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A NOTE ON DESINTEGRATION, TYPE AND
GLOBAL TYPE OF VON NEUMANN ALGEBRAS

MOGENS FLENSTED-JENSEN

Introduction.

A von Neumann algebra (v.N. algebra) which satisfies

(i) the center Z is o-finite,
(ii) the commutant Z’ and the v.N. algebra are both generated by Z
and a countable set of operators,

has a central decomposition associated with a finite measure space. In
theorem 1.4 we show, that this decomposition reduces the type-classifi-
cation problem to that of factors on a separable Hilbert space.

Proposition 2.1 and 2.2 could be called a sort of Fubini theorem for
direct integrals of v.N. algebras. These results might be a help in under-
standing the globally central decomposition, which is introduced in sec-
tion 3.

In analogy with the usual central decomposition, theorems 3.2 and 3.5
show that we can reduce global classification problems to those of global
factors.

In the special case of a centrally smooth v.N. algebra we end up by
refinding the canonical decomposition from [4].

1.

Let H, be a fixed Hilbert space of dimension n for n=1,2,...,R,,
and let 4, be the set of all v.N. algebras on H,. Following [3] and [4]
we have a standard Borel structure on

4 =U{4,| n=1,2,...,8;}.
The relative structure on the set F of factors is also standard.

ProrosrTioN 1.1. The set Fyp of type I1 factors is an analytic set in A.

Proor. A v.N. algebra is semi-finite if and only if it is algebraically
isomorphic to the commutant of a finite v.N. algebra. The set F'; of semi-
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finite factors is thus the saturation with respect to algebraic isomorphism
of the set F,' of the commutants of finite factors. F, is a Borel set
[4, theorem 2.8] and thus F;' is Borel. F is then analytic by the proof of
[4, theorem 3.4], and we get that F;=F \ F; is an analytic set.

COROLLARY 1.2. Let x — B(x) be a Borel field of factors on a finite meas-
ure space (X,u). The set {x € X | B(x) € Fy;} is measurable. (X need not
be countably separated.)

The next theorem due to R.J. Aumann [1] is a generalization of
“The principle of measurable choice’ [2, appendix V].

THEOREM 1.3. Let (T,p) be a finite measure space and X a standard
Borel space. Let G be a Borel set in T x X such that the projection into T
18 the whole of T'. Then there exists a Borel null se¢ N <T and a Borel map
g: T\N — X such that (t,9(t)) € G for all te T\ N.

This theorem enables us to improve some well-known results. We
have for example:

THEOREM 1.4. Let (X,u) be equivalent to a finite measure space, x —
B(x) a Borel field of factors, and B= [y B(x)du(x). Then B is of type 1
(resp. 1,,, 11, I1,, 11, III) if and only if B(x) is of type I (resp. I, 11,
I1,, 11, III) for almost all x € X.

The theorem is well known in the case where X is a standard Borel
space ([2, chap. IT and IIT] and [5]). The proof of the theorem follows
the same line as the proof of this special case. The improvement is
mainly relying on theorem 1.3. However, in order to use this theorem
we must know that the sets X;={xe X | B(x)e F;}, Xy, Xy, X11p5
X1 are measurable, but this follows from [4] and corollary 1.2.

2.

PropositioN 2.1. Let (X,u) and (Y,v) be standard Borel spaces with
measures. Let u@v be the product measure, and (x,y) — B(x,y) a Borel
field of v.N. algebras on X x Y. The v.N. algebras

B
[ By duerwy) and [ [ Bay) dy)dut),
XY

XxY

where B is a suitable coherence, are spatially isomorphic.
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Proor. This follows immediately from the Fubini theorem and [4,
lemma 4.5].

ProposITION 2.2. Let (X,u) and (Y,v) be as in proposition 2.1 and
x — B(x) and y — C(y) Borel fields of v.N. algebras. Then

(i) (z,y) - B(x)®C(y) is a Borel field,

(ii) the v.N. algebras

[B@duw e [cwdy) and | Bw)eow)duerw.y)
X Y

XXY

are spatially isomorphic.

Proor. When we have shown (i), we get (ii) from proposition 2.1
and [2, chap. II, § 3, proposition 3].

