ is p^t -triangular.

For convenience of reference, we now repeat the statement of

Proposition 3. Let G be a locally compact abelian group. Let $\{(X_n',Y_n')\}_{n=1}^{\infty}$ be a sequence of pairs of disjoint subsets of G with $|X_n'|=|Y_n'|=n$. Then there exists a collection $\{(X_r,Y_r)\}_{r=1}^{\infty}$ of pairs of subsets of G and a collection of pairs of points $\{(x_r,y_r)\}_{r=1}^{\infty}$ with

$$|X_r| = |Y_r| = r$$
, $X_r \subset X_n'$, $Y_r \subset Y_n'$ for some $n(r)$,

and each $(X_r - x_r, Y_r - y_r)$ is an $\{\overline{m_1, m_2}\}$ -pair of G for some $m_1(r)$, $m_2(r)$.

PROOF. Let G_n be the subgroup of G generated by $X_n' \cup Y_n'$. Since G_n is finitely generated, it is of the form $\prod_{j=1}^m Z_j(q_j)$. By embedding $Z_j(q_j)$ in T_j , we achieve an (algebraic) embedding of G_n in T^{∞} . We shall identify X_n', Y_n' with their images in T^{∞} . There are three cases:

- 1. For any s > 0, there exist n, i, j such that $|\pi_i(X_n)| > s$, $|\pi_i(Y_n)| > s$.
- 2. For any s > 0, there exists n, i such that $|\pi_i(X_n')| > s$, but for all $j, m, |\pi_j(Y_m')| < k$ where k is an integer independent of s, n.
- 3. There exist a k > 0 such that $|\pi_i(X_n')| < k$ and $|\pi_i(Y_n')| < k \quad \forall i, n$.

These cases are exhaustive (after possible interchange of X_n' and Y_n'). Case 1 divides into two subcases.

1a. For any s>0, there exist i,n such that $|\pi_i(X_n')|>s$ and $|\pi_i(Y_n')|>s$. By Lemmas 3 and 4, we find $X_r\subset X_n',\ Y_r\subset Y_n'$ and $x_r,y_r\in G_n\subseteq T^\omega$ such that

$$\{\pi_i(X_r-x_r)\}\cup\{\pi_i(Y_r-y_r)\}$$
 is q-lacunary.

By lemma 2, $(X_r - x_r, Y_r - y_r)$ is an $\{\overline{\infty}, \overline{\infty}\}$ -pair of T^{ω} .

1b. For any s > 0, there exist i, n such that $|\pi_i(X_n')| < s$, but there is a k > 0 such that

$$|\pi_i(\boldsymbol{X}_n{}')| \, > \, s \, \Rightarrow \, |\pi_i(\boldsymbol{Y}_n{}')| \, < \, k \; .$$

However, there exist j,n such that

$$|\pi_i(X_n')| > s$$
 and $|\pi_j(Y_n')| > s$, $i \neq j$.

Taking s large enough, and fixing i and j, we choose a subset $Y \subset Y_n$ such that

$$\pi_i(y') = \pi_i(y) = y^1 \text{ say}, \quad \forall y, y' \in Y,$$

and

$$|\pi_i(Y)| > s$$
.

Then, by lemma 3, we can find $X_r \subseteq X_n'$, $Y_r \subseteq Y_n$, $x \in T_i$, $y \in T_j$ such that

$$\pi_i(X_r - x_r), \ \pi_i(Y_r - y_r)$$
 are q-lacunary,

where

$$x_r = \bar{\pi}_i(x), \quad y_r = \bar{\pi}_i(y_i') + \bar{\pi}_i(y).$$

Then, if $f: (X_r - x_r) \cup (Y_r - y_r) \to T$ is a given function, there exists, by lemma 2, a character χ on T^{ω} such that

$$|\chi_j(y) - f(y)| < \frac{1}{3} \quad \forall y \in Y_r - y_r$$

and

$$|\chi_i(x)\chi_i(x)-f(x)|<\frac{1}{3} \quad \forall x\in X_r-x_r$$
.

So $(X_r - x_r, Y_r - y_r)$ is an $\{\overline{\infty}, \overline{\infty}\}$ -pair of T^{ω} .