Identify H,®H, and H,, by suitable fixed isometries. Then
®: 4,xA4,, > A,,, is well defined for all » and m in {1,2,...,8,}. Let
I, denote the set of scalar multiples of the unit operator on H,. By
[4, remark after lemma 2.1],

B~ B®I, and C—1,C are Borel maps.

Further, (B,C) - (BuC)"” is a Borel map : A4,,,x 4, = A, [3, theo-
rem 3, corollary 2]. Combining the above we see that

(B,0) - B®C=(B®I,ul,20C)"

is a Borel map. Now (i) follows easily.

3.

In the following let B denote a v.N. algebra on a separable Hilbert
space H, let Z be the center of B and Z° the lattice of projections in Z.
Let ~ denote spatial equivalence in Z°, that is, £~ F if and only if By
and By, are spatially isomorphic, and if and only if there exists a partial
isometry U € L(H) such that UBU*<B and U*BU<B, U*U=FE and
UU*=F. (See [4, § 6].) Let Z;° be the set of globally central projections,
and Z;=(Zs°)"’". We define

G(B) = {Ue L(H) | U is unitary, UBU*=B}.
Then we have G(B)=G(B').

LEmMMA 3.1. Zg=G(B)', and Z;° is the lattice of projections in Zg.
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ProoF. G(B) contains all unitaries in BUB’, thus G(B)' <Z. From
[4, lemma 6.1], we have Z,°=Z°nG(B)" and we get indeed Z =
(Z°nG(B)')"=G(BY'.

For B € Z° let £ denote the minimal projection in Z,° greater than
E is called the globally central support of E.

Define global type as in [4, § 6], and define B to be of global type I,,,
denoted I,%, if there exist B, e Z°, 1=1,2,...,n, pairwise orthogonal,
spatially equivalent and globally multiplicity free such that I=3E,.

It is a well-known procedure to show that a v.N. algebra B has a
unique decomposition into a direct sum of v.N. algebras of the types
L% n=1,2,...,8;, I,9, II ¢, III%, such that the projections Ey,. ..,
E;;; determining it are globally central.

It is quite easy to prove that any v.N. algebra B has a greatest central
projection K such that By, is centrally smooth. It follows that B is
not centrally smooth for any F € Z° with F <1 —E, and that E, e Z;°.

We know [4, § 6], that £, 1 E;, but which relations there are between
E; and E; (resp. Eyy) or whether Ey=1 in general is not known.

We have Z,< B<Z;'. We can take Z as the set of diagonal operators
Z(u) on a direct integral of Hilbert spaces H = [y H(x)du(x). Then B is
decomposable: B=[yB(x)du(x). This decomposition of B over Z,; is
essentially unique. We call it the globally central decomposition of B.

THEOREM 3.2. (i) Let B= [y B(z)du(x) be the globally central decompo-
sition of B. Then B(z) is a global factor for almost all x € X.

(ii) If B=[yxB(x)du(x), and B(x) is a global factor for almost all x € X,
and the set of diagonal operators Z(u) ts contained in Zg, then Z(u)=2Zg,
and we have the globally central decomposition.

Proor. (i). The space G(B) is a Polish space in the strong operator
topology. Let 7, k=1,2,..., be a strongly dense sequence in G(B).
Let T)= [xT)(x)du(x). Since the set of 7',’s generates G(B)" =Zg’, the
set of T',(x)’s generates L(H (X)) for almost all z € X.

For all £ we have T, BT;*=B, and thus 7', (x)B(x)T(x)*=B(x) for
almost all x € X. From this we deduce that, for almost all z € X,

(Ty@) | k=1,2,...} < G(B(@)),

and therefore L(H(x))=G(B(x))"’, which shows that B(z) is a global
factor for almost all z € X.

(ii). Take E in Z,°. Since Z(u)<Zgy, we can write E =[x E(x)du(x).
We can assume that, for all x € X, B() is a global factor and E(z) is a
central projection in B(x). The set X'={wec X | E(x)+0,I} is Borel.
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Suppose that u(X’)+0. We can assume that H(z)=H, for a fixed n
and all x € X'.

Since B(x) is a global factor, and E(x)+0,I for all x € X', there exists
for all ze X’ a unitary operator in L(H,) such that U B(x) U* = B(x) and
UE(x) U* + E(x).

The set G, of unitaries on H,, is a Polish space in the strong topology.
Take the set

M= {x,U)eX'x@Q,| UBx)U*=B(x), UE(x)U*+ E(z)}

which is a Borel set [4, lemma 2.1].
From theorem 1.3 we get a Borel null set N <X’ and a Borel map
x — U'(z) from X'\ N into L(H,) such that, for all x € X'\ N,

U'(x)e Q(B(x)) and U'(x)E@)U'(x)*+E(x).

Now extend U’ to a Borel field U on the whole of X by defining U(x)
to be the unit operator on H(z) for x not in X'\ N. For U = [y U(x)du(x)
we have U € G(B) and U E U* + E, which is a contradiction since E € Z.
Thus we have u(X’)=0, and therefore K € Z(u).

This completes the proof.

ProrositioN 3.3. Let E and F be central projections and E~F, let U
be a partial isometry determining the equivalence. Then U € Z/'.

Proor. It is sufficient to show, that UG=QU for all G € Z;°.

It is obvious that GE~UGEU*<F. Since GeZ;°, we have
UGEU*<@, and thus UGE U* <G F. In the same way we may obtain
U*G@FU<GE. Combining these inequalities we get UGEU*=GF or
UGU*=QUU*, and thus UG=UEG=UGE=GFU=GU.

ProposiTioN 3.4. Let B= [y B(x)du(x) be the globally central decompo-
sition of B. Let B =[x E(x)du(x) and F =[5 F(x)du(x) be central projec-
tions in B. Then

(1) EA~F if/a\nd only if E(x)~ F(x) for almost all x € X,

(ii) B = Jx B(x)du(a).

Proor. (i). Let U be a partial isometry giving the equivalence. By
proposition 3.3, U is decomposable: U= [y U(zx)du(x). For almost all
z € X we have that U(z) is a partial isometry such that

U)*U(x) = E(x), U)U@)* = Fv),
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U(x)*B(x)U(x) < B(x), U(x)B(x)U(x)* < B(x),

and thus E(x)~ F(z) for almost all x € X.

On the other hand, suppose that E(x)~ F(x) for almost all ze X,
that is, B(x)g) is spatially isomorphic to B(x)zqy. It follows from [2,
chap. II, § 3, Proposition 6] and [4, lemma 4.1] that By is spatially iso-
morphic to By, and thus E~F.

(ii). B=[xE(x)du(r) is a globally central projection if and only if
u({x e/{( | E(x)+0,1}=0. Since B(x) is a global factor, E(z)=0if E(x)=0
and E(x)=1 if E(x)+0. From this (ii) follows easily.

THEOREM 3.5. If B is a v.N. algebra on a separable Hilbert space and
[ x B(x)dpu(x) is its globally central decomposition, then we have:
(i) B is of type I¢ (resp. 1,9, I1,9) if and only if B(x) is of type I¢
(resp. 1,G, I1,%) for almost all x € X.
(ii) If B s of type I1_C, then B(x) is of type 11 for almost all x € X.
(iii) If B(z) is of type I11¢ for almost all x € X, then B is of type I1IC.

We omit the proof of this theorem. It is quite extensive and involves
a thorough discussion of the spatial equivalence relation on Z°. How-
ever, it uses the same technic and is rather similar to the proof of theorem
1.4, and the basic difficulties are tackled in propositions 3.3 and 3.4.

It is not known whether (ii) or (iii) has a converse. This problem
might be accessible similar to [5], by some kind of trace argument.

REMARK 3.6. If B is centrally smooth and

B = 20 B(x) du,(x)®@B,, = 20 B(x)®@B,, du,(x)
is the canonical decomposition, as described in [4, § 5], it is easily seen
from theorem 3.2 (ii) that this gives the globally central decomposition
by taking (X,u) to be the disjoint sum of (W,,u,), n=0,1,2,...,X,.
Also, the type I,% part of B is the part associated with W, for n=
1,2,...,R8;, and the type III¢ part of B is that associated with W,.

If every v.N. algebra on a separable Hilbert space is centrally smooth,
then theorem 3.5 almost trivially follows from the above remark.
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