CASE 2. Taking s large enough, we can find arbitrary large n such that, for some i(n), $|\pi_i(X_n')| > s$. As in 1b we select $Y \subset Y_n'$ such that

$$\pi_i(y) = \pi_i(y') \quad \forall y, y' \in Y$$

and

$$|Y| \geq n/k$$
.

By Lemmas 3 and 6, we select subsets $X_r \subseteq X_n'$, $Y_r \subseteq Y$ and $x_r, y_r \in G_n \subseteq T^\omega$ such that $\pi_i(X_r - x_r)$ is q-lacunary, $Y_r - y_r$ is triangular and, in addition,

$$\pi_i(y) = 1 \quad \forall y \in Y_r - y_r$$
.

Then, by lemmas 2 and 5, the pair $(X_r - x_r, Y_r - y_r)$ is an $\{\overline{\infty, m_2}\}$ -pair for some m_2 .

Case 3. Using lemma 6, it is easy to see that, for n large enough we can choose sets $X_r \subset X_n'$, $Y_r \subset Y_n'$ and points $x_r, y_r \in G_n \subseteq T^{\omega}$ such that $X_r - x_r$, $Y_r - y_r$ are triangular, with the additional condition that, if $i_1, \ldots, i_r, j_1, \ldots, j_r$, are the determining coordinates for $X_r - x_r$, $Y_r - y_r$ respectively, then

$$egin{aligned} \pi_{i_t}(y) &= 1 & \quad orall \, y \in Y_r - y_r, \quad t = 1, \ldots, r \,, \\ \pi_{j_t}(x) &= 1 & \quad orall \, x \in X_r - x_r. \end{aligned}$$

This ensures, by lemma 6, that (X_r-x_r,Y_r-y_r) forms an $\{\overline{m_1,m_2}\}$ -pair of T^ω for some m_1,m_2 .

To conclude the proof of the proposition, we need only remark that, if $(X_r,Y_r)\subset G_n\subset T^\omega$ is an $\{\overline{m_1,m_2}\}$ -pair for T^ω , it is an $\{\overline{m_1,m_2}\}$ -pair for G. This follows since, if X is a finite set in G, and χ is an (algebraic) character on G, there exist, for any $\varepsilon>0$, a continuous character $\bar{\chi}$ on G, with

$$|\chi(x) - \overline{\chi}(x)| < \varepsilon \quad \forall x \in X$$
,

cf. [4].

REFERENCES

- 1. N. Bourbaki, Intégration, Chapter V (Act. Sci. Ind. 1244), Paris, 1957.
- H. Helson, J.-P. Kahane, Y. Katznelson, and W. Rudin, The functions which operate on Fourier transforms, Acta Math. 102 (1959), 135-157.
- C. Herz, Math. Reviews 31 (1966), 2567. (Review by C. Herz of papers by N. Th. Varopoulos.)
- E. Hewitt and H. S. Zuckerman, A group-theoretic method in approximation theory, Ann. of Math. 52 (1950), 557-567.
- J.-P. Kahane, Algèbres tensorielles et analyse harmonique, Seminaire Bourbaki, 1964/65, Exposé 291, May 1965.
- J.-P. Kahane and Y. Katznelson, Contribution à deux problèmes concernant les fonctions de la classe A, Israel J. Math. 1 (1963), 110-131.
- J.-P. Kahane and R. Salem, Ensembles parfaits et séries trigonométriques (Act. Sci. Ind. 1301), Paris, 1963.
- W. Rudin, Fourier Analysis on Groups (Intuscience tracts in pure and applied mathematics 12), New York · London, 1962.
- 9. N. Th. Varopoulos, A direct decomposition of the measure algebra of a locally compact abelian group, Ann. Inst. Fourier (Grenoble) 16 (1966), 121-143.
- N. Th. Varopoulos, Tensor algebras and harmonic analysis, Acta Math. 119 (1967),
 51-112.

TRINITY COLLEGE, CAMBRIDGE, ENGLAND FACULTÉ DES SCIENCES (MATH.), ORSAY, FRANCE MATHEMATICS INSTITUTE, UNIV. WARWICK, COVENTRY, ENGLAND